
A System for Rapid, Automatic Shader Level-of-Detail

Yong He
Carnegie Mellon University

Theresa Foley
NVIDIA

Natalya Tatarchuk
Bungie

Kayvon Fatahalian
Carnegie Mellon University

Abstract
Level-of-detail (LOD) rendering is a key optimization used by mod-
ern video game engines to achieve high-quality rendering with fast
performance. These LOD systems require simplified shaders, but
generating simplified shaders remains largely a manual optimiza-
tion task for game developers. Prior efforts to automate this process
have taken hours to generate simplified shader candidates, making
them impractical for use in modern shader authoring workflows for
complex scenes. We present an end-to-end system for automatically
generating a LOD policy for an input shader. The system operates
on shaders used in both forward and deferred rendering pipelines,
requires no additional semantic information beyond input shader
source code, and in only seconds to minutes generates LOD poli-
cies (consisting of simplified shader, the desired LOD distance set,
and transition generation) with performance and quality character-
istics comparable to custom hand-authored solutions. Our design
contributes new shader simplification transforms such as approx-
imate common subexpression elimination and movement of GPU
logic to parameter bind-time processing on the CPU, and it uses
a greedy search algorithm that employs extensive caching and up-
front collection of input shader statistics to rapidly identify simpli-
fied shaders with desirable performance-quality trade-offs.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
[I.3.7]: Computer Graphics—Three-Dimensional Graphics and Re-
alism;

Keywords: shader simplification, level-of-detail, real-time render-
ing, shader optimization

1 Introduction
Modern video game engines are tasked with rendering highly com-
plex scenes and require efficient and high-quality level-of-detail
(LOD) systems to achieve their performance goals. These systems
consist of simplified shaders used to render far-away objects, a set
of distances for switching among shaders and policies for managing
LOD transition regions. Many AAA games, in particular those with
open worlds or user-customizable assets, feature a large collection
of unique shaders that define the diverse surface properties of game
objects. Often these shaders are not hand-authored in full or opti-
mized for LOD performance by direct code tweaking by a program-
mer. Instead, shaders are frequently authored by content creators
(such as technical artists) using a set of programmer-created shader
components combined in an artist-friendly node graph user inter-
face [Andersson and Tatarchuk 2007; Epic Games 2015a]. Dur-
ing offline asset processing the resulting shader node graphs are
compiled down to high-level language shaders with additional state

(such as texture or constant inputs) used for rendering. For ex-
ample, Bungie’s AAA title Destiny included over 17,000 artist-
authored shader graphs compiled to over 180,000 unique vertex
and fragment shaders (for a single console platform) [Bungie 2014].
This number multiplies for each shipping platform since target-
specific optimizations are employed to efficiently support multi-
ple hardware generations with diverse performance characteristics.
Thus, custom manual optimization of shader code for LOD pur-
poses is intractable for game developers. Automated systems are
needed to perform this task.

In this paper, we focus on the challenge of automatically gener-
ating shader LOD policies for shaders typical of those in modern
games. Of course, any automatic system must produce good sim-
plified shaders: that is, the resulting shaders used in the LOD policy
should be comparable in visual quality and performance to those
authored manually by an expert programmer. Second, to be vi-
able for game design workflows (where assets are continuously cre-
ated and modified throughout a game’s development) such a system
must be fast: that is, it must be able to construct a policy in seconds
or a few minutes to facilitate fast development iteration times or
convenient artist workflows.

We present a system that meets both these goals. Our focus is on
generating LOD policies for surface pattern generation components
of shaders (the use case in which automatic tools are most attrac-
tive), but the system can also simplify full shaders with both sur-
face and lighting computations. The system operates on shaders
used in both forward and deferred rendering contexts, requires no
additional semantic information beyond input shader source code,
and in many cases produces acceptable LOD policies in about a
minute. Our design incorporates ideas from prior shader simplifi-
cation work but contributes new shader simplification transforms
(including one that approximates GPU-shader computations with
CPU-side processing) and an algorithm that uses greedy search,
caching, and extensive collection of statistics about the input shader
to rapidly identify simplified shaders with desirable performance-
quality trade-offs.

2 Related Work
Our work is inspired by prior efforts to automatically synthesize
lower-cost approximations to shader programs. Initial shader sim-
plification efforts considered only local transformations to a single
shader stage (intra-stage optimizations) [Olano et al. 2003; Pel-
lacini 2005; Sitthi-Amorn et al. 2011] such as removing arithmetic
or texture sampling operations from fragment shaders. We ex-
tend these ideas with a new transform: approximate common sub-
expression elimination, a single general operation that subsumes the
functionality of many local simplification rules.

More recently, Wang et al. [2014] implemented a simplifying trans-
formation that moved per-fragment shader terms to the vertex pro-
cessing stage. This capability allowed their system to automate re-
duction of sampling rate for low-frequency terms, which has long
been an optimization employed manually by graphics program-
mers. We build upon this idea to add a new rate of computation
which executes not per frame or draw call [Proudfoot et al. 2001],
but only when the value of uniform inputs to the shader change
(which can be as infrequently as scene load). This computation rate
is missing from prior simplification work, but we find it valuable to
avoid “baking” values into shader literals (or fixed constant buffers)

Shader program Shader
simplifier

LOD shader
selector

Transition
generator

Training scene
sampler

Quality evaluator

Simplified shaders
on Pareto curve

5m
10m
50m
90m

5-10m
10-50m
50-90m

LOD policy: table of
shaders + distances

LOD transition
shaders

System overview

...

Figure 1: Given an input shader, a training scene sampler, and shader quality evaluator function, the system automatically generates a
sequence of simplified shaders forming a LOD policy.

during simplification, so that low-LOD shaders are not overly spe-
cialized to particular art assets.

This per-uniform-parameter change rate of computation, which we
call a parameter shader stage, is similar to that implied by the “uni-
form” rate qualifier in the Renderman Shading language [Hanrahan
and Lawson 1990] or the “static” qualifier described by Guenter et
al. [1995] since these computations occur once at the time of shader
instance creation. While these systems support an initialize-time
rate of computation for similar reasons as us (to realize the perfor-
mance benefits of specialization), they require the programmer to
explicitly specify what values are computed at this rate. In fact,
complete programmer control over the rate of shader terms was
considered a feature by designers as it was thought undesirable for
the compiler to make optimizations that modified the output qual-
ity or global-scale code structure of shaders [Proudfoot et al. 2001;
Foley and Hanrahan 2011]. In contrast, our system automatically
determines what terms from input vertex and fragment shaders are
acceptable to move to new computation stages—making such de-
cisions for the programmer (even though they will impact output
quality) is the whole point of an automatic system for generating
shader LODs.

Finally, in contrast to prior work which focused on the single task of
producing a series of simplifications to a shader, our objective is to
generate a complete LOD policy. This includes not only generating
simplified shaders but also selecting object distances at which they
should be used and managing transitions between LODs to avoid
artifacts such as popping. Many aspects of our design focus on
compiler performance, since discussion with game developers indi-
cates that to be viable for game design workflows, compiled results
must be presented to a shader author in seconds or a few minutes,
rather than hours as was the case in prior work based on genetic
algorithms [Sitthi-Amorn et al. 2011; Wang et al. 2014].

The search for simplified shaders is a form of program auto-tuning,
for which open frameworks for both traditional and variable-
accuracy optimization exist [Ansel et al. 2014; Sampson et al.
2015]. We chose to build our own shader simplification frame-
work from scratch to retain full control over the search strategy
and to optimize GPU integration for profiling. However, it would
be interesting to determine if the techniques described here could
be implemented efficiently within the context of these more general
auto-tuning frameworks.

3 System Overview
Figure 1 illustrates the end-to-end operation of our shader LOD
generation system. The inputs to the system comprise: a shader
program P for which a LOD policy is desired; a training scene
sampler, which defines the space of scene configurations used for
gathering performance and quality data; and a shader output qual-
ity evaluator, used by the system to assess the error introduced by
generated shaders. The output of the system is a LOD policy, which
includes simplified shaders and distance ranges at which they apply.

In our system, like that of Wang et al. [2014], a shader program
(or “shader” for short) specifies the behavior of multiple stages
of the graphics pipeline. Specifically, we represent a shader pro-
gram P as a directed acyclic graph (DAG) where the nodes, cor-
responding to individual scalar, vector, or matrix operations, are
partitioned into a triplet of sub-graphs {Pp, Pv, Pf}, one for each
stage of the pipeline. These sub-graphs represent the operations
performed in GPU vertex (Pv) and fragment (Pf) shading stages,
along with a parameter shader stage (Pp) which includes host-side
logic for computing uniform parameter values. Section 4.1 de-
scribes how the parameter stage facilitates aggressive shader sim-
plification while still allowing for dynamic choice of uniform pa-
rameter values. While the approach described in this paper should
extend naturally to additional rates of computation (e.g., per-render-
target-sample or per-coarse-fragment [Vaidyanathan et al. 2014; He
et al. 2014]), for simplicity our current implementation only sup-
ports these three stages.

The training scene sampler must be provided by the user of our sys-
tem, and includes both a complete scene definition (geometry and
textures) and also a sampling strategy for generating any required
lighting, material, and camera parameters when evaluating the in-
put shader program and its simplifications. Each parameter to be
varied is represented as a distribution and a sampling strategy that
generates independent samples from its domain. Currently we use
uniform distributions for all parameters.

Since our system might be applied to both forward and deferred
shaders we cannot assume semantic or perceptual properties of
shader outputs. This task instead falls to the user-provided output
quality evaluator, which is responsible for comparing the output of
a simplified shader against the “gold” output of the original unsim-
plified shader. For forward shaders producing RGB color outputs,
one might use a simple distance metric on colors, but for a deferred
pattern generation shader, producing a G-buffer containing multiple
material attributes with complex packing, evaluating quality may be
more involved. We discuss our specific quality evaluation scheme
for deferred shaders in Section 7.

Given an input shader P , training scene sampler S, and shader out-
put quality evaluator function E, we seek to automatically generate
a shader LOD policy L(P, S,E) = {(Pi, di)} that specifies a set of
simplified shader programs Pi and transition distances di. For each
Pi, the policy specifies a camera-to-object distance range (di, di+1)
in which Pi is the preferred approximation to P : that is, the highest
performing shader with acceptable output quality in that distance
range. In addition to maintaining similarity to the input shader P ,
a desirable policy will reduce visual artifacts such as aliasing and
avoid discontinuities when transitioning between LODs.

The proposed system generates a shader LOD policy in three steps
(Figure 1). First, a shader simplifier explores the space of possible
program simplifications to generate many lower-cost approxima-
tions to P . The set of simplified shaders lying on the performance-
quality Pareto frontier is then provided to the LOD shader selector,

which employs a more extensive performance and quality analysis
to select a small set of shaders that provide the best performance-
quality trade off over specific ranges of viewing distances. Finally,
to ensure smooth transitions between the selected shaders, the tran-
sition generator emits new shaders that smoothly blend between the
outputs of shaders selected for neighboring distance ranges. The
implementation of these three steps will be discussed in detail in
the following sections.

4 Shader Simplification
At a high level, the goal of the shader simplifier is to trace out
a performance-quality Pareto curve by starting with the original
shader and applying one simplifying code transformation at a time
to produce a sequence of shaders that decrease in quality, and in-
crease in performance. In generating this sequence, we must ad-
dress a number of conflicting goals:

• The simplifier should generate the output shaders in as little
time as possible, ideally within seconds to a few minutes.

• The generated shaders should lie as close as possible to the
true (globally optimal) performance-quality Pareto curve.

• The simplifier should produce enough shaders along the curve
to allow the LOD policy generator to find good candidates for
a wide range of object viewing distances.

The interplay between these goals leads to a few key strategies in
our simplification algorithm, illustrated in Figure 2.

The most important strategy we use to improve simplification speed
is to perform a single greedy descent pass with no backtracking;
at each step the system applies one transformation to yield a new
shader in the search space, then proceeds from there (see Figure 2,
black dots). In order for this greedy approach to approximate the
true Pareto curve as well as possible, the simplifier must try to make
good (well informed) decisions at each step.

In order to make good choices, the simplifier considers a large space
of candidate transformations (Figure 2, outlined dots). However,
considering many transformations is costly, largely due to the cost
of performing GPU rendering using the candidate shaders to evalu-
ate the error they introduce. In order to mitigate the cost of measur-
ing the error of many candidate transformations, the simplification
algorithm employs two key strategies.

First, we observe that as a shader is simplified the error introduced
by each remaining candidate transformation is often stable. There-
fore the simplifier caches and re-uses error estimates across steps in
its search, and employs heuristics to determine when to invalidate
these cached estimates as simplification proceeds.

Second, the algorithm prioritizes and aggressively filters the list of
candidate transformations that it considers at each search step. (Fig-
ure 2’s gray dots failed to pass this filtering.) One form of filtering
is based on static information gathered by a data collection phase
executed prior to entering the main search loop. Since this pre-
processing is amortized over many iterations of simplification it is
tractable to collect extensive (per-instruction) data about the shader
that is used to prioritize candidate transformations and also enable
advanced simplifying transformations. A second form of filtering
is enabled by the goal of producing a dense sampling of the quality
axis of the Pareto curve: we consider only candidate transforma-
tions that induce the smallest error increase, with the expectation
that these candidates may also lead to small steps in the overall
performance-quality space.

Before describing the simplification search algorithm in detail in
Section 4.4, we describe the program transformations available to

Original shader
Current shader

Candidate shader
with median error

Shader error
(units specific to quality evaluator)

E
st

im
at

ed
 s

ha
de

r c
os

t

Error threshold for filtering candidates
Selected shader

Figure 2: Our greedy search algorithm attempts to follow a
performance-quality Pareto curve. At each step we select the sim-
plified shader with the best ratio of change in performance versus
error, among candidates below an error threshold.

simplification, how shaders are instrumented, and how the system
measures the error incurred by simplified shaders.

4.1 Program Transformations
The shader simplifier uses three classes of transformations that ma-
nipulate the DAG defining a shader program (and the sub-graphs
Pp, Pv , and Pf). All transformations operate at the granularity of
single nodes in the DAG, which correspond to shader instructions.

Move to vertex stage (m2v). This transformation, also imple-
mented by Wang et al. [2014], lifts a per-fragment operation into
a per-vertex operation. It is a viable program approximation for
terms that vary slowly across the object’s surface, since the per-
fragment value of these terms is well approximated by interpola-
tion of coarsely sampled results. The transformation moves node
n (in Pf) into Pv , and copies any other per-fragment nodes that n
depends on into Pv as well. Any unnecessary duplication of com-
putation in Pv and Pf will be eliminated by dead-code elimination
optimizations applied as part of compiling the simplified shader.

Approximate common sub-expression elimination (ACSE). De-
tailed profiling of per-node outputs (as opposed to the final output
color) of input shader programs makes it possible to consider ad-
vanced approximation strategies. We implement a new simplifi-
cation transformation that replaces the output of node ni with the
output of nj (these nodes may be in different stages) when profiling
identifies that the outputs of the two nodes are similar in all training
scene samples. Since this transformation is similar to the standard
compiler transformation of common subexpression elimination, but
is applied even when the outputs of the two nodes are not exactly the
same, we refer to it as approximate common sub-expression elim-
ination (ACSE). If ni directly depends on nj , applying ACSE to
these nodes is equivalent to binary operator elimination described
by Pellacini [2005]. However, unlike binary operator elimination,
ACSE is a global transformation that can find simplifications be-
tween distant nodes in the DAG, even if the nodes reside in different
stages or are not related by dependencies.

Move to parameter stage (m2p). This transformation lifts a per-
fragment or per-vertex operation into the parameter shader stage,
where it is evaluated on the host CPU and provided to the GPU
stages as a uniform parameter.

Prior work suggests the use of simplifying transformations such as
average substitution (n→average(n)) [Olano et al. 2003; Pellacini
2005] or Bezier approximation [Wang et al. 2014]. The problem
with computing statistics of terms at compile time and embedding
the results into the program as immediates (or “baking” values into
constant buffers or textures) is that the resulting simplified shaders
are highly specific to the test scene used for error evaluation and fail
to generalize to novel runtime configurations. To address this issue,

Input fragment shader
parameter vec4 paintColor0, paintColor1;
in vec3 normal, view;
out vec4 color;

float fFresnel1 = clamp(dot(normal, view), 0.0, 1.0);
float fFresnel1Sq = fFresnel1 * fFresnel1;
vec4 paintColor = paintColor0 * fFresnel1 +

paintColor1 * fFresnel1Sq;
color = paintColor * lighting(...);

Output parameter shader (generated from simplification)
// input values provided by engine
vec4 paintColor0, paintColor1;

vec4 paintColor = vec4(0.0);
for (int i=0; i<NUM_SAMPLES; i++) {
int sample_idx = random(i);
vec3 normal, view; // unique samples per iteration
float fFresnel1 = clamp(dot(normal, view),0.0,1.0);
float fFresnel1Sq = fFresnel1 * fFresnel1;
paintColor += paintColor0 * fFresnel1 +

paintColor1 * fFresnel1Sq;
}
// value used as uniform parameter to fragment shader
paintColor /= NUM_SAMPLES;

Output (simplified) fragment shader
parameter vec4 paintColor;
out vec4 color;
color = paintColor * lighting(...);

Listing 1: Move to parameter stage code transformation.

we defer the computation of average(n) to a new parameter shader
stage that executes at runtime on the host CPU once the values of
shader input parameters are known.

To understand this challenge more precisely, consider the per-
fragment logic from the CARPAINT shader (Section 7) shown at
the top of Listing 1. The code computes the car’s paint color
as a Fresnel-weighted blend of two application-provided colors
paintColor0 and paintColor1. Since subtle variations in
paint color are difficult to observe at a distance, a plausible opti-
mization is to disregard the Fresnel effect under these conditions
and set the value of paintColor to a constant equal to the av-
erage paint color over all training pixels (e.g., red). However, the
resulting shader would not generalize to use cases where the input
parameters paintColor0 and paintColor1 were changed to
values not used in the training scene configurations (e.g., shades of
green). Profiling the shader over a wider range of input color values
during simplification (e.g., both red and green input parameter sam-
ples) would result in high error since the average paint color (now
a shade of brown) would poorly approximate the car’s appearance
for almost any choice of parameter values.

The move-to-parameter-stage optimization provides the opportu-
nity for aggressive code simplification when per-fragment terms
are well approximated by their average for a specific set of input
parameters (i.e., their value is largely invariant to surface position),
but the values of these input parameters may vary significantly at
runtime (and are not predictable at compile time). By generating
code to compute these uniform values at runtime, the transforma-
tion yields shaders that retain the performance benefits of average
substitution and baking, but can still be used in a broad range of
runtime contexts.

Similar to the move-to-vertex-stage transform, move-to-parameter-
stage moves node n into Pp, and copies the nodes that n depends
on into Pp as well. For example, in the CARPAINT shader, since the

per-fragment variation in paintColor (due to view and normal
variation) is found to be insignificant at a distance, the computa-
tion of paintColor is moved to the parameter shader (Listing 1-
center). One important difference in the move-to-parameter-stage
transformation is that if the node n being moved (or a node it de-
pends on) has been subjected to approximation (e.g., via ACSE)
then the transformation instead copies the original unapproximated
computation of n into Pp. We found this somewhat ad hoc choice
yields higher quality simplified shaders because it avoids unneces-
sary approximation.

The parameter shader stage is executed at runtime, under engine
control, when shader parameter values become available. Our cur-
rent implementation runs the parameter shader stage at material
load time and stores the output in a GPU-accessible buffer (ex-
tensions could support additional parameter shader rates, such as
in response to dynamic game events, per-draw-call, or per-frame).
To robustly estimate the average value of paintColor needed as
input for simplified fragment stage code (Listing 1-bottom), the pa-
rameter shader evaluates paintColor at NUM SAMPLES random
vertex positions on the object’s surface, each time from a random
view position. Therefore, the parameter shader terms normal and
view take on unique values (plumbed from shader vertex or uni-
form inputs) for each sample. Since m2p will only be performed
when data collection determines the error introduced by the trans-
form is low, only a small number of samples is needed to robustly
compute the average (16 in our implementation).

In the rest of this section, we will use the notation apply(t,P)
to refer to the program that results from applying transformation
t to shader program P. For example, apply(m2v(n),P) is the
shader that results from moving node n from the fragment to the
vertex stage.

4.2 Shader Instrumentation
In order to gather data needed to guide simplification decisions,
our system has the ability to instrument a shader and tabulate
the values computed by a given node. We will use the notation
instrument(P, n) to refer to the operation that collects out-
put samples from node n of shader program P.

For fragment-stage nodes, generating an instrumented shader sim-
ply requires writing the result of the node to a fragment color out-
put. For vertex-stage nodes, a pass-through fragment shader is used
to interpolate the node’s output and emit per-fragment data. This
choice allows direct comparison of the outputs of vertex and frag-
ment nodes at any covered pixel. Instrumenting a shader by col-
lecting rendered pixel data means that our system does not obtain
data from occluded regions and captures one value per node per
covered pixel. This is appropriate for our needs, since we focus on
opaque materials and shaders without looping control flow. A more
general solution might use atomic read-modify-write operations to
emit data from the instrumented shader.

The training scene sampler is used to sample input scene config-
urations (e.g., by sampling shader input parameters) and provide
the geometry and texture data for rendering. Each invocation of
instrument(P,n) collects data for frames rendered from each
of these scene configurations.

4.3 Measuring Error
In order to measure the error introduced by a simplified shader, the
system instruments the shader as described above, and compares
its output to that of the original unsimplified shader at all covered
pixels. Although a LOD policy will likely utilize the simplified
shader at greater viewing distances than the original, our experi-
ments in Section 7.3 show that the ranking of shaders based on er-
ror is largely invariant to the distance at which objects are rendered

during error analysis. Therefore, to enable efficient, direct compari-
son of pixel outputs the simplifier renders images using each shader
with the same scene parameters and from the same (up close) view-
ing distance.

Once shader outputs have been collected for all scene configura-
tions generated by the scene sampler, the user-provided quality
evaluator is used to determine the error between the two shaders.

def measure_error(P_old, P_new):
data_old = instrument(P_old, P_old.output_node)
data_new = instrument(P_new, P_new.output_node)
return quality_evaluator(data_old, data_new)

To avoid compounding of small errors as the simplification search
process proceeds, it is important that the error of new shaders be
measured relative to that of the original unsimplified shader. The
simplifier measures the error introduced by applying a new trans-
formation to an existing shader against the original unsimplified
shader (P orig) as follows:

def measure_xform_error(xform, P):
return measure_error(P_orig, apply(xform, P))

4.4 Search Algorithm
Listing 2 provides an outline of the search algorithm used to trace
the performance-quality Pareto curve. After initial data collection,
each iteration of the search filters and ranks a set of candidate trans-
formations, and picks one to apply. The goal is to pick the candidate
that gives the best increase in performance relative to the increase
in error (the solid red dot in Figure 2), while limiting the time spent
evaluating candidates. In the rest of this section, we discuss the de-
sign of this algorithm, and the meaning of its parameters (K1, K2,
K3) in more detail.

4.4.1 Data Collection

Before beginning the search process, the algorithm first uses the in-
strumentation ability described in Section 4.2 to collect data about
each input shader node. This data will be used to prioritize the
transformations considered at each search step. The subroutine
collect data at the top of Listing 2 shows the overall opera-
tion of this phase. By pulling this work out of the search loop, our
system can afford to collect detailed data on a per-instruction basis,
which would be impractical to perform at each search step.

Each transformation rule described in Section 4.1 requires different
information to be collected during this initial phase. For move-to-
vertex and move-to-parameter transformations, the transformation
is applied to each node in the original shader, and the error incurred
by the simplified shader is measured using the approach described
in Section 4.3.

For the ACSE transformation, instrumentation is used to tabulate
each node’s output at a set of randomly selected pixels for each
training scene configuration (outputs at 100 pixels per configura-
tion are recorded by default). The same set of scene configurations
and pixel positions is used when tabulating output for each node so
that the similarity of any two nodes can be estimated by computing
the relative difference (using an L2 norm) between their tabulated
outputs.

4.4.2 Proposing Candidate Transformations

A naive search strategy would consider every possible program
transformation at every step of the simplification process. This
quickly becomes intractable for large shaders because the num-
ber of possible ACSE transformations is quadratic in the number
of nodes in the shader. To accelerate simplification, each transfor-
mation rule is instead allowed to propose only a fixed number of
candidate transformations at each step (K1).

def collect_data(P_orig):
{P_p, P_v, P_f} = P_orig
for each node n in {P_v, P_f}:
m2p_err[n] = measure_xform_error(m2p(n), P_orig)

for each node n in P_f:
m2v_err[n] = measure_xform_error(m2v(n), P_orig)

for each node n in P_orig:
acse_samples[n] = instrument(P_orig, n)

return {m2p_err, m2v_err, acse_samples}

def search(P_orig):
collect per-instruction data prior to loop
data = collect_data(P_orig)

error_cache = {}
P_cur = P_orig
loop:
add_output_shader(P_cur)

allow each rule to propose up to K1 transformations
using data collected outside the search loop
candidate_xforms = propose_xforms(P_cur, P_orig, K1)
if candidate_xforms is empty:
break

populate cache of measured errors
measure_and_cache_error(candidate_xforms, error_cache)

filter candidates to a subset with low error
filtered_xforms = select from candidate_xforms
where error < K2*median_error

estimate performance using heuristic
estimate_performance(filtered_xforms)

pick transformation with best bang-for-buck
t = pick_best_xform(filtered_xforms)
P_new = apply(t, P_cur)

validate that error cache didn’t lead us astray
cached_err = error_cache[t]
measured_err = measure_error(P_orig, P_new)
if(abs(cached_err - measured_err) > K3*cached_err)
error_cache = {}
continue # restart loop iteration

P_cur = P_new

Listing 2: Shader simplification search algorithm.

Since taking small steps in quality is a goal of the simplification
process, each rule prioritizes proposing applicable transformations
that are likely to increase error the least. These priorities are
driven by the data collected by collect data. For the move-
to-vertex and move-to-fragment rules, the per-node transformations
are ranked according to the error measured when applying the trans-
formation to the original shader. For ACSE, pairs of nodes (ni, nj),
where ni will be replaced with nj , are ranked by the L2 distance
between the vectors representing tabulated outputs. (If the nodes
have very similar outputs for all pixels of all configurations, re-
placement of one with the other is unlikely to introduce significant
overall shader error.)

The error estimates used to prioritize transformations are based on
data collection from the original shader, and may be less accurate
at other points in the search space. Increasing the parameter K1

allows more candidate transformations to pass this filtering step,
which may improve the quality of shaders produced at the cost of
longer search times.

4.4.3 The Error Cache

Given the bounded number of candidate transformations proposed
by each rule, the system can afford to compute a more accurate
measure of error for these candidates. That is, rather than continue
to use data collected up front by collect data to predict error, it
could measure the actual error incurred by applying each candidate
transformation to the current shader.

However, we expect the system to consider many of the same can-
didates at each iteration of the search loop, and in most cases the
error that would be introduced by a transformation will not differ
much across iterations. That is, on successive iterations the same
transformations are considered for only slightly different shaders.
Our algorithm takes advantage of this fact by using an error cache.

For each candidate transformation, the system checks if it has al-
ready stored a predicted error for that transformation in the error
cache. On a hit, the cached error is used, even if it was computed as
part of an earlier iteration. On a miss, an error value for the trans-
formation is computed by applying the transformation to the current
shader (via measure xform error); this error is stored in the
cache so that it may be used on future iterations. (Section 4.4.5 de-
scribes how the error cache is frequently invalidated to avoid use of
out-of-date error values.)

After this step, every candidate transformation is associated with
a measured error (although in some cases the measurement may be
“stale”), making it possible to directly compare the error introduced
by candidates from different rules (e.g., move-to-vertex and ACSE).
At this point, the algorithm further filters the list of candidates to in-
clude only those below a certain error level. In our implementation,
candidates are retained when their error is less than K2 times the
median error in the candidate set (this simple predicate automati-
cally adjusts the error cutoff based on the distribution of available
candidates, while remaining robust to outliers).

4.4.4 Estimating Performance

Once the list of candidates has been filtered down to a small number
of transformations likely to yield a small step in error, the perfor-
mance gain for each candidate is estimated using a heuristic per-
formance model. Using a heuristic to estimate shader performance
(rather than running the shader to measure its actual performance)
not only dramatically improves the speed of the simplification algo-
rithm, but is critical for getting predictable and stable performance
results required by our greedy search algorithm. In many cases,
a single simplification step will eliminate only one or two instruc-
tions, a change with insignificant impact on real measured perfor-
mance (in the noise, even after long-duration performance profil-

ing). The inability to robustly provide performance gradients can
cause the algorithm to make bad decisions which, without the abil-
ity to backtrack, it cannot recover. (For stochastic or backtrack-
ing search algorithms the ability to accurately estimate local per-
formance gradients may matter less.)

Our current implementation uses a simple performance model that
captures the broad intuition that eliminating shader instructions is
good, and it is better to eliminate expensive instructions and those
that execute at a higher rate. The model weighs the cost of DAG
nodes by the number of scalar instructions needed to perform them
(e.g., a float4 addition incurs cost 4) and assigns a cost of 100
units to texture operations. Since per-vertex and per-fragment com-
putations are executed at different rates based on triangle size and
early occlusion statistics, and have unequal impact on performance
due to pipeline load balancing and scheduling, we compute the total
cost of the entire shader program as a weighted cost of the vertex
(Cv) and fragment (Cf) stage subgraphs, plus a penalty term for
the size of the vertex-fragment interface (Nvar):

Ctotal = 0.3Cv + 0.7Cf + 10Nvar

Parameter shader stage costs (Cp) are given zero weight since they
are executed only at scene load. In practice we find this simplis-
tic model with empirically determined weights to be acceptable to
guide search. Of course, more accurate models of GPU perfor-
mance could also be used if available.

Note that before evaluating our performance heuristic on a shader,
the system applies standard optimizations such as constant propa-
gation and redundancy removal, including dead code elimination
and (non-approximate) common subexpression elimination. These
operations are applied to the full shader DAG, and thus exploit
inter-stage optimization opportunities. This helps ensure that per-
formance estimates reflects subsequent opportunities for optimiza-
tion that are created by transformations like ACSE.

4.4.5 Picking and Validating a Candidate

Once the performance of each remaining candidate transformation
has been estimated, the algorithm selects one transformation to ap-
ply. Multiple candidates may be Pareto optimal, so our system se-
lects the one that provides the best “bang for buck”; that is, the
transformation providing the greatest gain in (estimated) perfor-
mance divided by the increase in (measured and cached) error.

Because the selection process was influenced by previously cached
error data, which may be stale, the selected transformation might
have introduced more error than expected. As an example, consider
a shader where a vector is normalized in the vertex stage, and then
normalized again in the fragment stage before being used in light-
ing computations. The error introduced by eliminating either of the
normalizations will likely be small, since normalization is idempo-
tent. However, once one normalization has been removed from the
shader (perhaps by ACSE) the error introduced by eliminating the
other might now be much greater.

To avoid introducing high-error transformations due to stale error
cache data, our system computes a fresh (uncached) error measure
for the transformation it is considering applying and compares it to
the cached error used during selection. If the relative difference be-
tween the measured and cached errors is over a threshold K3 (if the
cached error estimate is shown to be inaccurate), rather than apply
the selected transformation, the system invalidates the contents of
the error cache, and restarts the current iteration. This invalidation
can happen at most once per transformation per iteration, since if
the same transformation is selected again the error cache will be
up-to-date.

5 LOD Shader Selection
Given the collection of shaders produced during simplification, we
seek a LOD policy that specifies which shader to use when render-
ing the object at a specified distance. Ideally, this policy should pre-
scribe the lowest cost shader that delivers acceptable output quality
at a given viewing distance. However, in practice it is desirable to
avoid the CPU overhead of frequent shader changes and small draw
batches (e.g., when rendering collections of objects) by using only
a small number of unique shaders. Minimizing CPU overheads is
particularly important since shader LOD presents the opportunity
for the GPU to draw more objects in a frame.

Since the simplification process from Section 4.4 only estimates
shader performance using a heuristic model, the first step of policy
generation is to measure the actual performance and image qual-
ity of candidate shaders at specific viewing distances. We choose
to perform these measurements at two distances (spanning the ob-
ject’s anticipated viewing range) to produce near- and far-viewing-
distance Pareto curves.

Optimal shaders are typically grouped in clusters on the Pareto
curve; removing a single instruction will often have little impact
on a shader’s performance or quality. Therefore, we select a small
set of shaders from each curve (10 in our experiments) that are well
distributed over the actual performance range. To do so, we evenly
divide the actual performance range of the candidate shaders into
10 intervals, and choose the shader with minimum error from each
interval.

From this small set of candidate shaders we construct a LOD pol-
icy by sweeping from the closest to farthest distance in the viewing
range and, at each distance, select the lowest-cost shader that deliv-
ers acceptable image quality. To produce policies that utilize only a
small number of unique shaders, the algorithm ensures the perfor-
mance benefit of including a new shader in the policy is sufficiently
large to overcome the overhead of an additional shader switch.
for each distance d from d_near to d_far by d_step:
orig_perf = measure_perf_at_dist(P_orig, d);
for each shader P_i:
error = measure_error_at_dist(P_i, P_orig, d);
score[P_i] = 0
if err < tolerated_err(d):

score[P_i] = orig_perf - measure_perf_at_dist(s, d);
if P_i != shader selected at previous distance:

score[P_i] -= SWITCH_PENALITY;
shader[d] = shader with maximum score

The algorithm uses the subroutine tolerated err, given below,
which defines the acceptable error range of a shader based on a user-
controlled quality factor Q ⊂ [0, 1]. Q determines how rapidly
quality is allowed to degrade at large viewing distances (our sys-
tem uses Q=0.5 by default).

tolerated err(d) =
(

d− dnear

dfar − dnear

)Q

× max error

6 Transition Shader Generation
One challenge of any system employing discrete LODs (whether
for shaders or geometry) is ensuring smooth transitions between
quality levels. Today, one common way to avoid “popping” arti-
facts during LOD transitions in games is to render the transitioning
object twice, each time using the stencil buffer to mask a particular
subset of covered pixels. The result is a screen-door dithering effect
that blends two LODs over a period of consecutive frames [Fata-
halian 2015].

As an alternative, our system can synthesize a single shader that
interpolates the output of two simplified shaders based on viewing

distance. Given P1 selected for use at distance d1, and P2 for dis-
tance d2, the resulting transition shader P1→2 is:

float t = (d - d1) / (d2 - d1);
vec4 p1_color = // evaluate P1 ...
vec4 p2_color = // evaluate P2 ...
out vec4 color = mix(p1_color, p2_color, t);

where the interpolation parameter t is determined by the distance d
to the rendered object.

While this approach must execute computations for both P1 and
P2, in practice the additional cost is low because of the similar-
ity of these two shaders. Since the simplification process utilizes
transformations that move or remove terms from the DAG, the re-
sulting shaders share many common subexpressions. These com-
mon subexpressions are eliminated using standard redundancy re-
moval optimizations. We explored using our simplification frame-
work to further optimize transition shaders via approximate trans-
formations, but found this unnecessary due to the effectiveness of
traditional redundancy removal techniques.

Given N transition shaders from the LOD policy generation phase,
the final output of the system is a set of N -1 transition shaders and
the viewing range for which they apply. Our implementation cur-
rently uses transition shaders for all viewing distances, although
a more aggressive policy might limit their use to distance ranges
around where the selected LOD shader changes (at the cost of re-
quiring more distinct shaders in the final policy).

7 Evaluation
We evaluated our shader LOD system on a collection of shaders for
both deferred and forward rendering. The BARREL, COUCH, and
ROCK shaders, obtained from the Unreal Marketplace [Epic Games
2015b], perform pattern generation for a deferred renderer. These
shaders emit surface normal, diffuse albedo, specular, and rough-
ness terms, packed into a 12-byte G-buffer format. The ROCK and
CARPAINT [Oat et al. 2003] shaders are complete forward shaders,
comprising both surface appearance and lighting. The shaders con-
tain sophisticated effects common in games today such as combina-
tions of multiple levels of albedo and normal maps (see details such
as dirt, fabric seams, and paint flecks in COUCH and CARPAINT),
ambient occlusion maps, GGX specular reflection [Walter et al.
2007] and environment mapped lighting.

Unless otherwise stated, all results are obtained by performing data
collection and quality evaluation on 10 scene configurations gen-
erated by the training scene sampler. Each scene configuration is
rendered to a 1024×1024 image. During the shader simplification
phase, in forward rendering scenarios, shader error is evaluated as
the average L2 difference in surface reflectance for all covered pix-
els. In deferred rendering scenarios, the quality evaluator accepts
G-buffer terms as input, evaluates surface reflectance under a col-
lection of lighting environments (we use 8), and then computes er-
ror as the average L2 difference in surface reflectance for each of
these environments.

Unlike during shader simplification, in the LOD shader selection
stage, the distance at which an object will be rendered with a can-
didate shader is known. The goal of simplification is not to directly
replicate the output of a detailed shader, which at distance may ex-
hibit significant aliasing. Instead the simplified shader should ap-
proximate the properly filtered (anti-aliased) result of the original
shader used at a distance. To perform this comparison, the output
of the simplified shader is compared to a supersampled rendering
using the original shader, which is then filtered to 1024×1024 for
comparison.

BARREL CARPAINTCOUCH ROCK BRICKS

Albedo, Normal,
Specular, AO, Roughness

Albedo, Roughness

Constant Material

Reflection, 2-layer Normal,
Frenel-blended Color

Main Normal,
Fresnel in vertex

Simplified fresnel in vertex

2-layer normal, Wear, Seam,
AO, Specular, Albedo

Wear, Specular, Albedo

Constant Material

2-layer normal,
Roughness, Albedo, AO

2-layer normal,
Roughness, AO

Roughness, AO

GGX, Normal, Albedo

Albedo

Constant Material

Albedo, Normal,
AO, Roughness

Albedo

Reflection, Main Normal,
Frenel-blended Color

Constant ColorRoughness

Main normal,
Roughness, AO

Main normal, Wear, Seam,
AO, Specular, Albedo

Specular

Simplified GGX
Simplified Normal, Albedo

Constant Color

Cp: 0 / Cv: 174 / Cf: 540

Cp: 300 / Cv: 210 / Cf: 377

Cp: 581 / Cv: 90 / Cf: 101

Cp: 681 / Cv: 91 / Cf: 0

Cp: 681 / Cv: 87 / Cf: 0

Cp: 0 / Cv: 103 / Cf: 573

Cp: 100 / Cv: 97 / Cf: 473

Cp: 204 / Cv: 97 / Cf: 369

Cp: 204 / Cv: 79 / Cf: 202

Cp: 306 / Cv: 79 / Cf: 100

Cp: 0 / Cv: 103 / Cf: 858

Cp: 360 / Cv: 97 / Cf: 828

Cp: 569 / Cv: 79 / Cf: 307

Cp: 671 / Cv: 80 / Cp: 101

Cp: 671 / Cv: 80 / Cf: 0

Cp: 0 / Cv: 103 / Cf: 568

Cp: 144 / Cv: 98 / Cf: 466

Cp: 250 / Cv: 94 / Cf: 365

Cp: 250 / Cv: 79 / Cf: 102

Cp: 452 / Cv: 79 / Cf: 0

Cp: 0 / Cv: 176 / Cf: 603

Cp: 107 / Cv: 175 / Cf: 458

Cp: 571 / Cv: 164 / Cf: 209

Cp: 643 / Cv: 235 / Cf: 0

Cp: 743 / Cv: 56 / Cf: 0

d_near d_far d_near d_far

LOD 0

LOD 1

LOD 2

0 1 2

LOD 0 LOD 0 LOD 0 LOD 0

LOD 1 LOD 1 LOD 1

LOD 1

LOD 2

LOD 2 LOD 2 LOD 2

0 1 2

Deferred rendering shaders: pattern generation only (lighting not simplified) Forward rendering shaders: (both surface and lighting simplified)

Figure 3: Outputs of automatic shader simplification. Highlighted shaders were selected for use in the final LOD policy.

Full-Scene Render Time (ms) LOD Policy Generation Time (sec)
No LOD LOD (no trans) LOD (with trans) Simplification LOD Select Total

BARREL 2.79 2.12 (1.32×) 2.11 (1.32×) 51.3 25.2 76.5
COUCH 8.92 7.86 (1.13×) 7.95 (1.12×) 114.9 60.4 175.3
ROCK 2.83 2.51 (1.13×) 2.53 (1.12×) 48.6 36.9 85.5
BRICKS 2.07 1.62 (1.28×) 1.64 (1.26×) 60.2 26.7 86.9
CARPAINT 5.62 3.98 (1.41×) 4.07 (1.38×) 95.0 28.0 124.0

Table 1: Left: For scenes containing uniformly distributed objects (Figure 4), the generated shader LOD policies reduce end-to-end scene
rendering time by a factor of 1.1× to 1.4×. Right: compilation time statistics for generating these shader LOD policies. A LOD policy is
created for the most complex shader (COUCH) in just under three minutes.

7.1 Simplification Decisions
Figure 3 shows example LOD policies produced for our shaders.
Each column shows the output of five shaders produced during
simplification. The shaders ultimately chosen for inclusion in a
three-shader LOD policy are highlighted in orange. The viewing
distances at which the shaders are used in the policy are plotted as
dots at the top of each column. Cost estimates for each shader are
also given, broken into parameter (Cp), vertex (Cv) and fragment
(Cf) stage costs. (Note that stage input/output loads and stores
are factored into the model’s interface cost component (Nvar), so
Cf=0 implies no arithmetic or texture operations in the fragment
stage.) The first three columns are deferred shaders, so simplifi-
cation applies only to non-lighting terms; all renderings use the
same lighting environment. In contrast, for the forward shaders
(BRICKS and CARPAINT), lighting is also simplified. These ex-
amples were generated using default compiler parameters (K1=50,
K2=0.15, K3=0.15).

Manual inspection of generated shaders indicates that despite hav-
ing no semantic knowledge of the role of individual shader terms,
the system makes effective simplification choices that are similar
to those in manually-created LOD shaders. For example, the sys-
tem often first reduces the complexity of specular and normal cal-
culations (e.g., reducing two-layer normal calculations to a single
layer: COUCH, CARPAINT), then focuses on simplifying layers of
detail maps (wear and seam components of COUCH). Base albedo
and normal maps are removed later in the process. One interesting
decision was made in the ROCK example, where the shader’s base
albedo texture is discarded early in the simplification process (be-
fore removal of normal, roughness, and ambient occlusion). While
this decision may seem unintuitive to a human programmer, in this
scenario the compiler’s choice works surprisingly well. Note the
heavy use of the parameter shader at low LODs, when a term’s aver-
age is often an acceptable approximation to its value over the entire
object. We find code movement to the parameter shader stage to be
the most important capability when generating these LOD policies.

While Figure 3 visualizes the output of all shaders up close, the sim-
plified shaders are intended to yield acceptable output for objects
rendered at a distance. Since our system tends to select simplified
shaders that remove high-frequency terms, we find that they often
exhibit less aliasing and are thus preferable to the original shaders
at distance. We refer the reader to the accompanying video for a
more detailed evaluation of image quality.

7.2 Shader Performance
The primary motivation for shader LOD is to improve rendering
performance, while maintaining acceptable output quality. While
the results in Figure 3 indicate that simplified shaders are substan-
tially cheaper than the originals in isolation, in real-world scenes
we expect to have many objects rendered at different LODs. To
assess end-to-end performance in a plausible scenario, we created
scenes containing 800 object instances uniformly distributed over

Figure 4: Example scenes with 800 uniformly distributed objects
used to evaluate end-to-end performance of our LOD policies.

Data-Collect Eval Error Code Gen Total
Fast 7.9 8.5 0.3 17.8
Default 14.0 99.5 1.3 114.8
No Cache 14.2 432.0 1.6 357.8
All Trans 14.1 615.3 5.4 634.8
Fast: K1=50, K2=0.15, K3=0.30, 4 configs
Default: K1=50, K2=0.15, K3=0.15, 10 configs
No Cache: K1=50, K2=0.15, K3=0.0, 10 configs
All Trans: K1=104, K2=0.2, K3=0.0, 10 configs

Table 2: Execution time breakdown of various components of the
shader simplification process for COUCH. Each row provides statis-
tics using compiler settings of increasing compilation cost.

a ground plane (Figure 4). Table 1 shows the end-to-end perfor-
mance of these renderings for engine configurations with and with-
out shader LOD. The performance benefit of using the LOD policy,
including the cost of transition shaders, ranges from 1.1× to 1.4×.
More importantly, when rendering expensive effects (COUCH and
CARPAINT) the use of LOD saves nearly 1 ms of execution time
per frame, which is now available for other rendering or game tasks
(1 ms can be a significant amount of time in a game frame).

Table 1 also indicates that the additional cost of using smooth tran-
sition shaders during rendering is quite low (no more than a 1%
difference in end-to-end rendering time for all examples). Detailed
inspection of our transition shaders reveals that the largest overhead
incurred by any single transition shader, when compared to the sim-
plified shader from which it is transitioning, occurs for CARPAINT’s
LOD 1-to-2 transition (20.4% according to our cost model). In all
other situations, the overhead of enabling smooth transition shaders
is below 12%, and on average is 8%.

7.3 Compiler Performance and Parameter Sensitivity
The right side of Table 1 gives the time required to generate these
LOD policies. Policy generation completes in under three minutes
for all scenes and, in many cases, under a minute and a half. A
majority of time is spent on shader simplification, although the
need to conduct robust and accurate performance timings during
LOD shader selection incurs non-trivial cost (generating transition
shaders has negligible cost). Tighter integration with GPU driver
stacks is likely to yield more efficient performance profiling. Ta-
ble 2 (“default” row) breaks down time spent during shader simpli-

CARPAINTCOUCH

0

100

200

300

400

500

0.4 0.80

150

300

450

600

0.1 0.2 0.3

Fast
Default
No Cache
All Trans
MCMC

Pr
ed

ic
te

d
sh

ad
er

 c
os

t

Average L2 pixel errorAverage L2 pixel error

(15 sec)
(1.5 min)
(4.5 min)
(10.5 min)
(9 h)

Fast
Default
No Cache
All Trans
MCMC (12 h)

(17 sec)
(2 min)
(5 min)
(11 min)

Figure 5: Our default compiler settings are chosen to produce
Pareto curves that are as good as those found using more exhaus-
tive (and more expensive) compiler settings. In many cases (e.g.,
COUCH, above-left) use of faster settings does not noticeably im-
pact the performance and quality of shaders produced.

fication into data-collection, error evaluation, and code generation
phases. A majority of simplification time is spent running GPU
shaders to assess error.

To better understand the run-time and sensitivity of the LOD gener-
ation process to compiler parameters, we ran the shader simplifier
under a variety of settings: The “no cache” setting sets K3 = 0, dis-
abling the use of the transformation error cache. The “all trans” set-
ting increases K1, causing all possible transformations to be fully
evaluated at each step. Finally, the “fast” setting increases the er-
ror cache invalidation threshold K3 and also reduces the number of
scene sample configurations used to assess error from 10 to 4.

As shown in Figure 5, for the COUCH and CARPAINT shaders, we
find that more expensive settings than our defaults do not signifi-
cantly impact the Pareto curve found during simplification. Cached
transformation errors remain good approximations to actual errors
over multiple search steps, and our transformation prioritization
schemes allow for the most beneficial transformations to pass filter-
ing steps. We also found that for many of our examples (see COUCH
graph), the “fast” configuration produced as good of policies as our
default settings. Although we chose our default parameters con-
servatively to avoid the need for per-scene tweaking, in practice,
acceptable results can often be generated for game-quality shaders
in a minute or less.

To further evaluate the results of greedy simplification, we com-
pared our generated shaders against shaders obtained from a non-
greedy simplification process based on Markov Chain Monte Carlo
(MCMC) search using the Metropolis-Hastings algorithm [Chib
and Greenberg 1995]. Even though we allowed the MCMC-based
simplifier to run for over 12 hours (red datapoints in Figure 5), it
was unable to find shaders with performance-quality characteristics
as good as those obtained from the greedy simplification process.

We also evaluated the accuracy of making shader simplification de-
cisions using error values computed at a single (up close) object-
viewing distance, as opposed to computing error at the viewing dis-
tance the simplified shader is most likely to be used. While it is
possible for a shader to have a high error when rendered up close,
but low error when rendered afar, we find that, in practice, when a
shader A has smaller error than shader B when rendered at a close
viewing distance, it also has smaller error when rendered at far dis-
tances. Figure 6 provides one illustration of how the Pareto curve
obtained by simplification is largely invariant to the object viewing
distance used to compute error. Each set of datapoints corresponds
to Pareto-optimal shaders as determined by error evaluation at a

Re-eval:
d = 100

Re-eval:
d = 1200

 d = 100 d = 400

CARPAINT

Re-eval:
d = 100

Re-eval:
d = 1200

COUCH

0

150

300

450

0

150

300

450

600

d = 800 d = 1200
Error eval distance during shader simplification:

0.80.8 0.3 0.30 0

Figure 6: Pareto curves generated during simplification are largely
invariant to the viewing distance used for error evaluation. Each
set of data points corresponds to a set of Pareto-optimal shaders
as determined by error evaluation at the specified object viewing
distance. On each graph, the shaders are plotted according to their
error after re-evaluation at the labeled viewing distance.

single specified distance (d=100, 400, 800, and 1200 world units).
On each graph, the shaders from these curves are plotted accord-
ing to their error as re-evaluated at a different near (or far) viewing
distance. The resulting Pareto curves are essentially the same, indi-
cating that measuring shader error at a single profiling distance is a
reasonable representation of error observed at other distances.

7.4 Generalization via the Parameter Shader Stage
A key aspect of our design is parameter shader stage computation,
which allows low-detail shaders to be aggressively simplified with-
out sacrificing the ability to change their input parameter values at
runtime. Figure 7 shows the CARPAINT shader used effectively with
new car paint colors and the BARREL shader applied to new meshes
and texture maps (small images show medium and low-detail ren-
derings). These renderings use the shaders generated from the orig-
inal LOD policy in Figure 3; no recompilation was required.

In each example, the bottom row of images shows the output of
shaders simplified using a replace-with-constant rule from Pel-
lacini [2005], which fails to generalize at low LODs when input
parameters from the training phase are baked into the shader as an
immediate. Note the grayish color of the car, which is the average
of all car colors used during training. While CARPAINT was trained
using a variety of paint colors, the novel meshes and textures shown
in Figure 7-b were not included in BARREL’s scene sampler. As
a result, the replace-with-constant rule replaced the albedo texture
with a constant brown, which is a good approximation of the texture
map used in training (shown in Figure 3) but is not a good approx-
imation for the new textures. Including additional textures in the
sampling process is possible, but would increase training time, and
high variance in texture values would likely prevent selection of
the replace-with-constant optimization. We have found that with a
parameter shader stage, training on small number of scene configu-
rations is not only efficient, but the resulting shaders still generalize
to assets not available at the time of policy generation.

7.5 ACSE Evaluation
To evaluate the utility of the ACSE transformation, we compared
Pareto curves obtained from simplification using all transforma-
tions in Section 4.1 with those obtained after replacing ACSE
with the local operator reduction transformations (op(a, b)→a and
op(a, b)→b). These transformations are a stronger version of the
binary operation removal rule used by Pellacini [2005], and sim-
ilar to that used by Wang et al. [2014]. While many applications
of ACSE are local operations that replace an operation with one of
its arguments, Figure 8 shows that the non-local behavior of ACSE
can result in better simplified shaders.

In addition to more efficient shaders, we find that ACSE helps pro-

(a) CARPAINT shader with different color parameter values.
Bottom: baking the average of all possible values into the low-
detail shader yields unsatisfactory output.

(b) BARREL shader used with new meshes and different textures
Bottom: baking the average training scene texture color into
the shader prevents runtime usage with novel textures.

Param
eter Shader

R
eplace /w

 Avg
Param

eter Shader
R

eplace /w
 Avg

Original

Original

Med Low

Med Low

Med Low

Med Low

Figure 7: The parameter-shader stage allows simplified shaders
tho generalize to (a) new material parameters and (b) meshes and
texture maps not present in the training scene configurations.

duce cleaner and more intuitive shaders. For example, consider the
following fragment shader logic which computes a surface normal
from a tangent-space normal map:

mat3 tangentMat = mat3(tangent, biTangent, vertNormal);
vec3 tNormal = texture(normalMap, uv) * 2.0 - 1.0;
vec3 normal = tangentMat * tNormal;

Suppose an application of m2p relocates the tangent space texture
fetch and arithmetic to the parameter shader stage, resulting in the
following fragment shader:

mat3 tangentMat = mat3(tangent, biTangent, vertNormal);
vec3 tNormal = paramTexNormal;
vec3 normal = tangentMat * tNormal;

In the code above, the value of normal will likely be very close
to that of vertNormal. ACSE identifies the similarity between
normal and vertNormal, resulting in the following minimal
fragment shader code, and a correspondingly simple vertex-to-
fragment interface:

vec3 normal = vertNormal;

8 Discussion
In this paper we have demonstrated a system for automatically con-
structing shader LOD policies. We find that using an optimized
greedy search algorithm, adding parameter binding time process-
ing capabilities (parameter shader), and a simple but general sim-
plification rule (ACSE) yields a system that can process complex
game-style shaders to produce policies featuring simplified shaders
similar to those created by hand. LOD policy generation completes

0

100

200

300

400

500

0.4 0.8

CARPAINTCOUCH
ACSE
Op Removal

(95 sec)
(76 sec)

ACSE
Op Removal

(114 sec)
(101 sec)

Average L2 pixel errorAverage L2 pixel error

Pr
ed

ic
te

d
sh

ad
er

 c
os

t

0

150

300

450

600

0.1 0.2 0.3

Figure 8: ACSE is a global operation, which can identify more sim-
plification opportunities then standard binary operator reduction.

within a few minutes, making integration into game asset compi-
lation pipelines plausible. While the current system operates on
GLSL input with no further semantic knowledge of the shader, a
clear next step would be to explore integration of our simplifica-
tion infrastructure with higher-level shader authoring systems, per-
haps using known semantics of key terms to either further optimize
search or improve the quality of the resultant shaders.

Our experiences suggest a number of ways the GPU software stack
could evolve to better support our system or other forms of auto-
matic shader synthesis. First, our current system emits GLSL text
for subsequent driver compilation, a process which is both cumber-
some and inefficient. We eagerly await lower-level GPU interfaces
that can serve as a compiler target for code synthesis systems such
as ours. These lower-level interfaces should not only provide an ab-
stract ISA definition to target, but also additional services such as
the ability to efficiently query for key static and dynamic statistics
about a compiled shader program such as register usage, etc. Inno-
vation in the interface between higher-level software tools and the
lower-level driver software stack would not only reduce auto-tuning
times but may also enable better results due to the ability to more
accurately and efficiently model shader performance.

Our current implementation uses only the GPU’s vertex and frag-
ment processing stages, but we strongly believe that the value of
a shader simplification system will grow with the ability to op-
timize over additional computation rates. For example, targeting
per-render-target-sample or proposed per-coarse-fragment shading
rates [Vaidyanathan et al. 2014; He et al. 2014] is a simple extension
that would open up new optimization opportunities for our system.
Incorporating tessellation and geometry shader stages is also pos-
sible, if they are exposed using a compatible DAG representation,
such as in Spark [Foley and Hanrahan 2011]. Parameter stage com-
putations execute at a different temporal rate than GPU pipeline
stage computations, and we hope to investigate the utility of multi-
ple host-side rates.

Last, our system uses extensive instrumentation of shaders to prior-
itize and filter transforms during search and to implement the ACSE
transform. We believe there are exciting opportunities for more so-
phisticated data-driven optimizations such as model fitting [Wang
et al. 2014], co-optimization of shaders and geometry, or aliasing
detection and removal that would significantly expand the scope
and capabilities of automatic graphics code generation systems.

9 Acknowledgments
Support for this research was provided by the National Science
Foundation (IIS-1253530) and by NVIDIA. We would like to thank
Brian Karis and Angelo Pesce for valuable conversations.

References
ANDERSSON, J., AND TATARCHUK, N. 2007. Frostbite rendering

architecture and real-time procedural shading and texturing
techniques. In Game Developers Conference 2007 (GDC).
Available at http://www.frostbite.com/2007/04/frostbite-

rendering-architecture-and-real-time-procedural-

shading-texturing-techniques.

ANSEL, J., KAMIL, S., VEERAMACHANENI, K., RAGAN-
KELLEY, J., BOSBOOM, J., O’REILLY, U.-M., AND AMA-
RASINGHE, S. 2014. OpenTuner: an extensible framework for
program autotuning. In International Conference on Parallel Ar-
chitectures and Compilation Techniques, ACM, 303–316.

BUNGIE, 2014. Destiny computer game.
http://www.destinythegame.com.

CHIB, S., AND GREENBERG, E. 1995. Understanding the
metropolis-hastings algorithm. The American Statistician 49, 4,
327–335.

EPIC GAMES, 2015. Unreal Engine 4 documentation. Available at
http://docs.unrealengine.com.

EPIC GAMES, 2015. Unreal Engine 4 Marketplace Web Site.
http://www.unrealengine.com/marketplace.

FATAHALIAN, K. 2015. Tackling the level-of-detail problem
through new shading languages and tools. In ACM SIGGRAPH
2015 Courses: Open Problems in Real-Time Rendering. Avail-
able at http://openproblems.realtimerendering.com.

FOLEY, T., AND HANRAHAN, P. 2011. Spark: modular, compos-
able shaders for graphics hardware. ACM Trans. Graph. 30, 4
(July), 107:1–107:12.

GUENTER, B., KNOBLOCK, T. B., AND RUF, E. 1995. Specializ-
ing shaders. In Proceedings of SIGGRAPH 95, Annual Confer-
ence Series, ACM, 343–350.

HANRAHAN, P., AND LAWSON, J. 1990. A language for shading
and lighting calculations. Computer Graphics 24, 4 (Sep), 289–
298.

HE, Y., GU, Y., AND FATAHALIAN, K. 2014. Extending the
graphics pipeline with adaptive, multi-rate shading. ACM Trans.
Graph. 33, 4 (July), 142:1–142:12.

OAT, C., TATARCHUK, N., AND ISIDORO, J. 2003. Layered car
paint shader. In Shader X2 - Shader Tips & Tricks, W. F. Engel,
Ed. Wordware Publishing.

OLANO, M., KUEHNE, B., AND SIMMONS, M. 2003. Automatic
shader level of detail. In Proceedings of Graphics Hardware,
ACM/Eurographics, 7–14.

PELLACINI, F. 2005. User-configurable automatic shader simplifi-
cation. ACM Trans. Graph. 24, 3 (July), 445–452.

PROUDFOOT, K., MARK, W. R., TZVETKOV, S., AND HANRA-
HAN, P. 2001. A real-time procedural shading system for pro-
grammable graphics hardware. In Proceedings of SIGGRAPH
01, Annual Conference Series, ACM, 159–170.

SAMPSON, A., BAIXO, A., RANSFORD, B., MOREAU, T.,
YIP, J., CEZE, L., AND OSKIN, M. 2015. ACCEPT:
a programmer-guided compiler framework for practi-
cal approximate computing. In University of Washing-
ton Technical Report UW-CSE-15-01-01. Available at
ftp://ftp.cs.washington.edu/tr/2015/01/UW-CSE-15-01-

01.pdf.

SITTHI-AMORN, P., MODLY, N., WEIMER, W., AND
LAWRENCE, J. 2011. Genetic programming for shader
simplification. ACM Trans. Graph. 30, 6 (Dec.), 152:1–152:12.

VAIDYANATHAN, K., SALVI, M., TOTH, R., FOLEY, T.,
AKENINE-MÖLLER, T., NILSSON, J., MUNKBERG, J., HAS-
SELGREN, J., SUGIHARA, M., CLARBERG, P., JANCZAK, T.,
AND LEFOHN, A. E. 2014. Coarse pixel shading. In Pro-
ceedings of the Conference on High Performance Graphics,
ACM/Eurographics, 9–18.

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE,
K. E. 2007. Microfacet models for refraction through rough sur-
faces. In Proceedings of the Eurographics Conference on Ren-
dering Techniques, Eurographics Association, 195–206.

WANG, R., YANG, X., YUAN, Y., CHEN, W., BALA, K., AND
BAO, H. 2014. Automatic shader simplification using surface
signal approximation. ACM Trans. Graph. 33, 6 (Nov.), 226:1–
226:11.

http://www.frostbite.com/2007/04/frostbite-rendering-architecture-and-real-time-procedural-shading-texturing-techniques
http://www.frostbite.com/2007/04/frostbite-rendering-architecture-and-real-time-procedural-shading-texturing-techniques
http://www.frostbite.com/2007/04/frostbite-rendering-architecture-and-real-time-procedural-shading-texturing-techniques
http://www.destinythegame.com
http://docs.unrealengine.com
http://www.unrealengine.com/marketplace
http://openproblems.realtimerendering.com
ftp://ftp.cs.washington.edu/tr/2015/01/UW-CSE-15-01-01.pdf
ftp://ftp.cs.washington.edu/tr/2015/01/UW-CSE-15-01-01.pdf

