Virtual Heliodon: Spatially Augmented Reality for Architectural Daylighting Design

Yu Sheng, Theodore C. Yapo, Christopher Young, Barbara Cutler

> Department of Computer Science Rensselaer Polytechnic Institute

Natural Light vs. Electric Light

Lighting accounts for 22% of US electricity consumption

Lights off, no blinds

Lights off, blinds closed

Lights off, blinds open

Lights on, blinds closed

500-1000 lux recommended for reading direct sunlight ≈ 100,000 lux

Architectural Daylighting Design: The use of windows and reflective surfaces to allow natural light from the sun and sky to provide effective and interesting internal illumination.

Residential design proposal by Mark Cabrinha

Analysis with Traditional Heliodon

Shadows and light penetration can be observed on small scale physical model

Related Work:

- Daylighting Design
 - Radiance, Greg Ward Larson
- Virtual / Augmented Reality
 - CAVE (Cruz-Neira et al., 1992)
 - Interior Architectural design (Mackie et al., 2004, Dunston et.al, 2007)
- Spatially Augmented Reality
 - Office of the future (Raskar et al., 1998)
 - Everywhere Display (Underkoffler et al., 1999)
 - Shader Lamps (Raskar et al., 2001)
 - Automatically-calibrated cameras and projectors (Raskar et al., 2001)
 - Multi-planar display (Ashdown et al., 2004)
 - Shadows and occlusions (Audet & Cooperstock, 2007)

Table-top Daylighting Design

camera to detect geometry

4 projectors to display solution

design sketched with foam-core walls

- Hybrid Rendering Algorithm
- Model Construction
- Camera & Projector Calibration
- Primitive Detection
- Multi-Projector Display

- Hybrid Rendering Algorithm
- Model Construction
- Camera & Projector Calibration
- Primitive Detection
- Multi-Projector Display

Radiosity

- Global illumination algorithm
 - Diffuse surfaces
- Why not radiosity alone?
 - Low resolution mesh → inaccurate shadows
- Why do we need "hard shadows"?
 - More realistic
 - More intuition about scene geometry & lighting

Interactive Global Illumination: Hybrid Radiosity/Shadow Volumes

Exploit smoothness in indirect illumination

Efficiently compute direct illumination

- Hybrid Rendering Algorithm
- Model Construction
- Camera & Projector Calibration
- Primitive Detection
- Multi-Projector Display

Sketch Interpretation

red: exterior wall w/ window

green: exterior wall

yellow: interior wall

blue north arrow

software
automatically
constructs closed
polygonal model
for simulation

- Hybrid Rendering Algorithm
- Model Construction
- Camera & Projector Calibration
- Primitive Detection
- Multi-Projector Display

Camera Calibration

- Using Zhang's algorithm [Zhang 1999] to estimate the intrinsic parameters of camera
 - Calibration target consisting of 212 black and white corner marks on a white background
 - 40 pictures taken at different orientations

Projector Calibration

- Tsai's algorithm [Tsai 1987]
 - Uniformly spaced horizontal planes

Projector calibration

Common coordinate system

- Hybrid Rendering Algorithm
- Model Construction
- Camera & Projector Calibration
- Primitive Detection
- Multi-Projector Display

Primitive Detection

- Color classification
- RANSAC: fit line to edges
- 2D→3D, projection matrix

Physical Sketch Edge Detection Reconstructed Scene

Watertight Mesh for Simulation

- Hybrid Rendering Algorithm
- Model Construction
- Camera & Projector Calibration
- Primitive Detection
- Multi-Projector Display

Multi-Projector Display

• Radiange adjustment $I = E \frac{r^2}{\rho \cos \theta}$

- Intensity blending
 - Smooths transitions between projectors
 - Each vertex in the mesh has a "best projector" for display

Results

- For a geometry with 1500 triangles
 - 0.6 seconds to relight for changing time / day, north orientation, etc.
 - 6-7 seconds to generate the projection images for a new geometry
 - Image processing: 0.05 seconds
 - Remeshing: 2.5 seconds
 - Form factor computation: 3 seconds

Traditional Heliodon

- Must peer in the windows, but avoid blocking the "sun"
- Close approximations of all materials must be used in model construction
- Model construction is tedious

Virtual Heliodon

- Ceiling has been removed allowing easy viewing
- Less precision is needed in joining walls
- Materials are specified digitally and do not require a physical sample of the material
- Initial construction and edits are fast and easy

Ongoing and Future Work

- Formal user studies
- Robust image processing, e.g., ignore users' hands
- Table surfaces, curved walls, sloped ceilings
- Consider dynamic range of projectors
- Complex fenestration (window) materials
- Compensate for secondary scattering of projected imagery

Light-Redirecting Materials

Prismatic panels available in late 1800's, but lost popularity when electric lighting was introduced

Secondary Scattering Compensation

Desired illumination

Compensated

Naïve projection

Compensated projection

Thanks!

- Collaborators:

 Marilyne Andersen
 Mark Cabrinha
 Melissa Schroyer
- RPI Computer
 Vision Research
 Group
- IBM & NSF

