Approximation schemes for Euclidean k-medians and related

problems

Sanjeev Arora*
Princeton University

Abstract

In the k-median problem we are given a set S of
n points in a metric space and a positive integer
k. We desire to locate k medians in space, such
that the sum of the distances from each of the
points of S to the nearest median is minimized.
This paper gives an approximation scheme for
the plane that for any ¢ > 0 produces a solu-
tion of cost at most 1+ 1/c times the optimum
and runs in time O(n®*Y). The approxima-
tion scheme also generalizes to some problems
related to k-median.

Our methodology is to extend Arora’s [1, 2]
techniques for the TSP, which hitherto seemed
inapplicable to problems such as the k-median
problem.

1 Introduction

In the k-median problem we are given a set S
of n points in a metric space and a positive in-
teger k. We desire to locate k medians in the
space, such that the sum of the distances from
each of the points of S to the nearest median
is minimized. Besides its intrinsic appeal as a
cleanly-stated, basic unsolved problem in com-
binatorial optimization, the k-median problem
has applications to pattern classification and
data mining (see for instance [9, 12] and ref-

*Supported by NSF CAREER award NSF CCR-
9502747, an Alfred Sloan Fellowship, and a Packard Fel-
lowship. Email: arora@cs.princeton.edu

fIBM Almaden Research Center, 650 Harry Road,
San Jose CA 95120.

INEC Research Institute, Princeton, NJ.

Prabhakar Raghavan’
IBM Research

Satish Rao*
NEC Research

erences therein). In fact it is a prototypical
clustering problem for 2.

Building on methods due to Arora [1, 2] for
the traveling salesman problem, we give in this
paper the first constant-factor approximation
algorithm for the k-median problem in the plane;
in fact, we give a polynomial-time approxima-
tion scheme. We note that this application of
Arora’s techniques is quite surprising, since he
mentions [2] that his techniques seem to ap-
ply only to problems in which (a) the objec-
tive function is a sum of edge lengths (b) the
patching lemma holds (i.e., there is a solution
of cost ¢ that crosses a certain length [line
segment more than twice, then there is a so-
lution of cost ¢+ O(l) that crosses the line seg-
ment only twice). The k-median problem sat-
isfies property (a) but not property (b). We
develop therefore (in Section 2) a general ver-
sion of his charging lemma that seems useful for
problems for which the patching lemma fails.
Further, our techniques extend to some cases
where property (a) is also violated. As a by-
product of our methods, we derive a polynomial-
time approximation scheme for the facility loca-
tion problem in the plane; this is defined below.

Since the Patching Lemma does not hold for
most geometric problems, we believe that our
delinking of the charging scheme from the Patch-
ing Lemma could be an important tool in the
design of approximation algorithms for other
geometric problems. We note that our charg-
ing argument — just like Arora’s argument — is
non-local (in contrast to many existing geomet-
ric algorithms, which are analyzed by charging
additional cost to “nearby” edges), and amor-
tizes cost over a very large neighborhood.

Related prior work: A problem related to
k-median is the k-center problem, in which we
wish to minimize the maximum distance of any
point to a facility. This and related minmax

clustering problems are relatively well-understood.

They can be approximated (typically using sim-
ple greedy heuristics) within factors close to 2,
and achieving a substantially better factor is
NP-hard. (See [4] for a survey.)

The facility-location problem is somewhat sim-
ilar to the k-median problem: we are given a set
S = {z1,...,z,} of n points again, together
with a cost ¢; for opening a facility at x;. We
are to find a set F' of facilities so as to minimize
the sum of the distances from each of the points
of S to the nearest facility, plus the cost of open-
ing the facilities. Hochbaum [7] showed that the
greedy algorithm is an O(logn)-approximation
algorithm for this problem for the uncapaci-
tated problem. Shmoys, Tardos and Aardal [13]
give a 3.16 approximation algorithm for arbi-
trary metric spaces; this factor has since been
improved to 2.41 by Guha and Khuller [6], and
more recently to 1.74 by Chudak [5].

Whereas the facility-location problem (where
the number of facilities is variable) has suc-
cumbed to approximation, the k-median prob-
lem on the other hand has defied the develop-
ment of good approximation algorithms, appar-
ently because we are only allowed to use k fa-
cilities (and no more). Indeed, the only ap-
proximation algorithm we know of for the k-
median problem stems from a combination of
techniques of Bartal [3] together with an (exact)
algorithm for the k-median problem on trees
due to Hochbaum [7], yielding an approxima-
tion ratio that is somewhat bigger than logn
for general metrics. Lin and Vitter [10] use an
elegant technique called filtering for rounding
fractional solutions of linear programming re-
laxations to the k-median problem. This re-
sults in an algorithm for the k-median prob-
lem achieving a cost within a factor of (1 + €)
of optimal, but using (1 4+ 1/¢)(Inn + 1)k me-
dian locations. Lin and Vitter [11] also gave an
algorithm achieving a solution that is 2(1 + €)
times the optimum, but using at most (141/¢)k
median locations. All of these results together
suggest that the k-median problem’s resistance
to approximation stems from our insistence on
using k& medians and not more.

1.1 Clear statement of problems and
results

k-median problem: Given n points {z1, ..
in a metric space with a distance metric d()
and a positive integer k, find a set of k medians

. 7$7L}

M = {my,...,mg} in the space so as to mini-
. n .

mize 5y mini<;<p d(@, my).

Facility location problem: Given n points

ri,...,T, In a metric space with a distance
metric d(), and a cost ¢; for opening a facil-
ity at x;, determine a subset F of {z1,...,2,}

at which to place facilities so as to minimize

n

Dot Zg&%d(fﬂmfﬂj)-

zcF i=1

A d dimensional geometric instance of the
k-median problem or (facility location problem)
is a set of points that correspond to points in
d-dimensional space with Euclidean distance as
a metric.

Theorem 1 Given a 2-dimensional geometric
instance of the k-median problem and a positive
real c, the algorithm developed in Section 3.3
achieves with probability 1 — o(1) a solution of
cost at most (1+1/c) times the optimal cost in
time nO(ct1)

Theorem 2 Given a 2-dimensional geometric
instance of the facility location problem and a
positive real ¢, the algorithm developed in Sec-
tion 3.8.2 achieves with probability 1 — o(1) a
solution of cost at most (1+ 1/c) times the op-
timal cost in time nO(¢+1),

Our algorithms are randomized, and so the prob-
abilities in all our theorems are over the random
choices of the algorithm (and hold for any in-
put). It is easy to restate these results as guar-
anteeing a (14 1/c)-approximate solution in ex-
pected time n®*tY . The algorithm hinges on
a charging algorithm that generalizes the tech-
niques of Arora [1, 2], and should be of inde-
pendent interest for other geometric optimiza-
tion problems; this argument is developed in
Section 2.1.

Also in section 3.3 we describe quasi-polynomial
time algorithms for d-dimensional geometric in-
stances and for a capacitated versions of the
problems.

1.2 Our Techniques

A quadtree is a geometric division of the plane
into a hierarchy of square regions (see Section 2).

Arora [2] uses a randomized variant of the quadtree.

Using the Patching Lemma, he proves that the
optimum TSP tour can be modified —with a
1 4 € factor increase in cost— such that the

number of tour edges crossing any region in the
quadtree becomes O(1/e). (Note that this is
a surprising result, since a priori, the number
of crossing edges could be a large function of
the number of nodes, say y/n.) In particular
it follows that there exists a tour of cost at
most (1 + €)OPT that crosses every region of
the quadtree at most O(1/¢) times. A simple
dynamic programming (whenever you divide a
quadtree square into four, “guess” the tour in-
terface between the four subsquares and then
recur independently in the subsquares) can find
such a tour.

We use a similar quadtree-based algorithm.
The main difference is that the Patching Lemma
does not hold for our problems here, so we can-
not in general reduce the number of edges that
cross the boundary of any quadtree square. Nev-
ertheless, we can generalize Arora’s charging
argument — which does not use the Patching
Lemma — to argue that the there exists a (1+
€)-approximate solution that has a very restricted
“interface” between any adjacent squares of the
quadtree. (Specifically, the interface belongs to
a set of n?1/¢) interfaces, all of which are con-
sidered by our algorithm.) Thus we can use
dynamic programming to find such a solution.

2 Quadtree dissection and the charging
argument

This section describes the quadtree dissection
and an associated charging argument that ap-
plies to any set of line segments in the plane.
The dissection is the same as in [2], and the
charging argument is a general statement of
some of the calculations in [2].

Let the bounding box of a set of points be the
smallest square containing it. Let L denote its
length.

A dissection of the bounding box is a recur-
sive partitioning into smaller squares. We view
it as a 4-ary tree whose root is the bounding
box. Each square in the tree is partitioned into
four equal squares, which are its children. We
stop partitioning a square if it has size < 1 (and
therefore at most one node). Note that there
are O(L?) nodes in the tree and its depth is
log L. A quadtree is defined similarly, except
we stop the recursive partitioning as soon as
the square has at most one input point. The
quadtree may in general have fewer squares than
the dissection; see Figure 1.

If a, b are integers in [0, L), then the (a, b)-shift

b+ L
2
bf
—>

a
%
a+ L

N

Figure 2: Dissection with shift (a,b). Only the
four children of the root are shown; each is iden-
tified by a distinctive shading. Note that three
of the children are “wrapped-around” squares.

of the dissection is defined by shifting the z- and
y- coordinates of all lines by a and b respec-
tively, and then reducing modulo L. In other
words, the middle vertical line of the dissection
is moved from the z-coordinate L/2 to the -
coordinate a+ L/2 mod L, and the middle hor-
izontal line from the y-coordinate L/2 to the
y-coordinate b + L/2 mod L. The rest of the
dissection is then “wrapped-around,” so that
the left edge of the dissection comes to rest at
the z-coordinate a, and the lower edge of the
dissection comes to rest at the y-coordinate b
(see Figure 2). Note that we treat a “wrapped-
around” square in the shifted dissection as a
single region; this will greatly simplify notation
later. The reader can also think of a wrapped-
around square as a disjoint union of 2 (or 4)
rectangles.

The quadtree with shift (a,b) is obtained from
the corresponding shifted dissection by cutting
off the partitioning at squares that contain only
one input point. It is easy to see that in gen-
eral the shifted quadtree has a very different
structure than the original quadtree.

2.1 The charging argument

Now we describe our charging argument. Sup-
pose we have a collection S of line segments in
the plane. Suppose the minimum length of a
segment in S is at least 4 units, and the sum of
lengths is cost(S). Consider a shifted dissection
with random shifts a, b. The charging argument
looks at the number of times S crosses vari-
ous squares in the dissection, and allows some
costs to be charged in proportion to this num-
ber. Our main lemma bounds from above the

N|I_

Figure 1: (a) The dissection.

total cost thus charged as a fraction of cost(S).

Let us place a unit grid in the plane, and for
a grid line [we denote by ¢(S,1) the number of
lines in S that cross [. The next lemma follows
by averaging.

Lemma 3 ([2]) If the minimum length of a
segment in S is at least 4 units, then) ,t(S,1) =
O(cost(S)), where the summation is over all lines
in the unit grid.

Consider a shifted dissection with shifts a, b.
Its squares form a hierarchy, and so have a nat-
ural notion of “level” (the bounding box is at
level 0, its four children are the squares at level
1, and so on). Thus each edge of the dissection
has an associated level: simply the level of the
square it bounds. We say that an edge is max-
imal if it is not part of any edge higher in the
hierarchy.

We also define a notion of level for grid lines.
A grid line [has level i in the shifted dissec-
tion if it contains a level ¢ edge. Note that a
level i edge gets subdivided to yield the edges
of two level 7 + 1 squares, so a line that is at
level ¢ is also at level j for all 5 > i. For
each ¢ > 1 there are 2 horizontal lines and
2% vertical lines at level i. The vertical lines
have z-coordinates a + p - L/2* mod L, where
p=0,...,2" —1 and the horizontal lines have
y-coordinates b + p - L/2" mod L , where p =
0,...,2" — 1. The maximal level of a line is the
highest level it is at.

Since the horizontal shift a is chosen ran-
domly, we have for each vertical line [in the
grid, and each ¢ < log L,

1

2
Pr[l is at level i] = I (1)

a

o

(b)The corresponding quad tree (Figures from [2].)

A similar statement is true for horizontal lines.
For any integer R > 0, we describe an R-
charging process as follows. For each dissection
edge that is maximal, if £ is the number of times
this edge is crossed by line segments in S, then
the process is allowed to charge a cost that is

k
= x length of the edge.

Lemma 4 (Charging Lemma) Suppose an R-
charging process is allowed to charge costs only
for edges from the top i levels. Then if the shifts
a,b were chosen randomly, the expected total
cost (over the random choices a,b) charged with
shifts a,b is O(i cost(S)/R).

Proof: Let [be any line of the unit grid. We
show that the expectation (over the random
choices a,b) of the cost charged to edges of [
when the shifts are a,b is at most it(S,1)/R,
whence the lemma follows by linearity of ex-
pectations and Lemma 3.

We show this only when [is a horizontal
line (the case of vertical lines is similar). If
the maximal level of [turns out to be j, then
every maximal edge on it has length at most
L/27, so the process can charge at most a cost
(t(S,1)/R)(L/27). The probability that [is at
level j is 27 /L, so the expected charge to [is at
most

27 #(S,1)
L R

J<i

1

R

L
5 < RS

Typically, the charging process is allowed to
charge for O(logn) levels. Then we make R =
O(logn/e), so the total cost charged is bounded

from above by € - cost(S). In other words, each
time a maximal edge is crossed by S, we can
charge a cost as high as e¢/logn times the edge
length.

3 Structure theorem and algorithms

Now we prove theorems for the various prob-
lems that show the existence of approximately
optimal solutions with a simple structure. The
design of algorithms is then easy.

3.1 The k-medians problem

To begin with we assume that all nodes lie on
the unit grid, the minimum nonzero internode
distance is > 1 and the maximum internode dis-
tance is O(n*). (This is without loss of general-
ity; see Section 3.2.3.) This means that the the
leaf squares of the dissection contain at most
one point, and so can be treated as the (trivial)
base case of our dynamic programming algo-
rithm.

We define the notion of an m-light solution to
facility location. First, we note that a solution
consists of collections of line segments, where
the lines in each collection each form a star.
We will allow the segments forming the spokes
of each star to bend and pass through a set of
prespecified points called portals.

Definition 1 Let m be a positive integer. An
m-reqular set of portals for a shifted dissection
is a set of points on the edges of the squares
in it. Each square has a portal at each of its 4
corners and m other equally-spaced portals on
each edge.

An m-light solution for the facility location
problem is a solution in which whenever an edge
passes the boundary of any square of the dis-
section, it does so through a portal.

Lemma 5 Let m > 1 be any integer and shifts
0 < a,b < L be picked randomly. Then for
any facility location problem, with probability at
least 1/2, there is an m-light solution with re-
spect to the dissection with shift(a,b) with cost
at most (14 O(log L/m)) times the optimal so-
lution, whose value we denote by OPT.

Proof: Consider the optimal facility location
solution. This consists of a set of line segments
(forming a set of stars). To make a solution
m-light, we need only deflect each edge so that
whenever it crosses a side of a square in the

dissection, it does so through a portal. We as-
sume wlog that m is a power of 2, so a portal
of a square is a portal of every smaller square
that shares a boundary with the square. Thus
we do not need to deflect the edge in more than
one direction for that square.

Note that if the length of the side of the
square is [then we need to deflect an edge by
at most [/m to make it pass through a portal.
We charge this cost to the corresponding side
of the square.

Note that we have just described an m-charging
process! Since the number of levels in the dis-
section is I, Lemma 4 implies that the expected

cost charged throughout the process is O(log L/m)OPT.

Hence the result is proved. m

Since L = O(n*), we can make m = O(log n/¢)
and the lemma then guarantees an m-light so-
lution of cost (1 + €¢)OPT.

3.2 The Dynamic Program

In the previous section, we showed that one
need only find the optimal facility location so-
lution where each edge is bent so that it passes
only through portals.

In this section, we present a dynamic pro-
gramming approach that approximates the op-
timal m-light solution to a facility location prob-
lem to within a factor of (1 + 1/4m). We con-

clude using Lemma 5, that it is an (1+O(log L/2m))

approximation algorithm for the facility loca-
tion problem.

In the discussion below, we will refer to edges
or portions of edges that are bent to pass through
portals as m-light paths.

3.2.1 The Tables

We will solve a set of subproblems on each square.
A solution to a subproblem on a square is an
assignment of the nodes in the square to ei-
ther facilities in the square or to the portals of
the square. The cost of a solution depends on
how close each portal is to a facility. Thus, we
“guess” (by enumeration during the dynamic
program) how far each portal is from a facility.
It is easy to see that it suffices to “guess”
the distance to the nearest facility only approx-
imately, i.e., to within an (1 + 1/4m) factor.
Furthermore, the distance to the nearest facil-
ity is “not too different” among neighboring
portals, so we can represent some of the dis-
tances as offsets from the previous distance. All
of these ideas put together allows us to make

do with “guessing” only O(m) bits of distance
per square, so the dynamic programming can
go through all guesses in 2°("™) time.

Formally, an instance of the problem is spec-
ified by the following inputs.

e A nonempty square in the shifted quadtree.
e An integer f € [0, k]

e If f # 0, an assignment inside of numbers
[1,...4m] to the portals of the box, such
that |inside(p) — inside(p’)| < 1 if portal
p and p’ are successive portals along the
bounding box.

o If f < k, an assignment closest of numbers
[1,...4m] to the portals of the box, such
that |closest(p) — closest(p')| < 1 if portal
p and p’ are successive portals along the
bounding box, and closest(p) < inside(p).

When f # 0, the goal of the subproblem for
a box of side length s, is to identify a set of f
facilities and an m-light path connecting each
node to either a facility or to a portal satisfying
the following properties.

o If f > 0, each portal p is within distance
inside(p)(s/m) of a facility.

e For a portal p, let n(p) be the number of
nodes that are connected to p by the solu-
tion. The total length of the m-light paths
plus

Z closest(p)n(p)(s/m)

portals p
is minimum.

The dynamic programming builds a lookup
table containing the costs of the optimal solu-
tions to all instances of the problem above aris-
ing in the quadtree.

If there is an m-light solution with cost C,
then we argue that the dynamic program finds
a solution S of cost (1 4+ 1/4m)C. The solu-
tion of cost C' gives rise to a single “interface”
for each non-empty square. That is, each non-
empty square gets a corresponding closest (and
possibly inside) function. In trying all possi-
ble interfaces the algorithm will hit upon an
interface in which all distances are guessed cor-
rectly to within a factor (1 4+ 1/4m). Thus,
the table entry of this subsquare is able to as-
sign the facilities in this subsquare with cost

at most (1 + 1/4m) times the cost of assigning
these facilities in the optimum. Arguing simi-
larly about all squares we conclude that the dy-
namic program will produce a solution of cost
at most (14 1/4m)C to the m-light facility lo-
cation problem.

The number of entries in the lookup table
is just the number of different instances of the
subproblem in the shifted quadtree. For each
square the number of entries is bounded by T =
k((4m)(3)*™)?, since there are k possible choices
for the number of facilities in the square, and
there are (4m)3*™ possible choices for the in-
side and outside functions.

3.2.2 Computing the table

For a square S, the solution to the subprob-
lem for f = 0, and closest corresponds to as-
signing each node u in S to the portal p with
minimum dist(u,p) + closest(p)(s/m). (Tech-
nically, dist(u,p) should be defined according
to the shortest m-light path between u and p.
The algorithm works either way.)

The remainder of the table is built up in a
bottom-up fashion. At the leaves, make a table
entry with f = 1 with cost zero and with the
inside function computed on the portals accord-
ing to the distance to the single facility inside.
The entries for other inside functions are unde-
fined.

Inductively, suppose the algorithm has solved
all the subproblems at depth ¢+ 1 and let S be
any other square at depth ¢ with side length
s. Let S1,855,53,S54 be its four children in the
quadtree.

For every choice of (b) with f > 0, (¢) and
(d) for S, the algorithm enumerates all combi-
nations of the defined table entries for its chil-
dren such that

e the sum of the value of f over the four sub-
problems equals the value of f for this en-
try for S,

e for each portal p of S, there is a portal
p’ of one of its children where dist(p,p’) +
inside(p')(s/2m) <inside(p)(s/m),

e and for each portal p of Si,55, 53, 54 there
is

— either a portal p’ of Sy, Ss, S5, Sy such
that dist(p,p’) + (s/2m)inside(p’) <
closest(p)s/2m

— or aportal p’ of S such that dist(p, p’)+
(s/m)closest(p’) < closest(p)(s/2m).

It then chooses the one with minimum cost
as the entry. If no such way is defined, then
the entry is left undefined. With this descrip-
tion, each entry requires the examination of at
most all four-tuples of table entries for the four
sub squares. Thus, the time to fill in all the
table entries for a square is O(7°). (One could
easily improve this time, but this is not our fo-
cus here.) Since the total number of nonempty
squares is N log IV, the total running time is
O(Nlog NT®).

By choosing m = O(log L/c), we obtain an
algorithm that finds an (1+1/c) times optimal
solution in time N9 NO©) gince T = NO© if
L is polynomial in N.

3.2.3 Initial Perturbation

Now we indicate why the input can be assumed
to be on integral points of an L x L grid, where
L is polynomial in n. We can ensure this as
follows. First we use the algorithm for minmax
clustering [4] to find a facility assignment that
minimizes the maximum distance to a facility to
within a factor of two, say this distance is D. We
know that the optimal facility location value is
at least D/2 and at most Dn. Using arguments
similar to those in [2], it is easy to see how to
decompose the problem into problems that can
be enclosed in disjoint squares of size 2Dn?.
Then we round each coordinate of each point
to the nearest multiple of D/n?. This increases
the cost of the resulting solution by at most
O(D/n), which is a small fraction of the opti-
mal. By scaling, we obtain problems where the
points are on integer coordinates and that are
encoded by boxes with side length O(n?).

3.3 Related Facility Problems.
3.3.1 Higher Dimensions

For d-dimensional instances of the k-medians
problem we can provide quasi-polynomial time
(1+4¢)-approximation algorithm as follows. The
quadtree decomposition is easily generalized so
that the space is recursively divided into hyper-
boxes by hyperplanes. We can then show that
there exists a (14 ¢)-approximate solution that
is m?1-light with respect to any hyperplane
that is used in the quadtree decomposition for
m = O(logn/e).

We proceed with a dynamic program analo-
gous to that in section 3.2 that requires n® (m?=1)
time.

The running time of the DP is n@((ogn/9)*™"),

3.3.2 Facility Location

We can find a (1 + €) times optimal solution to
the facility location problem using our approach
as follows. Consider an optimal solution to the
facility location problem. Say the facility cost
of the solution is F' and the service cost is C.
We then use a dynamic programming ap-
proach that follows the same structure as our k-
median algorithm and produces a solution with
facility cost (1 + 1/N)F and service cost (1 +
1/¢)C in NO(/) time with probability 1/2.

3.3.3 Algorithms for few medians.

A alternative dynamic program can be based
on approximating the position of the facilities
rather than the distances between portals and
facilities. For this approach, each subproblem
consists of choosing k positions from an m x
m regular spaced grid placed inside the square.
This results in dynamic programs with table
size (’f).

We can thus find an (1 + €) approximation
algorithm for the k-median algorithm with run-
ning time N (O(log N/¢€))?*. This is better than
our previous algorithms when k is small.

3.3.4 Extension to Capacitated
k-medians

The capacitated k-medians problem is a k-medians
problem where we are given an integer B such
that at most B points can be assigned to any fa-
cility. The structure lemma 5 for the k-medians
problem applies directly to this problem. The
dynamic programming approach above, how-
ever, does not ensure that the capacity bounds
are met. We can use an alternative dynamic
programming formulation where the subprob-
lems on a square enumerate partitions of ex-
cess capacity available at approximate locations
throughout the region. As in the previous sub-
section the approximate locations are specified
by positions in an m x m grid for each square
where m is O(logn/e).

This leads to an NOUo87/9)? time algorithm
for finding an (1 + ¢)-approximate solution for
this problem.

4 Further work

One of our contributions here has been the de-
coupling of the charging scheme from the Patch-
ing lemma of Arora [1]. This raises the prospect
of applying these methods to other difficult geo-

[12]

metric optimization problems such as the Minimum- [13]

weight Steiner triangulation problem: given n
points in the plane, form a triangulation of min-
imum total length whose vertices include the n
given points and possibly additional “Steiner”
points. Intriguingly, for this problem we do not
even know whether there is a near-optimal solu-
tion with a small (even polynomially-bounded
number of Steiner points).

References

[1] S. Arora. Polynomial-time approximation
schemes for Euclidean TSP and other geo-
metric problems. Proceedings of 37th IEEE
Symposium on Foundations of Computer
Science, pp. 2-12, 1996.

[2] S. Arora. Nearly linear time approxima-
tion schemes for Euclidean TSP and other
geometric problems. Proceedings of 38th
IEEE Symposium on Foundations of Com-
puter Science, pp. 554-563, 1997.

[3] Y. Bartal. Probabilistic approximation of
metric spaces and its algorithmic applica-
tions. Prof. 37th IEEE FOCS, 1996.

[4] M. Bern and D. Eppstein. Approximation
algorithms for geometric problems. In [8].

[5] F. Chudak. Improved approximation algo-
rithms for uncapacitated facility location.
Submitted for publication.

[6] S. Guha and S. Khuller. Greedy Strikes
Back: Improved Facility Location Algo-
rithms. Proceedings of the Ninth ACM-
SIAM Symposium on Discrete Algorithms,
1998.

[7] D.S. Hochbaum. Heuristics for the fixed
cost median problem. Math. Programminyg,
22, 148-162, 1982.

[8] D. Hochbaum, ed. Approximation Algo-
rithms for NP-hard problems. PWS Pub-
lishing, Boston, 1996.

[9] A. K. Jain, R. C. Dubes, Algorithms for
Clustering Data, Prentice-Hall, 1981.

[10] J-H. Lin and J. S. Vitter. e-approximations
with minimum packing constraint viola-
tion. Proc. 24th ACM STOC, 771-782,
1992.

[11] J.-H. Lin and J.S. Vitter. Approximation

algorithms for the geometric median prob-
lems. Information Proc. Letters 44, 148—
162, 1992.

O. L. Mangasarian. Mathematical pro-
gramming in data mining. Data mining
and knowledge discovery, 1(2), 1997.

D. B. Shmoys, E. Tardos and K. Aardal.
Approximation algorithms for facility lo-
cation problems (extended abstract). Proc.
29th ACM STOC, 265-274, 1997.

