A Unified Shape Editing Framework Based on

Tetrahedral Control Mesh

Abstract

It is a fundamental but challenging problem to efficientlyt edmplex 3D objects.
By embedding the input models into coarse tetrahedral abnteshes, this paper de-
velops a unified framework to discuss two useful editing apens: interactive defor-
mation and deformation transfer. First, a new rigidity eyeas proposed to make the
tetrahedral control mesh deform as rigidly as possibleckiields intuitive detail and
volume preservation even under large deformations. Andriam-driven refinement
approach is presented to further improve the deformatisalte Then, based on this
deformation scheme, a volumetric correspondence methottasiuced to perform de-
formation transfer task between the tetrahedral contra@heeg of the source and target
models, which greatly lessens the burden of the user. Brpetal results show our
algorithm is effective, easy to control, supports varicuspe representations, and well

transfers deformations between non-homeomorphous models
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Introduction

In recent years, complex 3D models are widely used in manyjicgpion fields, e.g., in-
dustry design, digital entertainment, and military sintiola. One of the most challenging
geometry processing operations is high quality shapengditn this paper, we mainly dis-
cuss two kinds of editing operations: interactive defoioratind deformation transfer.

Interactive deformation manipulates a given model undegiidance of the user. De-
formation transfer clones deformations exhibited by a seunodel to a different target
model. The challenging problems are preserving geomettaild and preventing unnatural
volumetric distortions as much as possible while satigfyire user constraints.

There are a huge number of techniques developed for intezattformation and de-
formation transfer. However, most of them are surface-thasecause 3D models are con-
ventionally represented with surface meshes. The sulfased techniques only consider
surface detail preservation. So certain volumetric festusuch as local rigidity and vol-
ume, are difficult to preserve, and apparent volume changes aluring extreme shape
editing. In addition, directly processing high resolutisurface meshes suffers from low
performance. This paper develops a simple yet powerfuldraonk to address these issues.

Once the model to be deformed is embedded into a coarseddteditontrol mesh, we
present a new rigidity energy to deform the control meshgidlyi as possible, then pass
the deformation to the embedded model by the modified batgicenterpolation [1].

Enforcing rigidity of the control mesh leads to a stable ntica¢ solver, and prevents the

embedded model from detail distortions and volume changasender large deformations,
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as illustrated in Figure 1. However, the original controktmenay be too coarse to fine-scale
deformations, we propose an error-driven refinement schierfigther optimize the high
deformation error regions.

As an extension, a novel deformation transfer algorithnnesented: the transfer process
is performed between the source and target tetrahedralotanéshes instead of between
the source and target models. To achieve this goal, a votioetrrespondence method
is introduced to guide the transfer process, and a fittingge® is proposed to obtain the
deformation of the source control mesh.

Compared with existing methods, our transfer algorithrmunes only a few marker
pairs to build the correspondence, and greatly lessensitideib of the user.

Using coarse tetrahedral control mesh to drive the editfrapmplex 3D objects makes
our framework achieves interactive performance, acconatesch variety of shape represen-
tations, such as meshes, point clouds, models with muftgutes or non-manifold structures

etc, and easily transfers deformations between non-homgsmaus models.

Related work

There has been considerable amount of research work foaatiee deformation and de-
formation transfer.
Freeform deformation (FFD) techniques [1, 2, 3, 4] embeddject into a simpler

domain, then the user can deform the object by freely editieglomain. Although FFD is



Figure 1. Deformation results of Armadillo. The leftmosedhe original Armadillo and
its tetrahedral control mesh, the others are results witardnt poses. The rigidity energy

effectively preserves geometric details and preventstunalasolumetric distortions.

independent of object representations, it is hard to miaikatails.

Multi-resolution techniques [5, 6, 7] decompose a givenhmet a sequence of repre-
sentations with decreasing level of detail. Deformationbgined by alternating the base
model and transferring back the details. The problem isdbttils are not coupled and pre-
served uniformly over the whole model, so artifacts stijp@ar in highly deformed regions.

Gradient domain deformation techniques [8, 9, 10, 11, 12143cast mesh deformation
as an optimization problem, and reconstruct the deformeghrbg fitting the alternated dif-
ferential coordinates representing local details. Howewese algorithms require solving
large linear systems, thus time and memory cost are verynsime

Recently, a new deformation strategy is proposed: the 3Pesigconstrained to un-
dergo an as-rigid-as-possible deformation by asking fgidity of its local behavior. Our
method also falls into this category. Botsch et al. [15]testhe mesh in a layer of elastically

coupled prisms that envelop it. During deformation, thes are rigidly transformed to



satisfy user constraints and prevent the mesh from degemesaAs the number of prisms is
comparable to the face number of the mesh, its bottlenebkisamputational performance.
Then they [16] extend this idea to adaptive volumetric hexiahl cells: the volumetric cells
are treated as rigid objects, and the integrated distartegeba their adjacent faces is min-
imized. Although it achieves generality, the limitationailso its performance because of
solving dense linear systems. Sorkine et al. [17] rigidlfoda each edge of the mesh to
avoid local distortions. Nevertheless, directly deforghdetailed meshes may suffer from
slow convergence. Sumner et al. [18] induce the deformdiyoa collection of rigid trans-
formations organized in a graph structure. However, itsigpaature may result in part of
the graph influencing an undesired area of the shape. Riar E9] propose fast lattice
shape matching with user-specified stiffness for realtimeition. But the uniform space
discretization scheme couldn’t reflect the irregularityted embedded geometry.
Deformation transfer is first introduced by sumner et al.],[20ming at deformation
reuse. It encodes the deformation as a set of simplex tnanafmns, which are used for
letting a static target mesh follow the deformation seqeesfca source mesh. Zayer et al.
[21] perform the transfer task with the help of harmonic fiatdd Possion editing. Chang
et al. [22] clones a skeleton-driven animation to anotheratter model. Wang et al.
[23] provide an easy-to-use animation system for non-ggfmals. Since these methods
all directly perform the transfer task between the souraktarget models, a surface cor-
respondence is required to guide how source deformatiansramsferred. Note that the

quality of correspondence strongly depends on user-spécifaker pairs. But for densely



sampled models, it’s a very tedious and time-consumingttapkovide enough maker pairs.

Interactive Deformation

We first present our deformation technique. Bétbe the model to be deformed, a6d=
(U, H) be its coarse tetrahedral control mesh, whére- (uy, ..., u,,) denotes the set of

control vertices and! = (hy, ..., h,,,) denotes the set of. tetrahedra.

Modified Barycentric Interpolation

We embedM into C' by using a modified barycentric interpolation (modified-El} to
establish their relationship.

To eliminate the first-order discontinuity artifacts ofdi@onal barycentric interpola-
tion, the modified-BI adjusts the deformation gradientseaab close as possible between
adjacent tetrahedra by introducing a linear transforméto each control vertex.

For a pointu in the interior ofC, the modified-Bl is formulated as:

x(u) = Z ¢i(u)(x; + Mi(u — w)), (1)

where¢;(u) is the barycentric coordinate basis function, andM; are respectively the
deformed position and linear transformation of controteen,;.

We set all deformed vertex positiofig; }_, and linear transformatioraVI; }1 , as vec-
tor x and vectom respectively{ M, }"_; are obtained by optimizing a sum of two quadratic
linear energies: discontinuity ener@y;..(x, m) and vibration energy, ;. (x, m).
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Figure 2: Demonstration of rigidity energy. (a) origindréedron, (b) deformed tetrahe-

dron, (c) deformation estimation.
Rigidity Energy

However, as the modified-BI is not conformal, suffers from detail distortions and volume
changes during deformation. To prevent these artifacteyerigidity energy is proposed to
deformC as rigidly as possible.

As shown in Figure 2, when a tetrahedrbn= (u;,, u;,, u;,, u;,) undergoes a rigid

deformation, there exists a rotation matRy, such that

Xz_clhz :Rhi(ui]‘_chi)7 1§j§4

J

wherex,-j is the deformed position oﬁ,-j, andcy,, ch are the centroids of original and
deformed tetrahedra.
Since the deformation actually is not rigid, the above eiQuatcan only be satisfied in

the least squares sense, i.e., minimizing

2, )

4
Ehz' (X) = Z ||(X2J - clhl) - Rhi(uij - chi)
7j=1
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Obviously, the smalleE, (x), the more rigidlyh; deforms.

SummingE},, (x) for all tetrahedra inff, we get the rigidity energy af”:

Erigidity(x) = Z wiEhi (X), (3)
hi€H
wherew; is the weight forh;, and we simply take its volumé;| into account.

Now we briefly describe the derivation for these optimal tiota matrices{ R} ;.
Becauséh; determinequ;, — c, };*zl, the rotation part of its deformatid\ ,, t,,,) can be
used for approximatin®,,, (Figure 2(c)), where\,,. is a linear transformation encoding the
change in orientation and scatg, is a translation vector encoding the change in position.

According to Muller et al. [24], the linear transformatidy),, should satisfyA,, U, =
X, WhereU,, = (u;, —w;,, u;, —u;,, uy, — vy, ) andX,, = (x;, — X, , Xis — X4y, Xiy —Xip )-

As Uy, is a nonsingular matrix, thus

Ay, =X, U} @

!
thi = Chi — Ahichi

And the rotation part can be obtained by performing polapdgmosition toA ,,
-1
Ry, = An\/AT Ay, (5)

Position Constraint

To guide the deformation, the user interactively selectsesoontrol vertices and directly

moves them to the desired positions.



Let {c;}*_, be indices of the manipulated control vertices, the pasitinstraint is given
k
asE,.s(x) = Y ||x., — X., ||*, wherex,, is the user-specified position far,,.
i=1

Thus the final optimization problem can be formulated a®fed:

min {Edisc(X7 m) + aEvibr (X7 m) + ﬁErigidity (X) + ’}/Epos (X)}7 (6)

{x,m}
whereq, (5 and~ are weights balancing the four energy terms. These weiginde au-

tomatically determined such that the four energy terms ameparable, i.e., their Hessian

matrices have the same norm.

Numerical Solver

The rigidity energy is a nonlinear constraint: on one hahd,discretization of,;g;q;1,, (x)
requires the appropriately evaluated rotation matricaghe other hand, the rotation esti-
mation depends on the unknown deformed control mesh. Samazimg (6) is a chicken-
and-egg problem. We adopt a two-phase method [25] to sols@tbblem.

Phase 1. overlook temporarily the rigidity energy, andropte the remaining three lin-

ear constraints, i.e., the discontinuity energy, the vibreenergy, and the posi-

X
tion constraint. It equals solving a sparse linear sydie = b, where

m

matrix P, vectorb are derived fronEy;,.(x, m), E,;, (x, m) andE,,(x), and
P relates only to the original control mesh.
Phase 2. minimize (6) based on the deformation result cdenom Phase 1 by iterati-

vely performing the following two steps:
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Step 1. Update the rotation matrices. Comparing the origine current state
of the control mesh, a rotation matrix is computed for eatfabedron.

Step 2. Update the vertex positions and linear transfoonatioOncer, ;i1 (x)

P X b
is updated, a new sparse linear system = is solved
Q m b

with respect to the current vertex positions and lineardi@mations,
where matrixQ, vectorb are derived fron&, 4, (x), andQ relates
only to the original control mesh.
After the iteration converges, the derived deformationassed to the embedded model
through the modified-Bl. As the control mesh retains rigidis much as possible during

deformation, it prevents the embedded model from detaibdisns and volume changes.

Error-driven Refinement

The original control mesh may be too coarse for fine deformnatias shown in Figure 3(b).
Large deformation error at some regions necessitates\sdimj the control mesh adap-
tively.

As the control mesh is required to behave as rigidly as pltessile define the deforma-
tion error of tetrahedroh; by measuring its deviation from rigidity, i.e., the dewtiof the

current linear transformatioA;,, from its optimal rotation pamR;,, :

B = | A, — Ry,

: (7)

Whenevert;""" exceeds a user-specified threshaélds subdivided to eight sub-tetrahedra
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Figure 3: Error-driven refinement. (a) original Asian dragand its tetrahedral control
mesh, (b) deformation result without refinement, note ttsakower lip distorts, (c) refine-
ment scheme: by inserting new vertices (in purple) at thepoiitts of each edge and con-
necting them together, original tetrahedron= (u;,, u;,, u;;, u;,) (in red) is subdivided
to eight sub-tetrahedraiu;,, u;,,, Wiys, Wiy, ), (Wipy, Wiy, Wigsy Wiy, ), (Wipy, Winy, Wig, Wiy, ),
(112‘147111'24,111'34, 112'4), (Uimuilg, 112‘147111'34), (Uilz, Wiy, 112‘237111'34), (Uilz, Wiy, Winyg,s 112‘34),

(Wi, Wiy, Uy, Uy, ), (d) deformation result with refinement.

to introduce more degrees of freedom for further optimaatiFigure 3(c)). Figure 3(d) is
the optimized result, we use 0.6 as the threshold. our reBnémscheme automatically

detects highly deformed regions and improves the result.

Deformation Transfer

As an extension, this section proposes a deformation gaadgorithm. In the following,

let S, T be the source and target models, &hd Cr be their tetrahedral control meshes.
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Figure 4. Deformation transfer (Camel to Horse). (a) ogjmodels §,7°) and their tetra-
hedral control meshes’¢,Cr), (b) transfer pipeline:S’ is a deformed shape o, the
corresponding deformation @fs is obtained through a fitting process; Then with tetrahe-
dron correspondences and deformation scheme (6), thenaistion is transferred t6'r and

further passed t@ by interpolation. (c)-(d) more transferred results.

AssumingS’ is a deformed shape &, the concept of deformation transfer can be un-
derstood as an analogy, i.e., generate a new mbdeith respect tdl” such that the defor-
mation exhibited byl is analogous to that of .

Unlike previous methods, we transfer shape deformatiothatof their control meshes
which are composed of sparse vertices. The transfer pgaishown in Figure 4(b). To
attain this goal, a volumetric correspondence method isired to build the correspondence
betweenCs andC'r, and a fitting process is proposed to find a correspondingaetion

of Cs that yieldsS'.
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Figure 5: Volumetric correspondence. Tetrahedral contteshesCs and Cr are first
warped into similar shapes. Then the per-tetrahedronsporelence is determined by com-

paring the centroids of the warped tetrahedra.

Volumetric Correspondence

To mimic the deformation of the source object, we shoulddiilie correspondence between
two control meshe€'s andCr.

Wang et al. [23] proposes a surface correspondence methedsource and target
meshes are first warped into similar shapes using leastesjuagshes [26], then triangle
correspondences are determined by computing whethercinairoids are close enough.

Now we extend this idea to tetrahedral control meshes (Ei§)yr To aid the genera-
tion of the correspondence, some compatible markers shomugpecified on both control
meshes. A€'s andC'r are very coarse, only a small number of marker pairs are esde
it is easier to accomplish by the user.

In [23], least squares meshes actually solve a Laplaceieguatreconstruct the warped

results. In the volumetric case, the Laplace equation widinker constraints can be ex-
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pressed as follows:

: (8)

X = Xme 1 <0 <1
whereDiv, A are the divergence and gradient operators for tetrahedrsth f27],{X,,,, }'_,
are marker constraint§yn;}!_, are indices of user-specified markers, arnslthe number
of markers.

The above equation yields a harmonic map: it positions eacitral vertex approxi-
mately at the centroid of its immediate neighbors and mdkewarped results fairly smooth
except for regions near markers.

After C's andCr are warped into similar shapes, we determine the tetrahezboe-
spondences by comparing the centroids of the warped tetraha source tetrahedron and

a target one are compatible if their centroids are closegmou

Fitting The Deformed Control Mesh

Suppose the control meshes of the deformed sagE areC, /- respectively. During
the deformation fron® to S', its control mesh also undergoes a transform fi@grto Cy,
which is the transform we want to share betwégnto C}. The key problem now is to find
Oy based on the deformed shage

Note that the relationship betweéhand Cs is described by the modified-Bl, and can
be represented d5x, m, u), foru € S. A fitting energy is proposed to achieve the above

goal by retaining their relationship during deformation:
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Efitting(x, m) = j{ 15" (w) — L(x, m, u)||*do, 9)
5

where S'(u) is the deformed position ofi, and do is the infinitesimal surface element
aroundu.
However, for control vertices af's whose neighboring tetrahedra don’t intersect with

S, they are not constrained ;.. (x, m), €.9.,Efiuing(x, m) is under-constrained. Ac-
counting for the rigidity constraint of each tetrahedroaneént during deformation, we
finally optimize

{ngl}{E Fitting (X, M) + AEgidity (X) } (10)
to obtain the deformed control mesghy, where) is a weight balancing the two energies.

The numerical solver is similar to that of optimization per (6), except that the initial

deformation result is generated using the linear constegjin;,,(x, m).

Transfer Optimization

With the aid of volumetric correspondence and fitting precése deformation fron§ to S’
can be transferred to that fromto 7".

In fact, by comparing’s with C'y, we can represent the deformation as a collection of
affine transformation§(A5*, t5%) 115! (formula (4)), whereA{” is a linear transformation,
tff is a translation vector, and’s| is the number of tetrahedra @ks.

Because neighboring tetrahedra share vertices, diregflyicg these transformations

to C7 will makes them seperate from each other [20]. To ensuredthated vertices be
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Figure 6: Deformation results of Dragon. The leftmost shiivesoriginal Dragon and its

tetrahedral control mesh, the others are deformationtsesul

transformed to the same place, we apply deformation schéje (naintain consistency
taking directly transferred result as the initial value arsgr-specified markers as position
constraint, and obtain the deformed target control négshThen the deformation is passed

to 7' through the modified-BI.

Experimental Results and Discussions

We generate the coarse tetrahedral control meshes forghernmodels using an automatic
mesh generator - NETGEN (http://www.hpfem.jku.at/nefyeWe implement our algo-
rithm using C++ on a PC with 1.9GHz Pentium 4 CPU and 512MB ntgmo
Interactive Deformation Figure 1 and 6 show the effectiveness of the rigidity
energy on complex models, where detail distortions andnaelahanges are well prevented.
Deformations on Santa with multiple parts and non-manigbfdctures are given in Fig-
ure 7. Our volumetric approach especially fits for such ngdehce it decouples the defor-
mation from shape representation of the embedded moddingaisections, disconnected

components, and non-manifold structures are handled/easil
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Figure 7: Deformation results of Santa with multiple partd aon-manifold structures. The

leftmost shows the original Santa and its tetrahedral obntesh, the others are our results.

g
1.80.08%
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Figure 8: Comparison between different deformation methdd) original Dinosaur and
its control mesh, (b) result of Lipman et al. [8], (c) resuitSorkine et al. [17], (d) result
of Huang et al. [1], (e) our result. The numbers show the ikgatolume before and after

deformation.
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Figure 8 demonstrates a comparison between differentmietorn methods. Lipman et
al. [8] and Sorkine et al. [17] are surface-based. Sinced8p#s uniform Laplacian without
considering the irregularity of Dinosaur, apparent ded&tortions and volume shrinkage
appear. [17] rigidly deforms each edge of the mesh with amtitee framework, these
undesirable artifacts can be avoided. Nevertheless thigkeforming 3D surface may suffer
from slow convergence (the waist of Dinosaur). In[1], Huahgl. also present a volumetric
method. However, it doesn’t maintain the rigidity of comtmeesh during deformation, thus
exhibits serious shape degenerations. By accounting eorighdity energy, our method
obtains a visual-pleasing result.

As to the two-phase deformation framework, solving sparssal systems is the most
time-consuming part. Because coefficient matrices aretanhdepend on the original con-
trol mesh, we can precompute their factorizations, therop®ronly back-substitutions
during deformation. Table 1 shows the geometry data andfimdeformation examples.

Deformation Transfer By setting the volumetric correspondence of the source
and target tetrahedral control meshes, the deformatioheosburce model can be trans-
ferred to the target model. In Figure 4, Camel poses are wsgerterate a running Horse.
Various Cat poses are retargeted to Lion in Figure 9, anddhemetric correspondence is
established with only 15 markers.

Figure 10 gives a comparison with Sumner et al. [20]. AltHotlge transferred results
look similar, according to local zoom of anther view, ourulépreserves surface details

better. Because of the volumetric nature of our transfesrélym, it works well for models

18



Table 1: Performance data measured in milliseconds fordotwe deformation. PRE: time
for precomputation including energy discretization andrirdactorization. DEF: time for

deformation including rotation estimation, back-sulogiitns and modified-BI.

Model Num. of | Num. of co- | Num. of PRE DEF
vertices | ntrol vertices| tetrahedra
Armadillo | 172,962 273 849 799.034 | 123.950
Asian dragon 249,934 173 473 406.546 | 119.222
Dragon 101,108 200 648 596.779 | 80.710
Santa 24,727 560 1616 1559.381| 140.151
Dinosaur 56,194 204 567 509.845| 63.751

with different genera (see Figure 11), a very difficult casegdrevious transfer algorithms
to deal with. Table 2 illustrates the performance stasstar deformation transfer. All

examples given in the paper run at interactive rates.

Conclusions and Future Work

Using coarse tetrahedral control meshes, this paper devealanified framework to discuss
two important editing operations: interactive deformatamd deformation transfer.

A new rigidity energy is proposed to preserve geometricildesad prevent unreason-
able volumetric distortions even under large deformatidnsaddition, a dynamic refine-

ment scheme based on deformation error is introduced frdupptimization.

19



Figure 9: Deformation transfer (Cat to Lion). Various Case® are retargeted to Lion. The

leftmost column shows the original models and their tettadlecontrol meshes.

(@) (b) (©) (d) ()

Figure 10: Comparison with Sumner et al. [20]. (a) a Cat pimepur result, (c) result of
Sumner et al. [20], (d) is in anther view of (b), (e) is in anthiew of (c). Note that our

algorithm preserves surface details better.
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Figure 11: Deformation transfer between non-homeomorphmdels. Twisting and bend-
ing deformations are transferred from Bar to Block. Thenhefst column shows the original
models and their tetrahedral control meshes.

Table 2: Performance data measured in milliseconds foraeftion transfer. VP: time for
setting volumetric correspondence. PRE: time for precdatmn of fitting the deformed
control mesh and deformation transfer optimization. Hifietfor fitting process. TO: time

for transfer optimization and modified-Bl.

Model | Num. of | Num. of co-| Num. of VP PRE FIT TO
vertices | ntrol vertices| tetrahedrg

Camel| 21,887 467 1375

67.895| 2345.814| 108.900| 123.855
Horse| 8,431 512 1463
Cat 7,207 200 522

28.240| 759.190 | 37.442 | 45.464
Lion 5,000 209 567
Bar 23,402 35 78

5.906 | 629.264 | 5.402 | 15.989
Block | 11,371 57 147
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Then based on this deformation scheme, a volumetric caynelgmce method is pre-
sented to perform deformation transfer task between theee@und target tetrahedral control
meshes, thus drastically reducing manual effort.

The volumetric nature of our approach allows it to handléowes shape representations,
and transfer deformations between non-homeomorphousimotleese advantages make
our framework conceptually intuitive and robust for preatiapplications.

Currently, our refinement scheme simply subdivides onahetiron to eight sub-tetrahedra,
we will provide a more flexible way to deal with complicate easOur transfer algorithm
works for models with similar poses. If they differ too muc¢he transferred results seem
strange. Future work will also address performance imprarés by implementing com-

putations in GPU.
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