
A Unified Shape Editing Framework Based on

Tetrahedral Control Mesh

Abstract

It is a fundamental but challenging problem to efficiently edit complex 3D objects.

By embedding the input models into coarse tetrahedral control meshes, this paper de-

velops a unified framework to discuss two useful editing operations: interactive defor-

mation and deformation transfer. First, a new rigidity energy is proposed to make the

tetrahedral control mesh deform as rigidly as possible, which yields intuitive detail and

volume preservation even under large deformations. And an error-driven refinement

approach is presented to further improve the deformation result. Then, based on this

deformation scheme, a volumetric correspondence method isintroduced to perform de-

formation transfer task between the tetrahedral control meshes of the source and target

models, which greatly lessens the burden of the user. Experimental results show our

algorithm is effective, easy to control, supports various shape representations, and well

transfers deformations between non-homeomorphous models.
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Introduction

In recent years, complex 3D models are widely used in many application fields, e.g., in-

dustry design, digital entertainment, and military simulation. One of the most challenging

geometry processing operations is high quality shape editing. In this paper, we mainly dis-

cuss two kinds of editing operations: interactive deformation and deformation transfer.

Interactive deformation manipulates a given model under the guidance of the user. De-

formation transfer clones deformations exhibited by a source model to a different target

model. The challenging problems are preserving geometric details and preventing unnatural

volumetric distortions as much as possible while satisfying the user constraints.

There are a huge number of techniques developed for interactive deformation and de-

formation transfer. However, most of them are surface-based, because 3D models are con-

ventionally represented with surface meshes. The surface-based techniques only consider

surface detail preservation. So certain volumetric features, such as local rigidity and vol-

ume, are difficult to preserve, and apparent volume changes occur during extreme shape

editing. In addition, directly processing high resolutionsurface meshes suffers from low

performance. This paper develops a simple yet powerful framework to address these issues.

Once the model to be deformed is embedded into a coarse tetrahedral control mesh, we

present a new rigidity energy to deform the control mesh as rigidly as possible, then pass

the deformation to the embedded model by the modified barycentric interpolation [1].

Enforcing rigidity of the control mesh leads to a stable numerical solver, and prevents the

embedded model from detail distortions and volume changes even under large deformations,
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as illustrated in Figure 1. However, the original control mesh may be too coarse to fine-scale

deformations, we propose an error-driven refinement schemeto further optimize the high

deformation error regions.

As an extension, a novel deformation transfer algorithm is presented: the transfer process

is performed between the source and target tetrahedral control meshes instead of between

the source and target models. To achieve this goal, a volumetric correspondence method

is introduced to guide the transfer process, and a fitting process is proposed to obtain the

deformation of the source control mesh.

Compared with existing methods, our transfer algorithm requires only a few marker

pairs to build the correspondence, and greatly lessens the burden of the user.

Using coarse tetrahedral control mesh to drive the editing of complex 3D objects makes

our framework achieves interactive performance, accommodates a variety of shape represen-

tations, such as meshes, point clouds, models with multipleparts or non-manifold structures

etc, and easily transfers deformations between non-homeomorphous models.

Related work

There has been considerable amount of research work for interactive deformation and de-

formation transfer.

Freeform deformation (FFD) techniques [1, 2, 3, 4] embed theobject into a simpler

domain, then the user can deform the object by freely editingthe domain. Although FFD is
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Figure 1: Deformation results of Armadillo. The leftmost are the original Armadillo and

its tetrahedral control mesh, the others are results with different poses. The rigidity energy

effectively preserves geometric details and prevents unnatural volumetric distortions.

independent of object representations, it is hard to maintain details.

Multi-resolution techniques [5, 6, 7] decompose a given mesh into a sequence of repre-

sentations with decreasing level of detail. Deformation isobtained by alternating the base

model and transferring back the details. The problem is thatdetails are not coupled and pre-

served uniformly over the whole model, so artifacts still appear in highly deformed regions.

Gradient domain deformation techniques [8, 9, 10, 11, 12, 13, 14] cast mesh deformation

as an optimization problem, and reconstruct the deformed mesh by fitting the alternated dif-

ferential coordinates representing local details. However, these algorithms require solving

large linear systems, thus time and memory cost are very expensive.

Recently, a new deformation strategy is proposed: the 3D shape is constrained to un-

dergo an as-rigid-as-possible deformation by asking for rigidity of its local behavior. Our

method also falls into this category. Botsch et al. [15] relate the mesh in a layer of elastically

coupled prisms that envelop it. During deformation, the prisms are rigidly transformed to
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satisfy user constraints and prevent the mesh from degenerations. As the number of prisms is

comparable to the face number of the mesh, its bottleneck is the computational performance.

Then they [16] extend this idea to adaptive volumetric hexahedral cells: the volumetric cells

are treated as rigid objects, and the integrated distance between their adjacent faces is min-

imized. Although it achieves generality, the limitation isalso its performance because of

solving dense linear systems. Sorkine et al. [17] rigidly deform each edge of the mesh to

avoid local distortions. Nevertheless, directly deforming detailed meshes may suffer from

slow convergence. Sumner et al. [18] induce the deformationby a collection of rigid trans-

formations organized in a graph structure. However, its spatial nature may result in part of

the graph influencing an undesired area of the shape. River etal. [19] propose fast lattice

shape matching with user-specified stiffness for realtime simulation. But the uniform space

discretization scheme couldn’t reflect the irregularity ofthe embedded geometry.

Deformation transfer is first introduced by sumner et al. [20], aiming at deformation

reuse. It encodes the deformation as a set of simplex transformations, which are used for

letting a static target mesh follow the deformation sequence of a source mesh. Zayer et al.

[21] perform the transfer task with the help of harmonic fieldand Possion editing. Chang

et al. [22] clones a skeleton-driven animation to another character model. Wang et al.

[23] provide an easy-to-use animation system for non-professionals. Since these methods

all directly perform the transfer task between the source and target models, a surface cor-

respondence is required to guide how source deformations are transferred. Note that the

quality of correspondence strongly depends on user-specified maker pairs. But for densely
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sampled models, it’s a very tedious and time-consuming taskto provide enough maker pairs.

Interactive Deformation

We first present our deformation technique. LetM be the model to be deformed, andC =

(U, H) be its coarse tetrahedral control mesh, whereU = (u1, ...,un) denotes the set ofn

control vertices andH = (h1, ..., hm) denotes the set ofm tetrahedra.

Modified Barycentric Interpolation

We embedM into C by using a modified barycentric interpolation (modified-BI)[1] to

establish their relationship.

To eliminate the first-order discontinuity artifacts of traditional barycentric interpola-

tion, the modified-BI adjusts the deformation gradients to be as close as possible between

adjacent tetrahedra by introducing a linear transformation for each control vertex.

For a pointu in the interior ofC, the modified-BI is formulated as:

x(u) =

n∑

i=1

φi(u)(xi + Mi(u− ui)), (1)

whereφi(u) is the barycentric coordinate basis function, andxi, Mi are respectively the

deformed position and linear transformation of control vertexui.

We set all deformed vertex positions{xi}
n
i=1

and linear transformations{Mi}
n
i=1

as vec-

torx and vectorm respectively.{Mi}
n
i=1

are obtained by optimizing a sum of two quadratic

linear energies: discontinuity energyEdisc(x,m) and vibration energyEvibr(x,m).
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(a) (b) (c)

Figure 2: Demonstration of rigidity energy. (a) original tetrahedron, (b) deformed tetrahe-

dron, (c) deformation estimation.

Rigidity Energy

However, as the modified-BI is not conformal,M suffers from detail distortions and volume

changes during deformation. To prevent these artifacts, a new rigidity energy is proposed to

deformC as rigidly as possible.

As shown in Figure 2, when a tetrahedronhi = (ui1 ,ui2,ui3 ,ui4) undergoes a rigid

deformation, there exists a rotation matrixRhi
such that

xij − c
′

hi
= Rhi

(uij − chi
), 1 ≤ j ≤ 4

wherexij is the deformed position ofuij , andchi
, c

′

hi
are the centroids of original and

deformed tetrahedra.

Since the deformation actually is not rigid, the above equations can only be satisfied in

the least squares sense, i.e., minimizing

Ehi
(x) =

4∑

j=1

‖(xij − c
′

hi
) − Rhi

(uij − chi
)‖2. (2)
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Obviously, the smallerEhi
(x), the more rigidlyhi deforms.

SummingEhi
(x) for all tetrahedra inH, we get the rigidity energy ofC:

Erigidity(x) =
∑

hi∈H

wiEhi
(x), (3)

wherewi is the weight forhi, and we simply take its volume|hi| into account.

Now we briefly describe the derivation for these optimal rotation matrices{Rhi
}m

i=1
.

Becausehi determines{uij − chi
}4

j=1
, the rotation part of its deformation(Ahi

, thi
) can be

used for approximatingRhi
(Figure 2(c)), whereAhi

is a linear transformation encoding the

change in orientation and scale,thi
is a translation vector encoding the change in position.

According to Müller et al. [24], the linear transformationAhi
should satisfyAhi

Uhi
=

Xhi
, whereUhi

= (ui2−ui1 ,ui3−ui1 ,ui4−ui1) andXhi
= (xi2−xi1 ,xi3−xi1 ,xi4−xi1).

As Uhi
is a nonsingular matrix, thus






Ahi
= Xhi

U−1

hi

thi
= c

′

hi
− Ahi

chi

. (4)

And the rotation part can be obtained by performing polar decomposition toAhi
:

Rhi
= Ahi

√
AT

hi
Ahi

−1

. (5)

Position Constraint

To guide the deformation, the user interactively selects some control vertices and directly

moves them to the desired positions.
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Let{ci}
k
i=1

be indices of the manipulated control vertices, the position constraint is given

asEpos(x) =
k∑

i=1

‖xci
− x̂ci

‖2, wherex̂ci
is the user-specified position foruci

.

Thus the final optimization problem can be formulated as follows:

min
{x,m}

{Edisc(x,m) + αEvibr(x,m) + βErigidity(x) + γEpos(x)}, (6)

whereα, β andγ are weights balancing the four energy terms. These weights can be au-

tomatically determined such that the four energy terms are comparable, i.e., their Hessian

matrices have the same norm.

Numerical Solver

The rigidity energy is a nonlinear constraint: on one hand, the discretization ofErigidity(x)

requires the appropriately evaluated rotation matrices; on the other hand, the rotation esti-

mation depends on the unknown deformed control mesh. So minimizing (6) is a chicken-

and-egg problem. We adopt a two-phase method [25] to solve this problem.

Phase 1. overlook temporarily the rigidity energy, and optimize the remaining three lin-

ear constraints, i.e., the discontinuity energy, the vibration energy, and the posi-

tion constraint. It equals solving a sparse linear systemP




x

m



= b, where

matrixP, vectorb are derived fromEdisc(x,m), Evibr(x,m) andEpos(x), and

P relates only to the original control mesh.

Phase 2. minimize (6) based on the deformation result obtained from Phase 1 by iterati-

vely performing the following two steps:
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Step 1. Update the rotation matrices. Comparing the original and current state

of the control mesh, a rotation matrix is computed for each tetrahedron.

Step 2. Update the vertex positions and linear transformations. OnceErigidity(x)

is updated, a new sparse linear system




P

Q








x

m



 =




b

b



 is solved

with respect to the current vertex positions and linear transformations,

where matrixQ, vectorb are derived fromErigidity(x), andQ relates

only to the original control mesh.

After the iteration converges, the derived deformation is passed to the embedded model

through the modified-BI. As the control mesh retains rigidity as much as possible during

deformation, it prevents the embedded model from detail distortions and volume changes.

Error-driven Refinement

The original control mesh may be too coarse for fine deformations, as shown in Figure 3(b).

Large deformation error at some regions necessitates subdividing the control mesh adap-

tively.

As the control mesh is required to behave as rigidly as possible, we define the deforma-

tion error of tetrahedronhi by measuring its deviation from rigidity, i.e., the deviation of the

current linear transformationAhi
from its optimal rotation partRhi

:

Eerror
hi

= ‖Ahi
− Rhi

‖. (7)

WheneverEerror
hi

exceeds a user-specified threshold,hi is subdivided to eight sub-tetrahedra
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(a) (b) (c) (d)

Figure 3: Error-driven refinement. (a) original Asian dragon and its tetrahedral control

mesh, (b) deformation result without refinement, note that its lower lip distorts, (c) refine-

ment scheme: by inserting new vertices (in purple) at the midpoints of each edge and con-

necting them together, original tetrahedronhi = (ui1 ,ui2 ,ui3 ,ui4) (in red) is subdivided

to eight sub-tetrahedra:(ui1 ,ui12 ,ui13 ,ui14), (ui12 ,ui2 ,ui23 ,ui24), (ui13 ,ui23 ,ui3,ui34),

(ui14 ,ui24 ,ui34 ,ui4), (ui12 ,ui13 ,ui14 ,ui34), (ui12 ,ui13 ,ui23 ,ui34), (ui12 ,ui14 ,ui24 ,ui34),

(ui12 ,ui23 ,ui24 ,ui34), (d) deformation result with refinement.

to introduce more degrees of freedom for further optimization (Figure 3(c)). Figure 3(d) is

the optimized result, we use 0.6 as the threshold. our refinement scheme automatically

detects highly deformed regions and improves the result.

Deformation Transfer

As an extension, this section proposes a deformation transfer algorithm. In the following,

let S, T be the source and target models, andCS, CT be their tetrahedral control meshes.
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(a) (b) (c) (d)

Figure 4: Deformation transfer (Camel to Horse). (a) original models (S,T ) and their tetra-

hedral control meshes (CS,CT ), (b) transfer pipeline:S
′

is a deformed shape ofS, the

corresponding deformation ofCS is obtained through a fitting process; Then with tetrahe-

dron correspondences and deformation scheme (6), the deformation is transferred toCT and

further passed toT by interpolation. (c)-(d) more transferred results.

AssumingS
′

is a deformed shape ofS, the concept of deformation transfer can be un-

derstood as an analogy, i.e., generate a new modelT
′

with respect toT such that the defor-

mation exhibited byT
′

is analogous to that ofS
′

.

Unlike previous methods, we transfer shape deformation viathat of their control meshes

which are composed of sparse vertices. The transfer pipeline is shown in Figure 4(b). To

attain this goal, a volumetric correspondence method is required to build the correspondence

betweenCS andCT , and a fitting process is proposed to find a corresponding deformation

of CS that yieldsS
′

.
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Figure 5: Volumetric correspondence. Tetrahedral controlmeshesCS and CT are first

warped into similar shapes. Then the per-tetrahedron correspondence is determined by com-

paring the centroids of the warped tetrahedra.

Volumetric Correspondence

To mimic the deformation of the source object, we should build the correspondence between

two control meshesCS andCT .

Wang et al. [23] proposes a surface correspondence method: the source and target

meshes are first warped into similar shapes using least squares meshes [26], then triangle

correspondences are determined by computing whether theircentroids are close enough.

Now we extend this idea to tetrahedral control meshes (Figure 5). To aid the genera-

tion of the correspondence, some compatible markers shouldbe specified on both control

meshes. AsCS andCT are very coarse, only a small number of marker pairs are needed, so

it is easier to accomplish by the user.

In [23], least squares meshes actually solve a Laplace equation to reconstruct the warped

results. In the volumetric case, the Laplace equation with marker constraints can be ex-
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pressed as follows: 




(Div · ∆)x = 0

xmi
= x̂mi

1 ≤ i ≤ l

, (8)

whereDiv, ∆ are the divergence and gradient operators for tetrahedral mesh [27],{x̂mi
}l

i=1

are marker constraints,{mi}
l
i=1

are indices of user-specified markers, andl is the number

of markers.

The above equation yields a harmonic map: it positions each control vertex approxi-

mately at the centroid of its immediate neighbors and makes the warped results fairly smooth

except for regions near markers.

After CS andCT are warped into similar shapes, we determine the tetrahedron corre-

spondences by comparing the centroids of the warped tetrahedra: a source tetrahedron and

a target one are compatible if their centroids are close enough.

Fitting The Deformed Control Mesh

Suppose the control meshes of the deformed shapeS
′

, T
′

areC
′

S, C
′

T respectively. During

the deformation fromS to S
′

, its control mesh also undergoes a transform fromCS to C
′

S,

which is the transform we want to share betweenCT to C
′

T . The key problem now is to find

C
′

S based on the deformed shapeS
′

.

Note that the relationship betweenS andCS is described by the modified-BI, and can

be represented asL(x,m,u), for u ∈ S. A fitting energy is proposed to achieve the above

goal by retaining their relationship during deformation:
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Efitting(x,m) =

∮

S

‖S
′

(u) − L(x,m,u)‖2dσ, (9)

whereS
′

(u) is the deformed position ofu, anddσ is the infinitesimal surface element

aroundu.

However, for control vertices ofCS whose neighboring tetrahedra don’t intersect with

S, they are not constrained byEfitting(x,m), e.g.,Efitting(x,m) is under-constrained. Ac-

counting for the rigidity constraint of each tetrahedron element during deformation, we

finally optimize

min
{x,m}

{Efitting(x,m) + λErigidity(x)} (10)

to obtain the deformed control meshC
′

S, whereλ is a weight balancing the two energies.

The numerical solver is similar to that of optimization problem (6), except that the initial

deformation result is generated using the linear constraint Efitting(x,m).

Transfer Optimization

With the aid of volumetric correspondence and fitting process, the deformation fromS to S
′

can be transferred to that fromT to T
′

.

In fact, by comparingCS with C
′

S, we can represent the deformation as a collection of

affine transformations{(ACS

hi
, t

CS

hi
)}

|CS |
i=1

(formula (4)), whereACS

hi
is a linear transformation,

t
CS

hi
is a translation vector, and|CS| is the number of tetrahedra inCS.

Because neighboring tetrahedra share vertices, directly copying these transformations

to CT will makes them seperate from each other [20]. To ensure thatshared vertices be
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Figure 6: Deformation results of Dragon. The leftmost showsthe original Dragon and its

tetrahedral control mesh, the others are deformation results.

transformed to the same place, we apply deformation scheme (6) to maintain consistency

taking directly transferred result as the initial value anduser-specified markers as position

constraint, and obtain the deformed target control meshC
′

T . Then the deformation is passed

to T through the modified-BI.

Experimental Results and Discussions

We generate the coarse tetrahedral control meshes for the input models using an automatic

mesh generator - NETGEN (http://www.hpfem.jku.at/netgen/). We implement our algo-

rithm using C++ on a PC with 1.9GHz Pentium 4 CPU and 512MB memory.

Interactive Deformation Figure 1 and 6 show the effectiveness of the rigidity

energy on complex models, where detail distortions and volume changes are well prevented.

Deformations on Santa with multiple parts and non-manifoldstructures are given in Fig-

ure 7. Our volumetric approach especially fits for such models, since it decouples the defor-

mation from shape representation of the embedded model. Self-intersections, disconnected

components, and non-manifold structures are handled easily.
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Figure 7: Deformation results of Santa with multiple parts and non-manifold structures. The

leftmost shows the original Santa and its tetrahedral control mesh, the others are our results.

(a) (b) (c) (d) (e)

Figure 8: Comparison between different deformation methods. (a) original Dinosaur and

its control mesh, (b) result of Lipman et al. [8], (c) result of Sorkine et al. [17], (d) result

of Huang et al. [1], (e) our result. The numbers show the relative volume before and after

deformation.
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Figure 8 demonstrates a comparison between different deformation methods. Lipman et

al. [8] and Sorkine et al. [17] are surface-based. Since [8] adopts uniform Laplacian without

considering the irregularity of Dinosaur, apparent detaildistortions and volume shrinkage

appear. [17] rigidly deforms each edge of the mesh with an iterative framework, these

undesirable artifacts can be avoided. Nevertheless, directly deforming 3D surface may suffer

from slow convergence (the waist of Dinosaur). In [1], Huanget al. also present a volumetric

method. However, it doesn’t maintain the rigidity of control mesh during deformation, thus

exhibits serious shape degenerations. By accounting for the rigidity energy, our method

obtains a visual-pleasing result.

As to the two-phase deformation framework, solving sparse linear systems is the most

time-consuming part. Because coefficient matrices are constant depend on the original con-

trol mesh, we can precompute their factorizations, then perform only back-substitutions

during deformation. Table 1 shows the geometry data and timefor deformation examples.

Deformation Transfer By setting the volumetric correspondence of the source

and target tetrahedral control meshes, the deformation of the source model can be trans-

ferred to the target model. In Figure 4, Camel poses are used to generate a running Horse.

Various Cat poses are retargeted to Lion in Figure 9, and the volumetric correspondence is

established with only 15 markers.

Figure 10 gives a comparison with Sumner et al. [20]. Although the transferred results

look similar, according to local zoom of anther view, our result preserves surface details

better. Because of the volumetric nature of our transfer algorithm, it works well for models
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Table 1: Performance data measured in milliseconds for interactive deformation. PRE: time

for precomputation including energy discretization and matrix factorization. DEF: time for

deformation including rotation estimation, back-substitutions and modified-BI.

Model Num. of Num. of co- Num. of PRE DEF

vertices ntrol vertices tetrahedra

Armadillo 172,962 273 849 799.034 123.950

Asian dragon 249,934 173 473 406.546 119.222

Dragon 101,108 200 648 596.779 80.710

Santa 24,727 560 1616 1559.381 140.151

Dinosaur 56,194 204 567 509.845 63.751

with different genera (see Figure 11), a very difficult case for previous transfer algorithms

to deal with. Table 2 illustrates the performance statistics for deformation transfer. All

examples given in the paper run at interactive rates.

Conclusions and Future Work

Using coarse tetrahedral control meshes, this paper develops a unified framework to discuss

two important editing operations: interactive deformation and deformation transfer.

A new rigidity energy is proposed to preserve geometric details and prevent unreason-

able volumetric distortions even under large deformations. In addition, a dynamic refine-

ment scheme based on deformation error is introduced for further optimization.
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Figure 9: Deformation transfer (Cat to Lion). Various Cat poses are retargeted to Lion. The

leftmost column shows the original models and their tetrahedral control meshes.

(a) (b) (c) (d) (e)

Figure 10: Comparison with Sumner et al. [20]. (a) a Cat pose,(b) our result, (c) result of

Sumner et al. [20], (d) is in anther view of (b), (e) is in anther view of (c). Note that our

algorithm preserves surface details better.
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Figure 11: Deformation transfer between non-homeomorphous models. Twisting and bend-

ing deformations are transferred from Bar to Block. The leftmost column shows the original

models and their tetrahedral control meshes.

Table 2: Performance data measured in milliseconds for deformation transfer. VP: time for

setting volumetric correspondence. PRE: time for precomputation of fitting the deformed

control mesh and deformation transfer optimization. FIT: time for fitting process. TO: time

for transfer optimization and modified-BI.

Model Num. of Num. of co- Num. of VP PRE FIT TO

vertices ntrol vertices tetrahedra

Camel 21,887 467 1375
67.895 2345.814 108.900 123.855

Horse 8,431 512 1463

Cat 7,207 200 522
28.240 759.190 37.442 45.464

Lion 5,000 209 567

Bar 23,402 35 78
5.906 629.264 5.402 15.989

Block 11,371 57 147
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Then based on this deformation scheme, a volumetric correspondence method is pre-

sented to perform deformation transfer task between the source and target tetrahedral control

meshes, thus drastically reducing manual effort.

The volumetric nature of our approach allows it to handle various shape representations,

and transfer deformations between non-homeomorphous models. These advantages make

our framework conceptually intuitive and robust for practical applications.

Currently, our refinement scheme simply subdivides one tetrahedron to eight sub-tetrahedra,

we will provide a more flexible way to deal with complicate cases. Our transfer algorithm

works for models with similar poses. If they differ too much,the transferred results seem

strange. Future work will also address performance improvements by implementing com-

putations in GPU.
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