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Preface

Egal is the result of a failed project to support distributed formalization of mathematics.
The code is being released as free and open source in September, 2014. I had hoped
to write more documentation and, especially, to write the documentation more clearly.
Unfortunately, I no longer have time or energy to devote to this project. As a result, this
manual was hastily written and has barely been proofread. I’ll simply ask readers (if
there are any) to forgive me for writing informally and occasional lapses into pessimism
and negativity. And Doctor Who references. I’ve found it impossible to write this
in a traditional academic fashion, so instead I am exorcising demons. Nevertheless, I
guarantee that both this manual and the Egal source code are worth every cent you
paid for them.

The Egal proof checker is in many ways the culmination of two decades of my life.
Much of the actual code was written during Winter 2013-2014. However, most of my
life choices for the last 20 years have been the result of following a dream: the dream
of formalizing mathematics using a computer program. I first became interested in this
idea as a graduate student in mathematics in the early 1990’s. By 1995 I decided to
openly work in this area. The first theorem prover I looked at was McCune’s first-order
prover Otter. Quaife had formulated the axioms for von Neumann-Gödel-Bernays Set
Theory in Otter and one could in principle use this as a formal foundation for math-
ematics [40]. I found working with the first-order Gödel set constructors too difficult
(though Belinfante has done some work to make it more convenient since then). In
1997 I started working with Peter Andrews on his theorem prover Tps [5]. I found
Church’s simple type theory [16, 3] to be a far more realistic framework for formalizing
mathematics. On the other hand, Tps was designed as an interactive and automated
theorem prover, not as a tool for building a mathematical library. Other tools (men-
tioned below) were more appropriate for building a formal library of mathematics. I
certainly learned a great deal from my time working on Tps, and I am grateful for that.

I’m obviously not the first person to work on formalizing mathematics. The under-
lying logical ideas go back to Frege [19, 20], Russell and Whitehead [47], Hilbert and
Ackermann [26], Church [16], and so on. De Bruijn’s AUTOMATH [13, 15] in the late
1960’s was the first real proof checker. Since then there have been a number of suc-
cessful theorem provers and proof checkers including Mizar [32], LCF [38], Isabelle [36],
NuPRL [17], Coq [33] and members of the HOL family of provers [21, 43, 24]. I’ve
used many of these and found things I liked and things I didn’t. I liked the mathemat-
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ical language of Mizar, but did not like that there were not independently checkable
proof terms (something sometimes called the “de Bruijn criteria”). Similar objections
apply theorem provers using the alternative LCF-approach (where correctness is guar-
anteed by abstraction in the metalanguage). In addition, I was never happy with the
zoo of allegedly “simple” types one finds in Isabelle-HOL or the HOL provers. My
work on higher-order automated theorem proving (first with TPS [5] and later with
Satallax [12]) led me to having some prejudice against both polymorphism and type
definitions.

While in the 1990s my preferences changed from first-order set theory to simple type
theory, by the middle of the 2000s I was very dissatisfied with simple type theory as
a foundation for a formalized library of mathematics. Mathematicians use set theory,
and there are good reasons. At some point I read Wiedijk’s wonderful paper Is ZF a
hack? [48]. After having suffered through the complexities of Gödel-Bernays, it was
a surprise to see how simple Zermelo-Fraenkel set theory is, if one writes it in an
appropriate logical framework. This led me to develop Scunak [10], a program that
supported set theory, dependent types, and proof irrelevance. Nothing came from the
Scunak project, except a few publications and more experience. It also led me to read
about work by Gordon [22, 2] about a combination of higher-order logic and set theory.
Similar work was also done later by Obua [37]. Eventually I gravitated towards this
approach: simple type theory as a framework and set theory as a foundation.

A modern theorem prover that (for the most part) satisfies the de Bruijn criteria
is Coq. As part of my job in the past five years, I found I was using Coq quite a
bit. Coq has an even larger zoo of types, but it at least includes the simple types and
thus gives a language in which one can express set theory. For a long time I was a fan
of dependent types (as Scunak witnesses), but dependent types lead to a number of
annoying issues having to do with equality. In Coq, one can look up so-called “John
Major equality” to get an idea of what I mean. In the end I decided that dependent
types could be moved to the theory level. That is, dependent products and sums can
be represented as sets and the typing rules could be lemmas. The work of Aczel [1],
Werner [46], Barras [8] and others influenced me in this regard. My thinking was that
what is “type checking” in Coq could still easily be automated if there were something
like these types as predicates or sets. As a project stemming from these ideas a student
Jonas Kaiser worked with me to formalize some of the semantics of type theory in a
formal set theory in Coq [29]. Originally the idea was to do the development in a
simply typed fragment of Coq. Due to some objections from people with more power
than I had, it was decided that the project would not be restricted to the simply typed
fragment of Coq. I ended up giving in, largely because I knew I could simply work on
a simply typed version on my own, during my own time, without resistance.

Aside from my loss of faith in dependent types, another problem I had with Coq
was the hidden implicit indices on type universes. Without making the indices explicit,
it is easy to write a proposition for which one can prove P and its negation (see the
Girard paradox [18] or its simplification as the Hurkens paradox [28]). This does not
lead to a contradiction since if one tries to combine the two proofs to prove false, then



Coq signals a universe inconsistency. (On a surface level, it appears that modus ponens
is unsound in Coq.)

It would probably be easy to make an alternative to Coq with explicit universe
indices. Some aspects of this would still make me uncomfortable. Consider ordered
pairs (x, y). Mathematically I tend to think this is an object which depends on two
objects: x and y. Coq adherents have informed me on multiple occasions that this is
not true. In fact it depends on the type of x, the type of y and then x and y. So the
pairing constructor has four arguments, not two. If we make type indices explicit, the
pairing operator will depend on five or six arguments: the levels of universes where the
two types live (optionally one level for both or one level for each), then two types, then
an object of each type.

I would sometimes bring up these kinds of objections to people, but the common
response I’d get is: Who cares? I eventually started responding: I care! But it became
clear I was the only one who did. In addition, after bringing up the same objection
multiple times, I decided no one was even listening. One reaction to not being listened
to is to shout. Another reaction is to shut down and stop talking. I can remember times
in the past 10 years when I’ve done both, though not at the same time, obviously. I
generally consider arguing to be a waste of time, even though I wasted plenty of time
arguing. I considered a better strategy to be to just do what I wanted and then show
my way is better. Or, as happened in this case, my way goes the way of Franz Reichelt.

Consistent with this strategy, I worked on my own at home on the code that ended
up becoming Egal. I worked on it during vacations when I didn’t need to argue with
people about how I wanted to do things. (I used to get 6 weeks of vacation a year!
What else was I going to do with that time?) I remember a horrible period in 2009
when I was trying to code the proof checker in Java to try to support proving in a
web browser. What a nightmare. Eventually it was clear that 6 weeks a year weren’t
enough and I decided to take off roughly half the year (without pay) to just do what I
wanted to do. That’s what I did for 13 months of the past 2 years.

I wanted a theorem prover where I could specify a proposition P . Then anyone could
submit a potential proof term D and a proof checker could check if D proves P . After
we know P has been proven, the particular proof should not matter. People should be
able to work on things in a distributed way and correctness and originality should be the
only things that mattered. Correctness and originality should both be automatically
checkable. To check originality one needs to be able to check if a proposition has been
proven before.

I spent a significant amount of time during Winter 2012-2013 designing a protocol
for multiple servers to agree on a “global identifier” for a (closed) proposition P (or,
more generally, a closed term). I had the idea that these global identifiers could stand
for the definitions which get reused. If two different people independently defined the
same term (up to the names involved), then they would end up with the same “global
identifier.” My thought was that this would remove obvious duplication and could
make it clear when someone had already made a definition or proven a theorem. Of
course, this is quite brittle because someone could make trivial changes (e.g., commuting



conjuncts) which would yield different, but equivalent, definitions. Nevertheless, it
seemed better than nothing.

After learning about Bitcoin in Spring 2013 I realized I had wasted a lot of time.
There was an obvious way to get “global identifiers”: use a cryptographic hash function
on a serialization of a nameless representation of the term. I know this is obvious in
retrospect, but I simply didn’t know about cryptographic hash functions. I also realized
I could use the same techinique on proof terms and then use the hash as a private key
for bitcoin treasures. For the first time I saw a possible way I could both live my
dream of formalizing mathematics and earn enough money to support myself. I could
prove theorems, bury some bitcoins underneath the proof I had, and sell access to the
unproven propositions. Why would anyone buy access? If they proved the theorem
with the same proof I had, then they could pick up the corresponding bitcoin treasure.
After doing it for the bitcoins, they’d keep doing it because it’s fun. I hoped it would
be like an educational lottery/video game. A set of problems would be released and
around 50 people or so would buy access to the problems. Some of those 50 people
would be able to get to the treasures before others and come out ahead, but everyone
would have an inexpensive learning experience. And I would get to do what I want:
stay home and prove theorems. On my own terms.

Of course, this isn’t what happened at all. There was very little interest in the
treasure hunt. (You can look in the bitcoin block chain from late March 2014 until late
September 2014 to see the details.) I’m agnostic about the idea of open sourcing code.
The main reason I’m releasing this code is because I don’t see a reason not to release
it. As a classically minded mathematician, not not releasing the code implies releasing
the code.

I can’t shake the feeling that the past 20 years of my life were wasted. Maybe if I
release the code and explain how to use it someone else will make something useful or
profitable out of it. It’s open source. Do what you want with it. You don’t need to ask
my permission. In fact, I can’t imagine I’ll even want to talk about this project for a
long time.

There’s a wonderful scene in the third episode of The Ribos Operation (by Robert
Holmes) in which a young conman from the stars on a primitive planet meets a down-
on-his-luck old man who is derided as “Binro the Heretic.” The conman asked Binro
about his heresy and Binro explains his belief that the stars in the sky are suns and
that these other suns might support life on other worlds. After listening, the conman
told him he believed this as well, and continued:

I know it for a fact. You see I come from one of those other worlds. I thought I should
tell you, because one day, even here, in the future, men will turn to each other and

say: Binro was right.

In that spirit, there’s one last thing I should to say to all those people who thought
I was crazy, to all those people who dismissed my ideas over these many years:

You were right.
I was wrong.



Chapter 1

Introduction

If I were to tell you that the next thing I say will be true,
but that the last thing I said was a lie, would you believe me?

The Doctor, The Green Death, Episode Five (1973)

Egal is a proof checker for formalized mathematics based on simply typed set theory.
It is designed to allow the distributed construction of a library of formalized mathe-
matics. A description of a vision of and several motivations for a library of formalized
mathematics constructed by a variety of participants was published as The QED Man-
ifesto in 1994 [6]. Other motivations and information can be found in [49, 7]. I had
planned to write more, but it all seems kind of pointless now.

In this document we will explain how to use Egal and work through a number of
examples. The examples will also demonstrate how one can set up a treasure hunt. We
will start in this introductory chapter with some very simple examples. The examples
are intended to help readers get a quick start using Egal before needing to understand
the full framework (simple type theory/higher-order logic) and the mathematical foun-
dation (set theory). In Chapter 2 we will describe the framework. Chapter 3 explains
the syntax for types, terms and proof terms as part of a fairly detailed look at a verified
parser. Chapter 4 describes the structure of documents. In Chapter 5 we will describe
the mathematical foundation given via the document Foundation.mg. Chapter 6 gives
an overview of the 25 documents which were part of the 2014 mathgate.info bitcoin
theorem proving treasure hunt. These documents construct many of the fundamental
building blocks of mathematics. Chapter 7 gives information about a formalization of
Gödel’s proof of the existence of God in a modal logic. Chapter 8 provides information
about a document about Category Theory. The Category Theory proofs are omitted
and there is a final collection of treasures. Unlike the 2014 treasure hunt, in this case
there is no deadline. I will never release the solutions.1

1In a sense it shouldn’t matter if I never release the solutions. Voters have affirmed the idea that
successful businesses were not built by the people who built them, but emerged as a byproduct of
government infrastructure. In that same spirit, one could say about each theorem I proved: I didn’t

prove that. The proof emerged as a byproduct of government infrastructure. And now I stand back
and allow others to be the vessels through which government infrastructure can produce proofs.
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10 CHAPTER 1. INTRODUCTION

1.1 Example 1: Socrates is Mortal

For a first simple example, we will demonstrate Egal with the well-known argument
concluding the mortality of Socrates. The code for this example can be found in a
sequence of files named Socratesi.mg in the formaldocs subdirectory. The syntax
Egal uses is very similar to Coq [33], so familiarity with Coq may be helpful.

We start by opening a section. Generally you do not need to open a section, but if
you are using type variables you will need to open a section.

Section Socrates.

We then declare a simple type variable A.

Variable A:SType.

This type variable can be used until we end the section. I hate type variables and
was reluctant to include them at all. I have only included them with tight restrictions
(e.g., at most 3 type variables can be used at once). I have also purposefully made it
annoying to use them in order to discourage their use. For example, types must always
be explicitly given as arguments.

We next declare two predicates on A: Man and Mortal. To be more precise, we
declare two variables both of which have the function type from A to prop. prop is the
type of propositions.

Variable Man:A->prop.

Variable Mortal:A->prop.

Now if we have a term of type A we can obtain a proposition by either applying Man

or Mortal to that term. At the moment we have no terms of type A, but we might have
a local variable of type A. In fact, we will use such a local variable to represent the
proposition that all men are mortal as follows:

forall x:A, Man x -> Mortal x.

Here we have written a proposition which is the ASCII representation of ∀x : A.Man x→
Mortal x. In words, for every x of type A, if x is a man, then x is mortal. The symbol
→ represents implication. The symbol ∀ is a binder (binding the variable x in this
example) and represents universal quantification.

We do not wish to simply write this proposition, we want to assume it as a hy-
pothesis. We can do this using the Hypothesis keyword and by giving a name to the
hypothesis.

Hypothesis ManMortal: forall x:A, Man x -> Mortal x.

Now ManMortal is an assumed proof of the proposition ∀x : A.Man x→ Mortal x.
Next we need to represent the assumption that Socrates is a man. We first add a

variable representing Socrates.
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Variable Socrates:A.

We can now represent the proposition that Socrates is a man by applying the predicate
Man to Socrates. We add the hypothesis to the context as before.

Hypothesis SocratesMan: Man Socrates.

We can now state the theorem that Socrates is mortal. We use the Theorem keyword.

Theorem SocratesMortal: Mortal Socrates.

We must now either give a proof of the theorem (ending with the keyword Qed) or
leave the theorem unproven (by giving the keyword Admitted). In general one can
always prove a theorem by using exact and then giving a “proof term”. To learn
more about “proof terms” you should look up information on the Curry-Howard-
de Bruijn correspondence [27, 13]. In this case there is a very simple proof term:
ManMortal Socrates SocratesMan. The reason why this is a proof term for the theorem is
easy to explain. We have declared ManMortal to be a proof of ∀x : A.Man x→ Mortal x.
We can also see ManMortal as a function which can be applied to a term t of type A
and which yields a proof of Man t → Mortal t. In this case we apply it to Socrates

to obtain a proof of Man Socrates → Mortal Socrates. We can also see this proof as a
function which can be applied to a proof of Man Socrates and which yields a proof of
Mortal Socrates. Here we apply it to the proof SocratesMan of Man Socrates. That is,
ManMortal Socrates SocratesMan is the function ManMortal applied first to Socrates and
then to SocratesMan. We could write ManMortal Socrates SocratesMan with parentheses
as

((ManMortal Socrates) SocratesMan)

but we omit parentheses whenever possible. By default the implicit binary operator
represents function application and function application associates to the left. More
details about the syntax will be explained in Chapter 3.

We give the proof in ASCII as follows:

exact ManMortal Socrates SocratesMan.

Qed.

We then close the section.

End Socrates.

Egal can be used to check this as follows:

egal Socrates1.mg

Of course, this is assuming egal is in your path and that you are using egal instead
of ocamlrun egal.bytecode and so on. It also assumes you are in the directory with
the file Socrates1.mg. Otherwise make appropriate modifications.

Calling egal on this checks everything and tells you nothing. If there were an error,
it would report this error (and have an exit status other than 0). You can get more
information by using -v to set a higher verbosity.
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egal -v 10 Socrates1.mg

This results in the following cryptic output:

Proposition of Theorem SocratesMortal : (forall _:(?0 -> prop),

(forall _:(?0 -> prop), ((forall _:?0, ((_2 _0) -> (_1 _0))) ->

(forall _:?0, ((_2 _0) -> (_1 _0)))))) was assigned id

MJ8kycoSfc9xwU3N5EeRy5PPwQq9aFNTfvss2nhcvzgjZsoW

Proof (fun _:(?0 -> prop) => (fun _:(?0 -> prop) => (fun _:(forall

_:?0, ((_2 _0) -> (_1 _0))) => (fun _:?0 => (fun _:(_2 _0) => ((__1

_0) __0))))))

of SocratesMortal was assigned id

MM2puxfNxZihV1Nd2o4C2otqwSm5gytPHn6YptXraSXVyLq7

*** With current salt, a treasure could be buried underneath the proof

of SocratesMortal at 1CQpAnWKx8qKN5ciVLvahsDu7Lun19Wh88 to be

redeemed with private key

5JNBdm53bUjtv6MY9TnyiQmHrCNzMrCRccrWBMfPhdCGpG1Lki5.

(TREASURE "SocratesMortal" "1CQpAnWKx8qKN5ciVLvahsDu7Lun19Wh88"

"5JNBdm53bUjtv6MY9TnyiQmHrCNzMrCRccrWBMfPhdCGpG1Lki5")

The first line tells you the global identifier

MJ8kycoSfc9xwU3N5EeRy5PPwQq9aFNTfvss2nhcvzgjZsoW

associated with the proposition proven as SocratesMortal. Superficially it may seem
this proposition was Mortal Socrates, but this is not the case. The global identifier
corresponds to the abstracted proposition. That is, all variables and hypotheses are
abstracted with ∀ and → so that the proposition has no local dependencies. In this
case, the global identifier corresponds to the proposition

∀Man Mortal : A→ prop.(∀x : A.Man x→ Mortal x)→
∀Socrates : A.Man Socrates→ Mortal Socrates.

Even this is not yet quite correct because there is the type variable A. Did I mention
that I hate type variables? The global identifier “remembers” that there is one type
variable.

To be more precise, Egal computes a nameless version (using de Bruijn indices for
bound variables) of the proposition

∀ManMortal : A→ prop.(∀x : A.Man x→ Mortal x)→ ∀Socrates : A.Man Socrates→ Mortal Socrates

and using ?0 for the type variable. This nameless version can be seen in the output:
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Proposition of Theorem SocratesMortal : (forall _:(?0 -> prop),

(forall _:(?0 -> prop), ((forall _:?0, ((_2 _0) -> (_1 _0))) ->

(forall _:?0, ((_2 _0) -> (_1 _0)))))) was assigned id

This nameless term is paired with 1 (to remember there is one type variable) and seri-
alized. This serialization is hashed using SHA256. The result is given two prefix bytes
and a checksum and the result of this is written in base 58 giving the global identi-
fier MJ8kycoSfc9xwU3N5EeRy5PPwQq9aFNTfvss2nhcvzgjZsoW. If anyone else considers
this same proposition (up to the names), then they will compute the same global iden-
tifier.

The proof term is also converted to a nameless representation which is shown in the
verbose output:

Proof (fun _:(?0 -> prop) => (fun _:(?0 -> prop) => (fun _:(forall

_:?0, ((_2 _0) -> (_1 _0))) => (fun _:?0 => (fun _:(_2 _0) => ((__1

_0) __0))))))

The proof is also serialized and hashed to give a global name for the proof:

MM2puxfNxZihV1Nd2o4C2otqwSm5gytPHn6YptXraSXVyLq7.

The hash value of the proof can also be used as a bitcoin private key. In general, we
hash the proof along with a salt to obtain the private key. Since we have not declared
a salt, no salt is used. Egal tells us the bitcoin private key and address in case we want
to bury a treasure there.

*** With current salt, a treasure could be buried underneath the proof

of SocratesMortal at 1CQpAnWKx8qKN5ciVLvahsDu7Lun19Wh88 to be

redeemed with private key

5JNBdm53bUjtv6MY9TnyiQmHrCNzMrCRccrWBMfPhdCGpG1Lki5.

The last line of the output repeats this treasure information as a lisp S-expression:

(TREASURE "SocratesMortal" "1CQpAnWKx8qKN5ciVLvahsDu7Lun19Wh88"

"5JNBdm53bUjtv6MY9TnyiQmHrCNzMrCRccrWBMfPhdCGpG1Lki5")

This is simply because lisp is my preferred language. When I was setting up the treasure
hunt I could do something like this:

egal -v 10 Socrates1.mg | grep TREASURE

This would give me S-expressions with treasure information that were easy for me to
manipulate using a lisp interpreter.

Lisp has a bad reputation. Because something is fundamentally wrong with people.
If we wanted to bury a treasure under this proof, we could declare it just before the

Theorem declaration as follows:
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(* Treasure "1CQpAnWKx8qKN5ciVLvahsDu7Lun19Wh88" *)

In context it looks as follows:

(* Treasure "1CQpAnWKx8qKN5ciVLvahsDu7Lun19Wh88" *)

Theorem SocratesMortal: Mortal Socrates.

exact ManMortal Socrates SocratesMan.

Qed.

You can see this in the file Socrates2.mg.
The version you would give to someone who is supposed to find the proof would

look as follows:

(* Treasure "1CQpAnWKx8qKN5ciVLvahsDu7Lun19Wh88" *)

Theorem SocratesMortal: Mortal Socrates.

Admitted.

You can see this in the file Socrates3.mg.
(* ... *) are for comments in Coq, but are used for these special declarations in

Egal. Comments in Egal are written as

(** here are some comments **)

That is, the opening and closing delimiter must have at least two *’s. You cannot have
a * inside the comment because I suck at writing lexers. So don’t write * inside your
comment.

Two other special commands can be used to give a title and to give authors. For
example:

(* Title "Socrates Introductory Example" *)

(* Author "Chad E. Brown" *)

This information is used when generating html versions of the documents and when
generating mysql data for the documents. I won’t discuss these features of the code.

1.2 Example 2: Nellie is Pink

Today I watched Episode 4 of the 1979 Doctor Who serial Destiny of the Daleks. The
serial is terrible. I’m not even sure I consider it canon. It’s a mess from Romana’s
“regeneration” to the treatment of the Daleks as being “logical robots” (they are nei-
ther). Also, there was the unconvincing resurrection of Davros. Davros was a much
better character when he was introduced in Genesis of the Daleks. I was surprised and
fascinated to learn from Diamanda Hagan that Michael Wisher’s original portrayal of
Davros was based on Bertrand Russell.

In the final minutes of Destiny of the Daleks, the Doctor presents Davros with the
following argument:



1.2. EXAMPLE 2: NELLIE IS PINK 15

All elephants are pink. Nellie is an elephant, therefore Nellie is pink.
It should be obvious that this is precisely the same as the Socrates example except

for the names. Since I’m essentially playing mind games with myself in order to write a
document describing a failed project, I’ll allow myself the pleasure of using the example
from Doctor Who.

We can extend the file (see Socrates4.mg) to include this argument as well:

Section Nellie.

Variable A:SType.

Variable Elephant:A->prop.

Variable Pink:A->prop.

Hypothesis ElephantsPink: forall x:A, Elephant x -> Pink x.

Variable Nellie:A.

Hypothesis NellieElephant: Elephant Nellie.

(* Treasure "1CQpAnWKx8qKN5ciVLvahsDu7Lun19Wh88" *)

Theorem NelliePink: Pink Nellie.

exact ElephantsPink Nellie NellieElephant.

Qed.

End Nellie.

The treasure address and global names are exactly the same. The point is that the
names don’t matter.2

If we wanted to obscure the fact that the two proofs are the same (and have two
distinct treasures) we could do this using salts (see Socrates5.mg).

Before the Socrates theorem we could declare:

(* Salt "Some Random Salt" *)

After the Socrates theorem but before the Nellie theorem we could declare

(* Salt "Some Other Random Salt" *)

Now the two treasure private keys and addresses will be different. If you try to run
egal without changing the treasure declarations, it will fail:

egal Socrates5.mg

Failure at line 17 char 4: The proof of SocratesMortal does not

correspond to the declared treasure.

You must update the treasure declarations to correspond to the salted versions (see
Socrates6.mg).

2Yes, I know: you don’t care that names don’t matter. I guess I could call the fact that names
don’t matter “name irrelevance,” and call the fact that no one cares “name irrelevance irrelevance.”
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1.3 Example 3: Proof Scripts

Very few proofs are given as exact proof terms. Instead proof tactics are used to
construct the proof term. Proof tactics are common in theorem provers and the ones in
Egal are similar to certain tactics in Coq. The tactic language in Coq is more modular
and in fact users can define their own tactics. In Egal there are only a handful of tactics
and they are hardcoded (as one can see in mgcheck.ml). I had intended to factor out
the treatment of tactics, but instead I’m throwing my hands up in a fit of hopelessness
and despair. It doesn’t matter anyway. Egal!

Three tactics which are useful for reasoning with ∀ and → are let, assume and
apply. We demonstrate them using the Nellie example (see Socrates7.mg).

This time we do not assume Nellie is an elephant. Instead we prove the proposition
that if Nellie is an elephant, then Nellie is pink.

Section NellieWithApplyAndAssume.

Variable A:SType.

Variable Elephant:A->prop.

Variable Pink:A->prop.

Hypothesis ElephantsPink: forall x:A, Elephant x -> Pink x.

Variable Nellie:A.

(* Treasure "15wcUqiRHwb5t17iw6Lpafzm2iFhccRWwS" *)

Theorem NelliePink3: Elephant Nellie -> Pink Nellie.

The treasure address will be the same because we will construct the same (global) proof.
We start by assuming Nellie is an elephant using the assume tactic.

assume H: Elephant Nellie.

Now the goal is to prove Nellie is pink under this assumption. We can use the apply

tactic with ElephantsPink to reduce to proving Nellie is an elephant.

apply ElephantsPink.

It is worth taking a moment to explain what has happened. We gave the proof term
ElephantsPink to the apply tactic. The proof term ElephantsPink proves

∀x : A.Elephant x→ Pink x.

Egal compares this to the current goal, Pink Nellie, and sees that it does not match.
However, it might match for an appropriate instantiation for x. Next Egal replaces x
with a variable X to be instantiatied, a so-called existential variable, and tries to match
Elephant X → Pink X which again fails. Egal next looks to the right hand side of the
implication Pink X and tries to match this with Pink X. This matches the current goal
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of Pink Nellie if X is assigned to Nellie. Egal decides that the apply tactic succeeds and
that the proof term will be of the form

ElephantsPink Nellie ?

where ? is a proof of Elephant Nellie yet to be constructed. This is the way that the
apply tactic can generally reduce a goal to a number of subgoals.

The prove tactic can be used to make it clear what the current goal is. We can use
it to make the proof more readable here.

prove Elephant Nellie.

The prove tactic is sometimes useful if one needs to expand definitions so that the goal
is in a form that an instance of apply can succeed. Here it is only included for human
readability of the proof.

Since this is proven by our first assumption we can complete the proof with exact.

exact H.

Qed.

End NellieWithApplyAssumeAndLet.

We next consider a variant of the Nellie example in which we have abstracted over
Nellie.

Section NellieWithApplyAssumeAndLet.

Variable A:SType.

Variable Elephant:A->prop.

Variable Pink:A->prop.

Hypothesis ElephantsPink: forall x:A, Elephant x -> Pink x.

(* Treasure "15wcUqiRHwb5t17iw6Lpafzm2iFhccRWwS" *)

Theorem NelliePink4: forall n:A, Elephant n -> Pink n.

Here the goal is a universal quantifier. We use the let tactic with the name n to reduce
the goal to proving the implication under the quantifier.

let n.

We now need to prove the implication. To do this we proceed as before.

assume H: Elephant n.

apply ElephantsPink.

prove Elephant n.

exact H.

Qed.
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If you are familiar with Coq, note that the let and assume tactics are like the
intros tactic in Coq. (In Coq implication is a special case of universal quantification.)

In each of the proof scripts above we have constructed the same proof term using
slightly different methods. The fact that it is the same proof term can be seen from
the fact that the treasure addresses are the same. There is in fact a different, simpler
proof of

∀n : A.Elephant n→ Pink n

above. The fact that it is different is clear from the different treasure address.

(* Treasure "17irP55rL1WFyRtXy22BfpVhG6edW1syW1" *)

Theorem NelliePink5: forall n:A, Elephant n -> Pink n.

exact ElephantsPink.

Qed.

End NellieWithApplyAssumeAndLet.



Chapter 2

The Framework: Simple Type
Theory

I think perhaps your logic is wearing a little thin.
The Doctor, The Tomb of the Cybermen, Episode Two (1967)

In this chapter we briefly introduce the framework of Egal. We will use the simply
typed λ-calculus to represent objects and propositions. We will follow the Curry-
Howard-de Bruijn correspondence [27, 13] to obtain λ-calculus representations for proof
terms.

2.1 Types

Our mathematical objects will be partitioned using simple types. We will use α and β
to range over simple types. Simple types all have one of four forms:

• α0, α1, α2 are three type variables. I hate including them, so I’m happy if you
ignore them.

• set: This is the type of all sets. There are common ways of encoding mathematical
objects (e.g., numbers, pairs of sets, etc.) as sets. We will sometimes generically
refer to elements of type set as the individuals of the mathematical universe.

• prop: This is the type of all propositions.

• α → β : If α and β are simple types, then α → β is a simple type. This is the
type of functions from elements of type α to elements of type β.

From now on we will usually say type instead of simple type. A type is monomorphic if
it does not contain any type variables. We define Tn to be the types which only use the
first n type variables. Hence T0 is the set of monomorphic types. The monomorphic
types are the only real types. The ones with type variables are more like schemas for a
set of types.

19
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In Egal there is a way to represent types (as well as everything else) in ASCII. set
is written as set, prop is written as prop and α→ β is written as α->β.

2.2 Names

We assume there are infinitely many names. We often use notation such as x and c to
range over names. In practice during the formalization process, the name will be an
alphanumeric identifier, possibly with underscores. A few examples are False, UnivOf
and prop ext.

2.3 Terms

We now define the set of terms. We use s and t to range over terms. The set of terms
is generated from the following cases:

• xα0 · · ·αn where n < 3. Every name applied to up to three types is a term. The
usual case is when n = 0 and x itself is a term.1

• st: If s and t are terms, then st is a term. Assuming s is a function and t is an
appropriate argument, the term st means s applied to t.

• λx : α.s: If x is a name, α is a type and s is a term, then λx : α.s is a term.
This corresponds to a function which takes an input of type α and returns a value
determined by the form of s.

• s → t: If s and t are terms, then s → t is a term. Assuming s and t are
propositions, s→ t is the proposition meaning s implies t.

• ∀x : α.s: If x is a name, α is a type and s is a term, then ∀x : α.s is a term.
Assuming s is a proposition when x has type α, this corresponds to the proposition
which means s holds for all values of x. That is, this term represents universal
quantification.

Fundamentally these are the only terms there are. Of course, Egal supports making
definitions, but these definitions will be associated with a name, so they are included in
the terms above. In addition, Egal supports declaring notation including infix operators,
prefix operators, postfix operators and binders. More information will be given about
this as needed. Much more information about notation will be given in Chapter 3.

1We do not allow general terms to be applied to types because I hate polymorphism and try
to restrict it whenever possible. Well, to be honest if you look at the type tm in syntax.ml and
syntax.mli you will find that there is a constructor TpAp which does allow general applications of
terms to types. However, much of the code assumes that it is either a primitive or global name applied
to the type. At the level I’m describing things here that’s similar to saying it’s a name applied to a
type.
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We will use parenthesis when necessary to remove ambiguity. When parentheses
are omitted, application associates to the left and more strongly than implication.
Implication associates to the right. For example, s1s2s3 → t1t2t3 → s1s2s3 means the
same as (((s1s2)s3) → (((t1t2)t3) → ((s1s2)s3))). In general the scope of binders is as
far to the right as is consistent with given parentheses. In particular this is true for
the binders λ and ∀. We will often omit the type α from λx : α.s Also, the scope of
both binders λ and ∀ are and ∀x : α.s, writing λx.s and ∀x.s instead. The shorthand
∀x.s will always mean ∀x : set.s. Once we give the typing rules below, it will often be
possible to infer the missing type in λx.s. Also, we will often write λx1· · ·xn : α.s for
λx1 : α · · ·λxn : α.s. Likewise, we will often write ∀x1· · ·xn : α.s for ∀x1 : α· · ·∀xn : α.s.

When writing terms in ASCII, we use the following conventions.

• s -> t means s→ t.

• fun x : α => s means λx : α.s.

• forall x : α . s means ∀x : α.s.

• fun x1· · ·xn : α => s means λx1· · ·xn : α.s.

• forall x1· · ·xn : α , s means ∀x1· · ·xn : α.s.

• fun x1· · ·xn => s means λx1· · ·xn.s.

• forall x1· · ·xn , s means ∀x1· · ·xn.s.

2.4 Proofs

We now define the set of proof terms. We use D and E to range over proof terms. The
set of proof terms is generated from the following cases:2

• xα0 · · ·αn where n < 3. Every name applied to up to three types is a proof term.
The usual case is when n = 0 and x itself is a proof term.3

• Dt: If D is a proof term and t is a term, then Dt is a proof term.

• DE : If D and E are proof terms, then DE is a proof term.

• λx : α.D: If x is a name, α is a type and D is a proof term, then λx : α.D is a
proof term.

• λx : s.D: If x is a name, s is a term and D is a proof term, then λx : s.D is a
proof term.

2Again, local let constructors are allowed in proof terms, but I’ll ignore them because I’m tired
and want to get on with my life.

3As with ordinary terms, we do not allow general proof terms to be applied to types.
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The notational conventions for proof terms is similar to that for terms. In particular,
annotations can be omitted from λ-abstractions if the proof checker can synthesize the
annotation.

When writing terms in ASCII, we use the following conventions.

• fun x : α => D means λx : α.D.

• fun x : s => D means λx : s.D.

• fun x1· · ·xn => D means λx1· · ·xn.D.

2.5 Contexts and Signatures

Note that names are not, in advance, associated with types or terms. Instead we asso-
ciate names with types and terms using contexts and signatures. Contexts are used to
associate variables with types or local definitions or associate hypotheses with assumed
propositions. Signatures are used to associate names with constants or definitions (pos-
sibly polymorphic) or associate names with axioms (possibly polymorphic).

Contexts Γ are lists of name declarations of the following forms:

• x : α : This means x is a term of type α.

• x : α := s : This means x is the term s of type α.

• x : s : This means x is a proof term justifying s.

Signatures Σ are also lists of name declarations, but are at a higher level than
contexts. The declarations on signatures are of the following forms:

• c :mn α where n ∈ {0, 1, 2, 3} and all type variables in α are αi with i < n. The m
is a global identifier corresponding to c. (In practice m is a string derived from a
256-bit number, about which more will be said in Section 2.7.)

• c :mn α := s where n ∈ {0, 1, 2, 3} and all type variables in α and s are αi with
i < n. Here m is a global identifier corresponding to (n, s).

• c :mn s where n ∈ {0, 1, 2, 3} and all type variables in s are αi with i < n. Again,
m is a global identifier corresponding to the term (n, s). In this case, we say (n, s)
is known in Σ and c is the name of the known in Σ.

I would be happier if n were 0 every declaration in every signature. However, adding
a choice operator (an ε-operator) at each type requires having some way of dealing
with a family of names for each type. Also, a choice operator requires a corresponding
polymorphic axiom. In addition, functional extensionality is an axiom parameterized
over two types. Once the compromise to have enough type variables to handle each
of these, it is difficult to justify not having polymorphic definitions for equality and
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existential quantification. However, later when we consider importing defined objects
without their definitions, we will only allow this for monomorphic definitions. In other
words, polymorphic definitions cannot be made opaque. In addition, arguments to
polymorphic names (names in a Σ where the corresponding n is positive) are always
used when they are applied to the appropriate number of types. The types must be
explicitly given. This follows my decision to support polymorphism as little as possible
and to discourage its use. Polymorphism is evil.

The purpose of most Egal declarations is to build up contexts and signatures. The
signature grows as the file is processed. The Parameter command puts a constant onto
the current signature. The Definition command puts a definition onto the signature.
The Axiom and Theorem commands put a name giving a proof term for a known onto
the signature. The keywords Lemma, Example, Fact, Remark, Corollary, Proposition
and Property are synonyms for Theorem.4 Each Theorem declaration (regardless of the
keyword used) requires either a correct proof script to be given (ended by Qed) or for
the proof (or parts of the proof) to be admitted using admit (for local subgoals) and
Admitted (for the rest of a proof).

For the most part, keywords (as well as much of the syntax) were chosen to be the
same as Coq, in case this isn’t obvious. Certainly I don’t want to be accused of not
acknowledging that I’m making many choices (on purpose) to be similar to Coq. Coq
is a nice theorem prover, and I’m accustomed to using it.

The contexts can be grown within a section. A section can be begun with a Section

command and ended with an End command. When a section ends, all the variables, local
definitions and hypotheses of the section are popped from the context. The Variable,
Let5 and Hypothesis commands extend the current context.

2.6 Substitution and Conversion

When s and t are terms and x is a name, we write s[x := t] for the result of substituting
the term t for the name x in s. One may need to rename some bound variables in order
to avoid capture, but we will assume this is done and not discuss details here.

There are four kinds of reducts that may occur in a term. Two of them are inde-
pendent of contexts and signatures. One depends on a context and the other depends
on a signature.

• β: When a term has the form (λx : α.s)t we say it is a β-redex with reduct
s[x := t].

• η: When a term has the form λx : α.sx and x is not free in s, we say it is an
η-redex with reduct s.

4To find a list of all special symbols and keywords, see the file lexer.mll which is processed by
ocamllex. Looking at it again, I notice there is a keyword Conjecture which is unused. The intention
at one time was to allow users to register conjectures, but this intention was never realized.

5Warning: Let declarations have not been thoroughly tested.
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• δΓ: If x : α := s ∈ Γ, then x is a δΓ-redex with reduct s.

• δΣ: If x :mn := s ∈ Σ, then xβ0 · · · βn−1 is a δΣ-redex with reduct s[α0 := β0, . . . , αn−1 :=
βn−1]. I guess I haven’t defined this simultaneous type substitution notation, but
probably you can figure out what it is. If you’re not sure look at tpsubst and
tmtpsubst in the file syntax.ml.6

We say that two terms s and t are convertible if they can be made the same via
changing the names of bound variables (α-conversion) and any number of these reduc-
tions, relative to a Σ and Γ. If the signature and context are well-formed (to be defined
later), then convertibility is decidable since reduction is confluent and terminates.7

2.7 Nameless Representations and Global Identi-

fiers

There is still some distance between what is described above and what is implemented
in Egal. Types, terms and proofs are input using local names. When Egal parses types,
terms and proofs, they are all parsed as the same kind of preterm. Without getting
into details about parsing here, they are parsed to the type ltree (for “layout tree”,
see syntax.ml and syntax.mli) which easily maps to an object of type atree (for
“abstract tree”, see syntax.ml and syntax.mli). See Chapter 3 for more information
about parsing and printing.

Before type checking and proof checking is performed, these “abstract trees” are
converted into a nameless representation using de Bruijn indices [14].

We take it for granted that you understand de Bruijn indices and simply remind
you that a de Bruijn index indicates how many binders to pass through to get to the
binder that binds the de Bruijn index. Just read de Bruijn’s 1972 paper [14]. So stop
reading this, go read de Bruijn’s paper, and then come back.

Now that you’ve read it, I have something to say. De Bruijn was a mathematician
who did a lot of work in a number of different areas. This “de Bruijn index” repre-
sentation is frankly a minor thing developed as part of his AUTOMATH project and
that has his name attached to it. (It’s not even the only nameless reprentation he gave.
There are also de Bruijn levels.) So please don’t think of him as the “index” guy.

I will say more about the code in a moment, but first let me introduce nameless
types, nameless terms and nameless proof terms as mathematical objects. I will use
the same metavariables α, s and D for the nameless versions as I did for the named
versions.

6Well, these implementations are for the nameless versions, but you should be able to figure out
what’s going on. It’s just type substitution. There’s not even the possibility of capture to worry about.

7Actually, in practice it doesn’t matter that reduction terminates. It is easy to write down small
terms that would take so long to terminate that they never actually would. There is a variable
beta count in syntax.ml which starts at a million and counts down. If your document requires more
than a million β-reductions, it will not be accepted.
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A nameless type is either 0, 1, 2 (3 nameless type variables), prop, set or α → β
where α and β are nameless types.

Nameless terms s, t are generated from the following grammar:

s, t ::= j|pβ0 · · · βn−1|mβ0 · · · βn−1|st|λ : α.s|s→ t|∀ : α.s

where j ranges over natural numbers,8 p ranges over “primitive names”9 and m ranges
over “global identifiers”.10

Nameless proof terms D, E are generated from the following grammar:

D, E ::= j|mβ0 · · · βn−1|DE|Dt|λ : α.D|λ : s.D

where j ranges over natural numbers,11 and m ranges over “global identifiers”.
The notions of β and η reduction have a natural counterpart for nameless terms.
Each closed term/proof can be transformed into a nameless term/proof. In fact,

Egal never considers terms or proofs with names at all. There are “mathematical
expressions” which are parsed and printed, but these are transformed into nameless
types, nameless terms and nameless proofs in the process of type checking and proof
checking. The printing and parsing of mathematical expressions will be the topic of
Chapter 3.

We will nevertheless present the type checking and proof checking rules in Section 2.9
using a named representation, since this is more human readable.

For each nameless term s it is possible to obtain a “collision resistant” global iden-
tifier s♯. By “collision resistant” we mean that if s♯ = t♯ and s = t, then we will have
found a collision in the SHA256 hashing function. At the moment, such collisions are
thought to be impractical to obtain.

SHA256 is a cryptographic hashing algorithm. You can find a pdf description from
NIST here:

http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf

I recommend downloading it and saving a local copy.12 When there are funding prob-
lems with the U. S. Government the Democrats who work at NIST like to be jackasses
and replace the pdfs with political statements that say things like:

Due to the government shutdown, we can’t afford to host a pdf, but can only afford to
host political messages like this instead. By the way, we’re lying jackasses.

8These are the de Bruijn indices which will replace local variable names.
9These will be determined by the theory. In our case, there will be primitive names for the choice

operator and a number of set theory primitives.
10These identifiers are used instead of the names in a signature Σ. Recall that global identifiers m

were included as part of Σ. This is the reason they were included.
11These are the de Bruijn indices which will replace names of local hypotheses.
12If you do download the pdf, you should probably use Tor. Otherwise the government might hound

you until you commit suicide like they did to Aaron Swartz.
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That may not be an exact quote. I didn’t save it. But they really did make the pdfs
inaccessible and replace them with political messages against the government shutdown.
And I find it much easier to believe they are lying jackasses than to believe there’s a
cost savings by removing access to the pdfs during a government shutdown. Google
“shutdown theater” to learn more. There are some very nasty people in the world. And
they think they’re better than you.

Yes, I’m aware of the idea that the “shutdown” in 2013 was the fault of Republicans.
The attribution of causality is notoriously difficult in general. If two parties cannot
come to an agreement about whether to spend a lot or spend a lot more, then how does
one decide which party is the one “refusing” to come to an agreement? Well, for the
mainstream media (a.k.a, the MFM, as they are sometimes known at Ace of Spades)
it’s simple: it’s the fault of Republicans. Why? Because roughly 90% of people in the
media vote for Democrats. See how easy it is to assign blame?

Oh well. You know what they say. If you can’t cut government spending, then create
an alternative decentralized monetary system that can’t be controlled by governments.

To have reasonable notation, we will use s♯ for the global identifier for a monomor-
phic term s and use (i, s)♯ for the global identifier for a term s with i type variables.
The global identifier s♯ is not simply the result of hashing a serialization of s. First
we traverse s to see if there are any monomorphic closed proper subterms (other than
global identifiers m). For each such proper subterm t, we compute t♯ and replace the
subterm with t♯. After doing this we βη-normalize to obtain s′. (Note that we may
have destroyed some β-redexes in the previous step. This was intentional.) The result
of βη-normalizing may have created new monomorphic closed proper subterms, so we
repeat the process of replacing such subterms t with t♯. After this second time we will
have a βη-normal nameless term for which every monomorphic closed proper subterm is
a global identifier. After we obtain this modified term, we serialize it and hash it using
SHA256. In addition, we add a prefix and a 16 bit checksum. The global identifier is
then given as a base 58 string. The prefix is chosen so that all global identifiers start
with M.

A similar process gives global identifiers (i, s)♯ when we need to record the number
of type variables i in s.

When we have a closed term (with names) which makes sense in a signature Σ, we
can convert it to a nameless term by replacing each c with m whenever c :mi α ∈ Σ or
c :mi α := s ∈ Σ. The mapping of local variables to de Bruijn indices is well-known.
You read about it in de Bruin’s paper.

In addition to β and η reduction, we have the following notion of δ reduction: If
m = (n, s)♯, then mβ0 · · · βn−1 reduces to s[β0, . . . , βn−1]. If we use δ reduction and
know some (n, s) such that m = (n, s)♯ for every m we encounter, then we can reduce a
nameless term to a nameless term in which there are no occurrences of global identifiers.

Let’s turn to the implementation.

The data types corresponding to the nameless representations can be found in
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syntax.ml and syntax.mli.13

For types see the type tp.

type tp = TpVar of int | Prop | Set | Ar of tp * tp

Note that whatever you call the type variables you declare, they will internally be
mapped to TpVar i where i is 0, 1 or 2. Do not declare more than 2 type variables. In
fact, try not to declare any.

For terms see the type tm.

type tm =

| DB of int

| TmH of string

| Prim of int

| TpAp of tm * tp

| Ap of tm * tm

| Lam of tp * tm

| Imp of tm * tm

| All of tp * tm

The first three constructors probably need the most explanation. We say something
about each of them.

• DB: DB(i) is de Bruijn index i. This stands for a locally bound variable. Since you
read de Bruijn’s paper, you know what this is. I guess I should say that I start
counting from 0. A lot of people who use de Bruijn indices start counting from
1. It’s not important of course, as long as you choose one and stick with it.

• TmH: TmH(m) Here m is the global identifier for a term, as described above. See
tm id and ptm id if you want to see details.

• Prim: Prim(i) is the ith primitive. Only certain primitives are allowed and these
will correspond to the choice operator and the set theory primitives. In the
manual I’m calling these “primitive names” even though in the implementation
they are numbers. Also, in the implementation certain names are hard coded to
correspond to these primitives. In particular, Prim(0) is the polymorphic choice
operator of type (α0 → prop)→ α0 referred to by Eps. Prim(1) is set membership
and is referred to by In, Prim(2) is the empty set referred to by Empty, Prim(i)
for i between 3 an 6 are other set operators referred to by the names Union,
Power, Repl and UnivOf. Prim(i) for i greater than 6 is illegal. You can find the

13Some users complained about cryptic error messages. The problem was that the nameless repre-
sentations look ugly went printed. One way around this would be to keep suggested names in some
places and then use these to print a named representation. I’ve been told Coq does something like
this. I considered doing it, but I’m certainly not going to do it now. Feel free to make this change
yourself.
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hard coded values along with their types by looking for the function primname in
syntax.ml. More information is given in Chapter 5.14

• TpAp: TpAp(s, α) means applying the term s to the type α. In practice s must
either be the primitive 0 (the choice operator Eps) or an appropriate global iden-
tifier. This might be different if Egal were modified to target a different theory.

• Ap: Ap(s, t) is ordinary term application st.

• Lam: Lam(α, s) corresponds to λ : α.s in the nameless representation, i.e., a term
like λx : α.s converted to the nameless representation. For example, λp : prop.p
would be represented as Lam(prop, DB(0)).

• Imp: Imp(s, t) is implication s→ t.

• All: All(α, s) corresponds to ∀ : α.s. For example, ∀p : prop.p would be repre-
sented as All(prop, DB(0)).

There is also a type which pairs a term with the number of type variables it has. This
is important when computing a global id since the polymorphism level needs to be
included before hashing.

type ptm = int * tm

s♯ is computed using tm id, which calls tm pack full to handle the three stage
process described above. The function tm pack handles replacing monomorphic closed
proper subterms with global identifiers in the first and third phase, while the normal-
ization in the second phase is handled by tm beta eta norm.

Likewise (i, s)♯ is handled by ptm id. There is no ptm pack full; the three phases
are inlined in this case. I think this is simply because the function tm pack full is
called elsewhere (by functions that compute global identifiers for proof terms) whereas
there was no need for a function ptm pack full.

Note that (0, s)♯ (the result of calling with ptm id (0, s)) is different from s♯ (the
result of calling tm id with s) since (0, s)♯ is explicit about the fact that it is monomor-
phic. This distinction may or may not be important. I don’t remember.

For proof terms, there is the type pf and the type ppf remembering the number of
type variables.

type pf =

| Hyp of int

| Known of string

| PTpAp of pf * tp

| PTmAp of pf * tm

| PPfAp of pf * pf

14Of course, if you wanted to modify Egal to handle theories other than set theory, this could all be
modified within the code.
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| PLam of tm * pf

| TLam of tp * pf

type ppf = int * pf

If you understood the explanations of the constructors for tm, then you should have no
trouble understanding most of the constructors for pf. The constructor Hyp plays the
role of de Bruijn indices at the level of hypotheses (local assumptions).

The one constructor that requires some explanation is Known. This is similar to TmH,
but differs in an important way. In a proof Known(m), m is the global id of a proposition
(a term of type prop) rather than a proof. In other words, Known(m) simply asserts a
proof of the proposition with global identifier m. In practice this is done because we
already have a proof and it does not matter which one we use. For example, if we have
a proposition s with global identifier m and a signature Σ of the form c :m0 s, d :m0 s,
then both of the proof terms c and d will map to the nameless representation Known(m).
Let me try to motivate this choice.

Egal is intended to build up a database of formalized mathematics. One starts from
the primitives and axioms and makes definitions and proves theorems. If a theorem
has been proven, its particular proof does not matter to someone wanting to use the
theorem. For this reason Egal allows a user to “import” a previously proven fact as an
axiom. As an axiom, one only knows the proposition. I could have designed Egal so
that one needs to give some “global identifier” for the proof when importing it as an
axiom, but this seems wrong. The particular proof is not important.

On the other hand, if a user wants to import a previously defined object, its particu-
lar definition is important. Previously made definitions can be made again and, indeed,
polymorphic definitions can only be imported this way. Monomorphic definitions can
be imported as a parameter. However, when importing a definition as a parameter in
this way the user must explicitly give the global identifier corresponding to the defini-
tion. The alleged “definition” cannot be expanded if it is imported as a parameter (it
will be opaque), but the global identifier is needed since it will be used as m in TmH(m)
when the parameter is used.

I think these choices were key ingredients in what should have made Egal a good
program for building a database of formalized mathematics. Now it’s just obscure fact
buried in a manual. Oh well. Egal!

2.8 Importing Previous Work (Databases and Sig-

natures)

Egal allows users to import known objects (either opaquely as parameters or transpar-
ently as definitions) and known propositions (as axioms). For this to work propertly,
there must be a way to make sure the imported known propositions are either axioms
or previously proven theorems. A database plays this role.
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A database ∆ is a pair (∆0,∆1) where ∆0 is a partial function from global identifiers
to monomorphic types and ∆1 is a set of global identifiers. The idea is that ∆0 keeps up
with the simple types of previously defined (monomorphic) objects. This allows users
to import (monomorphic) objects as parameters instead of definitions by associating
them with their global identifier. If the type of the parameter does not match the
type of the global identifier, then there is an error, as one should expect. Similarly, ∆1

keeps up with the global identifiers of (possibly polymorphic) propositions which were
previously proven. This allows users to import previously proven results as axioms.

The way previous work can be imported is in signature files. A signature file im-
ports previous work to build up the signature Σ which will be used to check the main
document file. I have used the suffix .mgs for signature files and .mg for ordinary docu-
ments, but this isn’t enforced. A signature file actually is a special case of an ordinary
document. The only restriction is that no theorems can be proven. When Egal is called,
the last argument is the main document to process. If the main document depends on
some previously results, then the command line argument -I should be used to give
signature files importing the previous results. For example, if you try use Egal to check
the file ExEq1.mg without giving a signature file, then it will signal an error.

egal ExEq1.mg

Failure at line 10 char 54: Unknown term ~ -- it might be a proof in

the position where a term is expected

In this case it complains that it does not know the notation for negation (which is more
of a parsing issue), but in fact it does not know about negation at all. Negation is first
defined in PropLogic1.mg. The work from PropLogic1.mg needed for ExEq1.mg is col-
lected into the signature file ExEq1Preamble.mg. We use -I to specify this dependency,
but now we get an error when processing the signature file.

egal -I ExEq1Preamble.mgs ExEq1.mg

Failure at line 12 char 50: The id

MHhyQTtRNciKhL6BZWxm7bdikQQWiAg1DE2zEQQCJvp6jPbQ for the proposition

for axiom andI is not indexed as previously known

If we look at the relevant line of ExEq1Preamble.mgs we see the following:

Axiom andI : forall A B : prop , A -> B -> A /\ B.

Egal complains because we have called it with an empty database, so it does not know
this proposition is known. This is remedied by specifying an appropriate database index
file with -ind. In this case, we use IndexMar2014, about which we will say a bit more
below.

egal -ind IndexMar2014 -I ExEq1Preamble.mgs ExEq1.mg
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Signature files can also import monomorphic definitions as parameters. To do this,
one must explicitly give the appropriate global identifier. To see an example of this, look
in the file Nat1Preamble.mgs and search for binunion. This represents the binary union
of two sets. The definition for it can be found in Set1b.mg, but for Nat1.mg we only need
its type and certain previously proven results about it. Hence in Nat1Preamble.mgs

we give the following information:

(* Parameter binunion MLywQTtJcoNKgztgfTu69bhu4eUuLMxPDoLPPJ551y1WpprR *)

Parameter binunion : set -> set -> set.

(* Unicode :\/: "222a" *)

Infix :\/: 345 left := binunion.

Axiom binunionI1 : forall X Y z : set , z :e X -> z :e X :\/: Y.

Axiom binunionI2 : forall X Y z : set , z :e Y -> z :e X :\/: Y.

Axiom binunionE : forall X Y z : set , z :e X :\/: Y -> z :e X \/ z :e Y.

If we ignore the infix notation of :\/: for binunion for the moment, we see that we have
declared that binunion has the type set→ set→ set and global identifier

MLywQTtJcoNKgztgfTu69bhu4eUuLMxPDoLPPJ551y1WpprR.

(This global identifier can be found by appropriately calling Egal on a document in
which binunion is defined, e.g., Set1b.mg.) This is enough to put

binunion :MLywQTtJcoNKgztgfTu69bhu4eUuLMxPDoLPPJ551y1WpprR
0 set→ set→ set

onto Σ. We then import three previously proven results as binunionI1, binunionI2 and
binunionE so that we have enough facts about binunion to do proofs about it without
knowing the definition.

A database can grow as documents are processed. By default Egal has an empty
database, so that no previous objects or previously proven propositions can be im-
ported.15 Egal can optionally be given a database as an “index file” using the -ind

command line option. For the treasure hunt files, the index file used was IndexMar2014.
For this reason, almost all of the files are processed as

egal -ind IndexMar2014 ...

(or with modifications to the path if you are not in the formaldocs directory). The
file IndexMar2014 is human readable. It is a sequence of lines each of which is either a
global identifier followed by a monomorphic type followed by a period (adding to ∆0)
or the keyword Known followed by a global identifier followed by a period (adding to
∆1).

Such a database “index file” can be also created by Egal. To do this, use -indout

to write out the database that results from processing the current document. If one
uses both -ind and -indout as

15However, the primitive objects and axioms of the mathematical foundation (higher-order Tarski-
Grothendieck set theory can always be declared. The corresponding global identifiers for the axioms
are hard-coded into mgcheck.ml.
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egal -ind Index1 -indout Index2 filetoprocess.mg

then the database will be initialized using Index1, the file filetoprocess.mg will be
processed constructing a signature Σ and updating the database along the way, and
the resulting database at the end will be written as index file Index2.

In this way the database (representing the essence of the mathematical library being
constructed) can grow linearly, much like a block chain.16

The file IndexMar2014 was created by starting with an empty file and growing the
file by processing the treasure hunt documents. Here is (more or less) how it was con-
structed (giving the file indextest1 to avoid overwritting the released IndexMar2014.

egal -indout indextest1 Foundation.mg

egal -ind indextest1 -indout indextest1 PropLogic1.mg

egal -ind indextest1 -indout indextest1 -I ExEq1Preamble.mgs ExEq1.mg

egal -ind indextest1 -indout indextest1 -I Set1aPreamble.mgs Set1a.mg

egal -ind indextest1 -indout indextest1 -I Preds1Preamble.mgs Preds1.mg

egal -ind indextest1 -indout indextest1 -I Relns1Preamble.mgs Relns1.mg

egal -ind indextest1 -indout indextest1 -I KnasterTarskiPreamble.mgs KnasterTarski.mg

egal -ind indextest1 -indout indextest1 -I Relns2Preamble.mgs Relns2.mg

egal -ind indextest1 -indout indextest1 -I Classical1Preamble.mgs Classical1.mg

egal -ind indextest1 -indout indextest1 -I ConditionalsPreamble.mgs Conditionals.mg

egal -ind indextest1 -indout indextest1 -I Set1bPreamble.mgs Set1b.mg

egal -ind indextest1 -indout indextest1 -I Exactly1ofPreamble.mgs Exactly1of.mg

egal -ind indextest1 -indout indextest1 -I EpsIndPreamble.mgs EpsInd.mg

egal -ind indextest1 -indout indextest1 -I Set1cPreamble.mgs Set1c.mg

egal -ind indextest1 -indout indextest1 -I Zermelo1908Preamble.mgs Zermelo1908.mg

egal -ind indextest1 -indout indextest1 -I Nat1Preamble.mgs Nat1.mg

egal -ind indextest1 -indout indextest1 -I Set2Preamble.mgs Set2.mg

egal -ind indextest1 -indout indextest1 -I QuotientsPreamble.mgs Quotients.mg

egal -ind indextest1 -indout indextest1 -I Nat2Preamble.mgs Nat2.mg

egal -ind indextest1 -indout indextest1 -I UnivInfPreamble.mgs UnivInf.mg

egal -ind indextest1 -indout indextest1 -I Ordinals1Preamble.mgs Ordinals1.mg

egal -ind indextest1 -indout indextest1 -I DisjointUnionsPreamble.mgs \\

DisjointUnions.mg

egal -ind indextest1 -indout indextest1 -I OrderedPairsPreamble.mgs OrderedPairs.mg

egal -ind indextest1 -indout indextest1 -I DepSumsPreamble.mgs DepSums.mg

egal -ind indextest1 -indout indextest1 -I FuncsSetsPreamble.mgs FuncsSets.mg

egal -ind indextest1 -indout indextest1 -I DepProdsPreamble.mgs DepProds.mg

Egal is also being released with another index file IndexJune2014. This file is an
extension of IndexMar2014 with some information about modal logic and gives the
database one needs to start with to process the document giving Gödel’s proof of the

16Well, to be like a block chain the next block should only contain the new entries in the database,
but you probably get the idea.
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existence of God. (I ported this proof to Egal starting from a Coq version by Benzmüller
and Paleo [9].)

egal -ind IndexMar2014 GoedelGodPreamble.mgs

Failure at line 122 char 95: The id

MLucBeuQfTjWvrBKTPNKycJoPHZSr6Q9qpJkhznXi7A1y8w2 for the proposition

for axiom mp_dia is not indexed as previously known

egal -ind IndexJune2014 GoedelGodPreamble.mgs

egal -ind IndexJune2014 -I GoedelGodPreamble.mgs GoedelGod.mg

In the code ∆0 corresponds to the hash table indextms and ∆1 corresponds to the
hash table indexknowns. We briefly look at some of the code to explain how knowns
are added to ∆1.

Examine the following code in mgcheck.ml which is called after a Theorem declara-
tion is made (and before the proof is given):

let i = List.length !ctxtp in

let atm = check_tm a Prop !polytm sigtmof !sigtm !ctxtp !ctxtm in

let agtm = !tmallclos atm in

let ahv = ptm_id (i,agtm) sigtmof sigdelta in

The first line sets i to be the number of type variables in the current context. The
second line calls check tm on something that was parsed in order to check that it can
be turned into a tm (nameless represetation) of type prop. The next line forms the
closure of the tm so that it no longer depends on a context (except for type variables,
if there are any). This closed term is assigned to agtm. Finally, a global identifier is
computed for i paired with the closed tm. This is a global identifier for the (possibly)
polymorphic closed proposition. This global identifier is assigned to ahv.

Later in the code (still handing a Theorem declaration) we see

proving := Some (x,i,agtm,ahv);

This means Egal will start interpreting what it reads as proof tactics which should
ultimately construct a proof for the proposition agtm with i type variables and global
identifier ahv. Here x is the name the document gives the theorem.

If the proof is successfully completed leaving no unproven subgoals, then the follow-
ing code will be executed:

if not (Hashtbl.mem indexknowns gphv) then Hashtbl.add indexknowns gphv ();

While the variable is named gphv here, it has the same value as ahv above. Hence after
the theorem has been proven Egal checks to see if the proposition’s global identifier is
already in ∆1 and adds it to ∆1 if not.

Let Σ be a signature. We say a database ∆ = (∆0,∆1) includes Σ if the following
three conditions hold:
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• For every c :m0 α ∈ Σ, ∆0(m) = α.

• For every c :m0 α := s ∈ Σ, ∆0(m) = α.

• For every c :mn s ∈ Σ, m ∈ ∆1.

2.9 Rules for Checking

We now define rules for type checking and proof checking. We assume a fixed database
∆ = (∆0,∆1).

17 We also assume a fixed set P of primitive names and corresponding
types. That is, the elements of P are (p, i, α) where p is a primitive name, i ∈ {0, 1, 2, 3}
and α ∈ Ti. Finally we assume a set A of global identifiers of axioms. The sets P and
A will be made precise in Chapter 5.

We give rules that define the following type checking and proof checking relations:

• Σ ok

This means the signature Σ is well-formed.

• Σ ⊢i Γ ok

This means the context Γ is well-formed under the well-formed signature Σ and
Γ only uses the first i type variables.

• Σ; Γ ⊢i s : α
This means the term s has the type α in the well-formed signature Σ and well-
formed context Γ and that Γ, s and α are restricted to using the first i type
variables.

• Σ; Γ ⊢i D : s
This means the term s has type prop and the proof term D proves s in the well-
formed signature Σ and well-formed context Γ and that Γ, D and s are restricted
to using the first i type variables.

The rules defining these relations are given in Figures 2.1 and 2.2.
As a simple example, the reader should check that in the empty signature and empty

context, ∀p : prop.p has type prop. That is

·; · ⊢0 ∀p : prop.p : prop

holds. The reader can also check that

·; · ⊢0 ∀p : prop.p→ p : prop

holds. To try a proof checking example, the reader can verify that

·; · ⊢0 λp : prop.λu : p.u : ∀p : prop.p→ p
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· ok

Σ; · ⊢i s : α

Σ, c :
(i,s)♯

i α := s ok
c /∈ domΣ Σ ok

Σ, c :m0 α ok
c /∈ domΣ, ∆0(m) = α

Σ, p :
(i,p)♯

i α ok
p /∈ domΣ, (p, i, α) ∈ P

Σ; · ⊢i s : prop

Σ, c :
(i,s)♯

i s ok
c /∈ domΣ, (i, s)♯ ∈ ∆1

Σ; · ⊢i D : s

Σ, c :
(i,s)♯

i s ok
c /∈ domΣ

Σ; · ⊢i s : prop

Σ, c :
(i,s)♯

i s ok
c /∈ domΣ, (i, s)♯ ∈ A Σ ok

Σ ⊢i · ok

Σ ⊢i Γ ok

Σ ⊢i Γ, x : α ok
x /∈ domΓ, α ∈ Ti

Σ ⊢i Γ ok Σ; Γ ⊢i s : α

Σ ⊢i Γ, x : α := s ok
x /∈ domΓ

Σ ⊢i Γ ok Σ; Γ ⊢i s : prop

Σ ⊢i Γ, x : s ok
x /∈ domΓ

Σ ⊢i Γ ok

Σ; Γ ⊢i x : α
x : α ∈ Γ

Σ ⊢i Γ ok

Σ; Γ ⊢i x : α
x : α := s ∈ Γ

Σ ⊢i Γ ok

Σ; Γ ⊢i cβ0 · · · βn−1 : α[α0 := β0, . . . , αn−1 := βn−1]
c :mn α ∈ Σ, β0, . . . , βn−1 ∈ Ti

Σ ⊢i Γ ok

Σ; Γ ⊢i cβ0 · · · βn−1 : α[α0 := β0, . . . , αn−1 := βn−1]
c :mn α := s ∈ Σ, β0, . . . , βn−1 ∈ Ti

Σ; Γ ⊢i s : α→ β Σ; Γ ⊢i t : α

Σ; Γ ⊢i st : β

Σ; Γ, x : α ⊢i s : β

Σ; Γ ⊢i λx : α.s : α→ β

Σ; Γ ⊢i s : prop Σ; Γ ⊢i t : prop

Σ; Γ ⊢i s→ t : prop

Σ; Γ, x : α ⊢i s : prop

Σ; Γ ⊢i ∀x : α.s : prop

Figure 2.1: Type Checking Rules
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Σ ⊢i Γ ok

Σ; Γ ⊢i cβ0 · · · βn−1 : s[α0 := β0, . . . , αn−1 := βn−1]
c :mn s ∈ Σ, β0, . . . , βn−1 ∈ Ti

Σ ⊢i Γ ok

Σ; Γ ⊢i x : s
x : s ∈ Γ

Σ; Γ ⊢i D : s→ t Σ; Γ ⊢i E : s

Σ; Γ ⊢i DE : t

Σ; Γ ⊢i D : ∀x : α.s Σ; Γ ⊢i t : α

Σ; Γ ⊢i Dt : s[x := t]

Σ; Γ, x : s ⊢i D : t

Σ; Γ ⊢i λx : s.D : s→ t

Σ; Γ, x : α ⊢i D : t

Σ; Γ ⊢i λx : α.D : ∀x : α.s

Figure 2.2: Proof Checking Rules

holds.

The relations are quite simple and it is possible for readers to use the rules to verify
when the relation holds. More importantly, it is possible to write a computer program
to check when these relations hold. Such a program is an example of a proof checker.
In this case, Egal is such a proof checker.18

We say a database ∆ = (∆0,∆1) is valid if the following conditions hold:

• For every (m,α) ∈ ∆0 there is monomorphic closed term s such that ·; · ⊢0 s : α
and (0, s)♯ = m.

• For every m ∈ ∆1 there exist i, s and D such that ·; · ⊢i D : s and (i, s)♯ = m.

We make a number of conjectures about the type checking and proof checking
relations. These are mainly stated as conjectures because I haven’t proven them, but
the intention is that they are provable. (If they aren’t, the rules should be changed.) I
also state them here because I use them in arguments below.

Conjecture 2.9.1 If s and t are convertible, Σ; Γ ⊢ s : α and Σ; Γ ⊢ t : β, then α = β.

Conjecture 2.9.2 Suppose ∆ is a valid database and Σ is a well-formed context (rela-
tive to ∆). If Σ; · ⊢i s : α, then there is an s′ such that (i, s)♯ = (i, s′)♯ and ·; · ⊢i s

′ : α.

17This diverges from the code a little because in the code ∆ grows as declarations are made. However,
the effect should be the same as if the database were not extended until the end.

18I’m covering something up. The rule that says it’s OK to extend a signature by c :
(i,s)♯

i s if you
have a proof of s isn’t decidable. The way the algorithm actually works we do not need to ask if Σ is
well-formed. It will be an invariant that Σ is well-formed.
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Conjecture 2.9.3 Suppose ∆ is a valid database and Σ is a well-formed context (rel-
ative to ∆). If Σ; · ⊢i D : s, then there exist D′ and s′ such that (i, s)♯ = (i, s′)♯ and
·; · ⊢i D

′ : s′.

We explain the idea for the proofs of Conjectures 2.9.2 and 2.9.3. Suppose Σ; · ⊢i
s : α. The process for computing s♯ involves replacing the names from Σ with the
corresponding global identifiers. Since ∆ is valid and Σ is well-formed, for each global
identifier there is a corresponding term. Hence we can form a nameless term s′′ with
no global identifiers by δ-expanding the global identifiers until there are none. Then s′

would be some term which has s′′ as its nameless representation.
Assume ∆ = (∆0,∆1) is a valid database we start with before processing a docu-

ment. After a document has been processed and a corresponding well-formed signature
Σ has been created, we can extend ∆ to be ∆′ = (∆′

0,∆
′
1) by taking ∆′

0 and ∆′
1 as

follows:

∆′
0 := ∆0 ∪ {(m,α)|c :m0 α := s ∈ Σ}

and

∆′
1 := ∆1 ∪ {m|c :mi : s ∈ Σ}.

We informally argue that ∆′ is a valid database. The argument will not be a mathe-
matical proof. It will will make use of the collision-resistance of cryptographic hashing
functions. In addition, since we are arguing with named terms but the algorithms
for obtaining global identifiers work with nameless terms, some level of imprecision is
inevitable.

First we need to know ∆′
0 is a partial function. Assume not. That is, assume there

exist m, α and β with α 6= β, (m,α) ∈ ∆′
0 and (m,β) ∈ ∆′

0. Since ∆0 is a partial
function, we cannot have both (m,α) ∈ ∆0 and (m,β) ∈ ∆0. Without loss of generality,
assume (m,α) /∈ ∆0 and so there must be some c and s with c :m0 α := s ∈ Σ. Since
the signature is well-formed, we know m = (0, s)♯.

We consider two cases. In the first case suppose (m,β) ∈ ∆0. Since ∆ is valid, there
is some monomorphic closed term t such that ·; · ⊢0 t : β and (0, t)♯ = m. Since the
global identifiers are determined from collision-resistant cryptographic hash functions,
the only practical way we can have (0, s)♯ = (0, t)♯ is if s and t are convertible.19 By
Conjecture 2.9.1 we conclude α = β, a contradiction.

In the second case suppose (m,β) /∈ ∆0. There must be some d and t with d :m0
β := t ∈ Σ. Since the signature is well-formed, we know m = (0, t)♯. Again using
collision-resistance and Conjecture 2.9.1 we can almost certainly conclude α = β, a
contradiction.

Now we turn to proving ∆′ is valid. Suppose (m,α) ∈ ∆′
0. If (m,α) ∈ ∆0, then

we know there is monomorphic closed term s such that ·; · ⊢0 s : α and (0, s)♯ = m

19Note that we are not saying all convertible terms have the same global identifier, which is certainly
not true. We are saying that if the global identifiers are the same, then they resulted from hashing
the serialization of the same terms. Since those terms went through some preprocessing (δ-contraction
and βη-reduction), the original terms must be convertible.
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by validity of ∆0. Assume (m,α) /∈ ∆0. In this case there must be some c and s such
that c :m0 α := s ∈ Σ and m = (0, s)♯. By Conjecture 2.9.2 there is an s′ such that
m = (0, s′)♯ and ·; · ⊢i s

′ : α.
Finally suppose m ∈ ∆′

1. If m ∈ ∆1, then there exist i, s and D such that ·; · ⊢i D : s
and (i, s)♯ = m by validity of ∆. Assume m /∈ ∆1. There must be some c :mi s ∈ Σ.
Since m /∈ ∆1, this is only possible if there is some D such that Σ; · ⊢i D : s. We obtain
a D′ and s′ such that ·; · ⊢i D

′ : s′ and (i, s′)♯ = m using Conjecture 2.9.3.



Chapter 3

Syntax, Parsing and Printing

There should have been another way.
The Doctor, Warriors of the Deep, Part Four (1984)

This is going to be painful. I hate writing parsers, and I always did it wrong. My
parsers always had bugs. Even with parser generators I could never get rid of my
shift-reduce conflicts. The version of the code I wrote during Winter 2012-2013 used
Dijkstra’s shunting yard algorithm to handle operators with priorities. I then extended
it to handle binders. It worked most of the time, but I often found corner cases where
it didn’t work. Modifications would fix one thing but break another. Eventually I lost
all hope.

Near the end of 2013 I decided to use Coq to specify a syntax for mathematical
expressions which allows for binders, infix operators, and so on, write a pretty printer
in Coq, write a parser in Coq and prove that the parser could correctly parse the
output of the pretty printer. This would at least guarantees that every mathematical
expression represented as an abstract tree can be linearized in a way that can be parsed
back to the abstract tree. I’ll refer to this as verifying correctness of the parser.

The devil is in the details of course, and it turned out there were a hell of a lot
of details. It took months to complete and it takes Coq a long time to process the
code. Probably some Coq wizards out there could have done it in a way Coq would be
happier with. I found the experience so exhausting that I haven’t wanted to revisit it,
but to write this chapter I must. The main reason I did the Coq version is so that I
would never need to debug a parser again.

Along with the source code for Egal I am releasing the Coq code verifying the parser.
The parser for Egal is written in ocaml. The ocaml is not extracted from the Coq code
so you would need to check by hand that the parser and printer for Egal correspond to
what is proven correct in Coq.

In this chapter I will give the relevant syntax and the restrictions on the precedence
levels for operators. Egal will signal an error if a user tries to assign an illegal precedence
level. These restrictions are hypotheses in the Coq code (look for Hypothesis in the
Coq file ParsePrintFull3a.v). Here are the restrictions:

39
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1. Prefix operators and binders never have the same name.

2. No prefix operator has the same priority as a postfix operator or an infix operator.

3. No right associative infix operator has the same priority as a postfix operator or
left associative or nonassociative infix operator.

4. No right associative infix operator has priority 500.

5. No prefix operator has priority 500.

6. All operators all have nonzero (positive) priority.

7. All operators have priority less than 1000.

At this point some of the restrictions seem arbitrary, but they are motivated by the
following facts: the implicit infix operator (usually meaning application) is always left
associative and has priority 0. Set membership ∈ (in ASCII :e – following Mizar) and
subset ⊆ (in ASCII c= – following Mizar) both have priority 500.

Before continuing, I want to give a little example of a corner case. The mathematical
expressions include the usual set theoretic notation. For example, we can express sets
formed by separation as follows:

{x ∈ X|φ(x)}.

This means the set of all elements x of X satisfying the condition φ(x). Similarly we
can express sets formed by replacement as follows:

{f(x)|x ∈ X}.

This means the set of all f(x) as x ranges over X.
Now, suppose ∗ is an infix operator and consider the expression

{x ∈ X ∗ a|y ∈ Y }.

This has two possible parsings. The more natural one (to me) is to consider ∗ as an
operation on sets (so a must be a set) and {x ∈ X ∗a|y ∈ Y } corresponds to separation.
In this case, the set is either X ∗ a if y ∈ Y or empty if y /∈ Y . However, it is equally
legal for ∗ to be an operator which takes the proposition x ∈ X and combines it with
the value a to give a set. In that case, {x ∈ X ∗ a|y ∈ Y } corresponds to replacement
and is the singleton set {x ∈ X ∗ a} if Y is nonempty or empty if Y is empty.

These two cases could be distinguished using typing information about the ∗ oper-
ation, but I decided trying to make the parser depend on the types of operators would
complicate things even further.

The same goes for ⊆ since I also have notation for

{x ⊆ X|φ(x)}
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and
{f(x)|x ⊆ X}.

Let me give some pointers as to how this ambiguity is resolved. The semantic
parsing rule corresponding to replacement sets (see Figure 3.5) looks like this:

S1010 l L S500 l′ L
′ S ′

q r (R̂epx δ LL′)M

Sq(LCBRACE :: l + VBAR :: NAM(x) :: δ :: l′ + RCBRACE :: r)M
x ∈ Nam, δ ∈ {∈,⊆}, L /∈ SetInfix

The side condition that L /∈ SetInfix (L is not a set infix operator) exactly rules out
these two cases:

{. ∈ .|.}

{. ⊆ .|.}

That is, if it looks like this, then it’s separation, not replacement. I’m oversimplifying.
If there is an infix operator ∗ with priority higher than 500, then

{. ∈ . ∗ .|.}

would be seen as
{(. ∈ .) ∗ .|.}

and must be replacement after all. Without going into more details (which I would
need to dive into myself at this point), I will simply assert that the Coq proof is enough
to know there isn’t ambiguity. If you want to understand the verified parser in detail,
look at the Coq code and try to figure out how this ambiguity is avoided.

There are, of course, differences between the Coq code and the ocaml code. In the
ocaml code one is parsing a stream of tokens and one prints to a stream. In the Coq code
I used a list of tokens. That is, the print function in Coq sends an abstract expression
(or something like it) to a list of tokens. In Coq the parser maps a list of tokens to
(optionally) an abstract expression and a remaining list of tokens to parse. Also, Coq
only accepts structurally recursive functions. Tobias Tebbi (a former coworker of mine
in Prof. Smolka’s Lehrstuhl) had a techinique to make a function structurally recursive
that doesn’t appear to be structurally recursive. 1 My use of this idea was with a
“Tebbi sublist” function named tsubl that can be found in the Coq file Prelim2.v. In
the Coq implementation of the parser in the file ParsePrintFull3a.v I often needed
to wrap arguments to recursive calls with calls to tsubl so that Coq would see that
the function is structurally recursive. Of course, I don’t do this in the ocaml code.

3.1 Quick Guide to the Code

There are two versions of the code: the Coq version and the ocaml version. The Coq
code is in the verifiedparser subdirectory. Here is a guide to the Coq files:

1In the particular case of the gcd function, he used what we called a “Tebbi min function”. I
remember he posted this to the Coq club mailing list sometime in 2013, but I can’t find it now.
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• Prelim2.v imports parts of the Coq library and defines some generic functions
for a type of tokens. The most important function is tsubl2 which takes two lists
of tokens l1 and l2 where l2 should be a sublist of l1 (i.e., l2 can be obtained by
popping enough elements from l1) and returns l2 by popping enough elements of
l1. While this seems to simply return l2, it returns it in a way that Coq can see it
is a structural subterm of l1. Hence recursive calls using an argument tsubl l1 l2
may be accepted by Coq where simply writing l2 would not be accepted. Other
than this definition, the file mainly consists of useful facts I didn’t find in the Coq
library. Many of them probably are in the Coq library. Sometimes if it’s easier
for me to prove something than it is to just state and prove it, I’ll just state and
prove it. I’m told this is bad form or something. Oh well. Maybe I’ll get fired.

• ParsePrintFull3a.v: This imports Prelim2 and is the file that defines the
printer and parser, as well as a number of other things. The good news is that
the file does have a lot of comments. I wrote them almost a year ago. Some of
them are up-to-date and correct and some of them are not. If I were still able to
distinguish between the correct ones and incorrect ones, I’d update them. Here
are some of the main definitions and theorems in the file:

– SetInfixOp: a type of two possible set theoretic infix operators: InfMem

corresponding to ∈ and InfSubq corresponding to ⊆.

– InfixOp: a type of infix operators which may either be one of the two set
infix operators or an arbitrary name. (The fact that the name is of an infix
operator will be in the “environment” which comes later.)

– AscKind: an inductive type for three types of ascriptions for binders: AscTp
for a colon (:), AscSet for ∈ and AscSubeq for ⊆.

– ATree: This is the inductive type of “abstract trees”. These are essentially
the mathematical expressions in a tree form. More information is given in
Section 3.2.

– BinderMid: This is an inductive type of the only two kinds of separators for
binders I support: BinderMidComma for a comma and BinderMidDarr for
⇒.

– LTree and LTreeL: These are mutually inductive types of “layout trees” and
“lists of layout trees.” This is very similar to abstract trees, but differs in a
few respects. The way I think of it is as follows: layout trees make all their
parentheses explicit and so there’s no need to know priorities of operators.
More information is given in Section 3.2.

– PICase: This is an inductive case for the different kinds of postfix and infix
operators. Prefix operators are handled differently from postfix and infix
operators.

2This is the “Tebbi sublist” function mentioned above, the idea for which is due to Tobias Tebbi.
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– ParseEnv: This is the type of a parsing environment. It maps names to a
triple. The first component of the triple tells whether the name is a prefix
operator and gives its priority if it is. The second component of the triple
tells whether the name is either a postfix or infix operator (with some asso-
ciativity) and gives its priority if it is. The last component tells if the name
is a binder and gives whether the binder uses comma or ⇒ as a separator.
Note that one name might be all three, in principle.3 As a concrete example,
consider the minus sign which can both be a prefix operator and an infix
operator. That is the kind of case I wanted to make sure I support. A name
cannot be both an infix and a postfix operator.

– penv: This is a variable of type ParseEnv and gives a fixed parsing environ-
ment for the remainder of the development.

– There are a number of hypotheses giving restrictions on the parsing environ-
ment. These restrictions were described earlier.

– supp: This is an inductive relation which defines when an abstract tree is
supported by the parsing environment. If it is, then it can be laid out to a
layout tree.

– Binderishp: This is a predicate on layout trees to check if the tree is binder-
ish and essentially looks to see if the topmost visible thing on the layout tree
is a binder (including let) or if-then-else after traversing through prefix op-
erators and to the right of infix operators. More information is given in
Section 3.2.

– suppL and suppLL: These are mutually defined inductive relations to check
if the layout tree or list of layout trees is supported by a parsing environment
with a given priority. Since the parentheses are already in layout trees, this
relation essentially checks that if parentheses are needed then they’re already
there. More information is given in Section 3.2.

– AL : An inductive relation which essentially means a layout tree is a possible
layout for an abstract tree. It means an abstract tree and a layout tree are
more or less the same, up to parentheses.

– L2A : A function from layout trees to abstract trees which erases parentheses.
This is an oversimplification. If the parentheses correspond to a tuple like
(x, y, z), then it will map to a tuple abstract tree (x′, y′, z′). Layout trees
do not distinguish between ordinary parentheses and tuples. Abstract trees
only have tuples and do not have parentheses.

– supp L2A: If a layout tree L is supported, then the abstract tree L2AL is
supported.

3The type allows a name to be all three. One of the restrictions mentioned earlier is that a name
cannot be both a prefix operator and a binder.
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– AL L2A: If a layout tree L is supported, then L is a possible layout for the
abstract tree L2AL in the sense of AL.

– AL A2L exp: Every supported abstract tree A can be laid out as a layout
tree L which is supported for some priority. In words, there’s some way to
put in enough parentheses.

– AL A2L allp: The previous result also holds for all priorities.

– AL inj: Every layout tree corresponds to at most one abstract tree.

– TOKEN: This is the type of tokens.

– pReln S’ , pReln S , pReln TVs, pReln N: These are four mutually defined
relations which relate a list of tokens to other information. The idea is that
the relations define when a list of tokens corresponds to one of the categories
S ′, S, TV s or N and relates the list of tokens to its intended interpretation.
A rough grammar for this is given in Section 3.4. The relations are given in
Section 3.5.

– print S and print SL: This prints a layout tree/list of layout trees. It does
not depend on the parsing environment because the parentheses have already
been determined.

– print S thm: If a layout tree L is supported with priority p, then print S

applied to L returns a list of tokens which corresponds to the input according
to pReln S relative to every priority q with q ≥ p.

– parse Names: take a list of tokens and parse as many name tokens (that are
not operators or binders) as possible and return the list of names and the
remaining tokens.

– parse S’ Infix: This is a helper function for parsing infix operators.

– parse TVs ascr: This is a helper function for parsing variables with ascrip-
tions. This is used to handle things like

forall (X Y : set) (x1 x2 :e X) (Y1 c= Y), body

– parse Binder ascr: This is a helper function to parse binders.

– parse Let ascr: This is a helper function to parse lets.

– parse S SetBraces: This is a helper function for parsing mathematical ex-
pressions like {x1, . . . , xn}, {x ∈ X|p(x)}, {f(x)|x ∈ X} and {f(x)|x ∈
X, p(x)}.

– parse S’ : This is for parsing a list of tokens for the S ′ category relative to
a priority. If it succeeds, it returns a layout tree and a list of leftover tokens.
If it fails, it returns None.

– parse S : This is for parsing a list of tokens for the S category relative to a
priority. If it succeeds, it returns a layout tree and a list of leftover tokens.
If it fails, it returns None.
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– parse TVs: This is for parsing a list of tokens for the TV s category. If it
succeeds, then it returns a list of lists of strings, possibly ascribed a layout
tree (using one of the three ascription possibilities), along with the remaining
tokens. If it fails, it returns None. To give the idea, calling it with input like
this:

(X Y : set) (x1 x2 :e X) (Y1 c= Y), body

should result in returning something like this:

Some ([([X, Y ], Some(AscTp, set)), ([x1, x2], Some(AscSet, X)),

([Y 1], Some(AscSubeq, Y ))], [, body])

– parse N: This parses list of tokens to obtain a list of layout trees, using
commas as separators.

• ParsePrintFull3b.v, ParsePrintFull3bb.v, ParsePrintFull3bc.v, ParsePrintFull3bd.v,
ParsePrintFull3be.v, ParsePrintFull3c.v, ParsePrintFull3cb.v, ParsePrintFull3d.v,
ParsePrintFull3db.v: These files each contain one or more lemmas which is
needed to prove the final correctness results. In principle these could all be in one
file. In practice, Coq would die if I didn’t separate them. As it is, many of them
take a long time for Coq to compile. 4

• ParsePrintFull3e.v: This has the final correctness results:

– parse S lem uses mutual induction to prove that if the mutually inductive
relations defined in ParsePrintFull3a.v hold and certain other conditions
hold, then the parser returns the expected result. Almost every case of the
big inductive proof is one of the lemmas from the previous files.

– print parse S id: This is a version of the main correctness result with an
explicit priority. If L is a layout tree supported by priority q, then the parser
called with priority q on the result of printing L yields L. It follows from
the previous lemma.

– print parse S id: This is a version of correctness with the “highest” prior-
ity of 1023 which follows directly from the previous result.

In the ocaml code, one can look at syntax.ml, syntax.mli, parser.ml, parser.mli
and lexer.mll.

Here are a few pointers into syntax.ml and syntax.mli:

• atree: This is the type of abstract trees.

4I don’t know why this is true. Maybe someone could ask on the Coq club mailing list. I would,
but I don’t use email, and there’s no option for anything other than email to communicate with the
Coq club mailing list.
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• ltree: This is the type of layout trees.

• binderishp: This is the test for whether a layout tree is binderish.

• output ltree: This outputs a layout tree in an obvious way and corresponds to
print S in the Coq code.

• ltree to atree: This erases a layout tree to an abstract tree and corresponds to
L2A in the Coq code.

• picase: This corresponds to the type PICase in the Coq code and simply gives
the four cases for postfix and infix operators.

Here are a few pointers into parser.ml and parser.mli:

• token is the data type of tokens (which is used in lexer.mll) and corresponds
to TOKEN in the Coq code.

• parseenv corresponds to ParseEnv in the Coq code.

• tokenstream is a datatype which helps me treat the stream of tokens more like
a list.

• destr ts is a helper function that splits the token stream into the head and the
rest.

• parse S is the main parser function.

• atree to ltree maps abstract trees to layout trees and depends on the parsing
environment. The parsing environment is implicit here and consists of a number
of hash tables for looking up information about names as operators and binders.

3.2 Mathematical Expression Trees

Parsing maps a list or stream of tokens to an appropriate tree structure. In this section
we define abstract trees as a target tree structure. In addition we define layout trees .
The layout trees have additional information making them largely independent of the
parsing environment. It is easy to erase this information to obtain an abstract tree
from a layout tree. Conversely, an abstract tree can be “laid out” to a layout tree
under reasonable conditions.

The following are special symbols : = (=), 6= (<>), /∈ (/:e), 6⊆ (/c=), ¬ (~), +, ∗, ˆ,
−, !, ∃! (exists!), ∧ (/\), ∨ (\/), ∧− (/\_), ∨− (\/_), ′, >, <, ≤ (<=), ≥ (>=), →
(->), ← (<-), ↔ (<->) and ⇔ (<=>).

A quoted symbol is a sequence of characters from the characters _+-*^~=<>/\ sur-
rounded either by ’ characters or by :. For example, ’~*~’ and :\/: are quoted
symbols.
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A general name is either a special symbol, quoted symbol, or an alphanumeric
identifier (possibly with underscores) beginning with a letter or an underscore.

We do all of this in the assumption that we have a parsing environment. A parsing
environment determines if a general name is a prefix operator, infix operator (with
associativity left, right or none), postfix operator, or a binder. It may be more than
one of these or none of these. In the case of operators, the parsing environment also
gives the corresponding priority p with 0 < p < 1000. Using the parsing environment,
we can define the following sets:

Prep := {x general name|x prefix operator with priority p}

InfNp := {x general name|x infix operator with no associativity and priority p}

InfLp := {x general name|x infix operator with left associativity and priority p}

InfRp := {x general name|x infix operator with right associativity and priority p}

Postp := {x general name|x postfix operator with priority p}

Bind, := {x general name|x binder expecting a comma to separate variables from the body}

Bind⇒ := {x general name|x binder expecting ⇒ to separate variables from the body}

Nam := {x general name|x /∈ Bind, ∪Bind⇒ ∪ (
⋃

p

(Prep ∪ InfNp ∪ InfLp ∪ InfRp ))}

That is, x ∈ Nam if x is a general name that is not an operator and not a binder.

In addition there are the two symbols ∈ (:e) and ⊆ (c=). These are not general
names, but in certain contexts are considered infix operators of priority 500 with no
associativity. To handle these operators, we define

InfN∗
500 := InfN500 ∪ {∈,⊆}.

If p 6= 500, we define

InfN∗
p := InfNp

We now give a grammar defining the set of abstract trees . This corresponds to the
inductive type ATree in the Coq code and the type atree in the ocaml code (syntax.ml
and syntax.mli). We use A and B to range over abstract trees. We use x and y to
range over general names. We use z to range over general names and ∈ and ⊆. We also
use n to range over “numbers” (meant to represent many cases including 1, −2, 3.14,
and so on, but numbers are handled the same say as names for parsing purposes, so I
won’t go into detail). We use ? to indicate optional arguments. We use δ to range over
{∈,⊆} and use ε to range over {:,∈,⊆}.
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A, B ::= x
| n
| (Let x (ε, A)? A1 A2)
| (Bix [(y0, (ε0, B0)

?) · · · (yn−1, (εn−1, Bn−1)
?)]A)

| (Pr xA)
| (PoxA)
| (Inf z A1 A2)
| (ImplicitA1 A2)
| (Sepx δ A1 A2)
| (Rep x δ A1 A2)
| (SepRepx δ A1 A2A3)
| (SEnum [A0 · · · An−1])
| (MTupleA [A0 · · · An−1])
| (TupleAB [A0 · · · An−1])
| (If A0 A1 A2)

Before continuing we give the intended meaning of each of these case.

• x: This is a general name which should satisfy x ∈ Nam (that, it should not be
an operator or binder).

• n: This is just a number. Ignore it.

• (Let x (ε, A)? A1A2): This is a local let definition of x to be the value A1 in the
body A2. Optionally x can be ascribed a “type” A. We should have x ∈ Nam.
There are three possible ascriptions depending on ε ∈ {:,∈,⊆}. Depending on
this, A might be a type or might be a set. I’m not sure the checking code supports
any of this, but the parser does. Actually, I thought I had included the possibility
that x has the form of a metatuple of variables so that it could act like a match
for metatuples, but this doesn’t appear in the Coq code. Ah, it is in the ocaml
code. See LeM the constructor for atree in the ocaml code. I’ll leave this out here
because it’s not in the Coq code.

• (Bi x [(y0, (ε0, B0)
?) · · · (yn−1, (εn−1, Bn−1)

?)]A) This is a binder and presumes x ∈
Bind, ∪Bind⇒. Each name yi should be in Nam and can optionally be ascribed
a type or set. The body of the binder is A.

• (Pr xA): This is a prefix operator and presumes x ∈ Prep for some p.

• (Po xA): This is a postfix operator and presumes x ∈ Postp for some p.

• (Inf z A0 A1): This is an infix operator and presumes z ∈ InfN∗
p ∪ Inf

L
p ∪ Inf

R
p for

some p.

• (ImplicitA0 A1): This is the implicit (empty) infix operator. Usually this means
A0 applied to A1, though there is some flexibility regarding this. If A0 and A1

are both interpreted to be sets, then the user can specify what the implicit infix
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operation means. The implicit infix operator is always left associative and has
priority 0 (meaning it necessarily binds more tightly than everything else).

• (Sep x δ A1 A2): This is a set formed by separation. It presumes x ∈ Nam. In
mathematical notation, if δ is ∈, then we write

{x ∈ A1|A2}

which is the set of all x in the set A1 satisfying A2. If δ is ⊆, it means

{x ⊆ A1|A2}.

• (Rep x δ A1 A2): This is a set formed by replacement. It presumes x ∈ Nam. In
mathematical notation, if δ is ∈, then we write

{A1|x ∈ A2}

meaning the set of all sets A1 as x ranges over the set A2. We also support where
δ is ⊆:

{A1|x ⊆ A2}.

• (SepRep x δ A1 A2 A3): This is a combination of separation and replacement. It
presumes x ∈ Nam. In mathematical notation, if δ is ∈, then we write

{A1|x ∈ A2, A3}

which is the set of all sets A1 as x ranges over the set A2 and x satisfies A3. We
also support where δ is ⊆:

{A1|x ⊆ A2, A3}.

• (SEnum [A0 · · · An−1]): This is a set formed as a finite enumeration of its elements.
{A0, · · · , An−1}. If n = 0, it is {} which is a way of writing the empty set.

• (MTupleA [A0 · · · An−1]): This represents a “metatuple” with at least 1 compo-
nent. We write this as [A] or [A,A0] or [A,A0, A1, A2], and so on. I included
metatuples for the case where all the components have the same simple type.
In that case there is a known way to represent the tuple at a higher type so
that β-reduction can play the role of projections. In the Coq version there’s no
nice way to get represent “projections” for metatuples, but in the ocaml code
this is handled by lets with metatuples instead of variables (so one can write
let [x, y] := · · · in · · · in Egal). This is the LeM case in the ocaml code, which we
ignore here.

• (TupleAB [A0 · · · An−1]): This represents a tuple with at least 2 components.
Mathematically we would write it as (A,B) or (A,B,A0, A1).



50 CHAPTER 3. SYNTAX, PARSING AND PRINTING

• (If A0 A1 A2): This corresponds to if-then-else with A0 as the condition, A1 as the
“then” clause and A2 as the “else” clause.

In the Coq code (again, ParsePrintFull3a.v), there is an inductive predicate supp
on abstract trees. This defines when an abstract tree is “supported” (by the parsing
environment, which remains fixed here). Without giving details, the idea is that the
predicate ensures that all the “presumptions” above are true. For example, (Pr xA) is
supported if there is some p such that x ∈ Prep and A is supported.

We now give a grammar defining the set of layout trees . These are very similar
to abstract trees and one can think of them simply as the version of the abstract tree
which is ready to be printed. The main difference between the two kinds of trees is

that instead of Tuple nodes, layout trees have P̂aren nodes to indicate where parentheses

should be. Where Tuple nodes must have two or more children, P̂aren nodes might only
have one child. Another difference is that binder nodes in layout trees explicitly include
whether the separator token should be a comma or ⇒.

Layout trees correspond to the inductive type LTree in the Coq code and the type
ltree in the ocaml code (syntax.ml and syntax.mli). In the Coq code the type is
defined mutually with LTreeL, a type of lists of layout trees. There are different ways
to define these kinds of types. I don’t know why I did it this way or if it was a good
decision.

We use L and M to range over layout trees. We use L and M to range over lists of
layout trees. The conventions for x, y, z, n, δ and ε is the same as for abstract trees.
We additionally use µ to range over the two symbols , (comma) and ⇒. These are the
two possible separators for binders.

L, M ::= x
| n

| (L̂etx (ε, L)? L1 L2)

| (B̂ixµ [(y0, (ε0,M0)
?) · · · (yn−1, (εn−1,Mn−1)

?)]L)

| (P̂r xL)

| (P̂oxL)

| (Înf z L1 L2)

| ( ̂ImplicitL1 L2)

| (Ŝepx δ L1 L2)

| (R̂epx δ L1 L2)

| (ŜepRepx δ L1 L2 L3)

| (ŜEnum [L0 · · · Ln−1])

| (M̂TupleL [L0 · · · Ln−1])

| (P̂arenL [L0 · · · Ln−1])

| (Îf L0 L1 L2)
We define when layout tree is binderish. In the Coq code this is Binderishp and in

the ocaml code this is binderishp. It is defined by recursion on layout trees, but the
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idea is that a binder or let or if-then-else is visible by looking through prefix operators
and to the right of infix operators.

• B̂i, L̂et and Îf nodes are binderish.

• (P̂r xL) is binderish if L is binderish.

• (Înf xLM) is binderish if M is binderish.

Note that P̂aren-nodes are not binderish. Sometimes algorithms add a P̂aren-node with
one child just to prevent the child from being binderish.

There is also a notion of a layout tree being “supported”. In this case, there is more
to check than for an abstract tree since the priorities play an important role. The Coq
relation is suppL and depends on a natural number (the priority) and a layout tree.
We say L is supported with priority q if this relation holds. The reader can look at the
Coq code to see the full definition. To give the idea, we show three cases here:

• (B̂i x [(y0, (∈, L0))]µL) is supported with priority q if q > 0, x ∈ Bindµ, y0 ∈ Nam

and L0 and L are supported with priority 1010.

• (P̂r xL) is supported with priority q if there is some p < q such that x ∈ Prep

and L is supported with priority p + 1.

• (P̂o xL) is supported with priority q if there is some p < q such that x ∈ Postp,
L is not binderish and L is supported with priority p + 1.

If L is supported with priority p, then it is supported with priority q for all q ≥ p. See
suppL leq in the Coq code.

One can define a relation between abstract trees and layout trees which essentially
says L is a possible layout for A. In the Coq code this is defined as an inductive relation
AL.

There is an obvious recursive algorithm for mapping layout trees into abstract trees.
See L2A in the Coq code and ltree to atree in the ocaml code (in syntax.ml). For

B̂i-nodes, the algorithm creates a Bi-node by forgetting µ. For P̂aren-nodes, the node is
dropped if there is one child and the node becomes a Tuple-node if there is more than
one. It is easy to prove that if the layout tree was supported with a priority, then the
abstract tree will be supported. See the lemma supp L2A in the Coq code. Also, the
layout tree L is a possible layout for the abstract tree L2A L. See the lemma AL L2A in
the Coq code. Every layout tree is a possible layout for at most one abstract tree. See
the result AL inj in the Coq code.

Printing a layout tree is trivial because we have already decided how to lay it out
(e.g., where all the parentheses will be). The main printing work consists of “laying
out” an abstract tree.

In the ocaml code this is the function atree to ltree in the files parser.ml and
parser.mli. The reason it is in the parser code instead of the syntax code is because
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the parsing environment is required to layout an abstract tree. For example, we must
look up priorities of operators to determine if a parenthesis is required.

There is no corresponding function in the Coq code. Instead there are existential
proofs which essentially contain the algorithms in their proofs. One auxiliary lemma
which is helpful is AL A2L aux which says that if A is an abstract tree, L is a layout
tree supported with priority p and L is a possible layout for A, then forall q there is a
layout tree L′ supported with priority q where L′ is also a possible layout for A. The

proof is simple: Use L if q ≥ p and use (P̂arenL []) otherwise.
The two main results are are AL A2L exp and AL A2L allp. The meat of the layout

algorithm is in the proof of AL A2L exp. The statement of AL A2L exp says that if A is
supported, then there is some priority p and some layout tree L such that L is supported
with priority p and L is a possible layout for A. This is proven by induction, relying on
AL A2L aux to add parentheses when needed. The AL A2L allp says there is a layout
for every priority p, which easily follows from AL A2L exp and AL A2L aux.

3.3 Tokens

Figure 3.1 displays a list of tokens is given in ASCII, in mathematical notation, as a
named token in the ocaml code (see the data type token in parser.ml and parser.mli

and its use in lexer.mll) and as a named token in the Coq code (see the inductive type
TOKEN in the Coq file ParsePrintFull3a.v). There are more tokens in the ocaml code
to handle commands and so on. Here we’re just looking at mathematical expressions,
since this is where the nontrivial parsing happens.

As mentioned before, printing a layout tree is easy. We recursively traverse the
layout tree and generate the appropriate outputs. By “appropriate output” we mean
print ASCII in the ocaml code and returning a list of tokens in the Coq code. The
ocaml code is output ltree in syntax.ml and syntax.mli. (There is also a function
output ltree html if you want an html version. That’s how I made the content for
the mathgate.info web pages.) In the Coq code the function is print S which takes a
layout tree and returns a list of tokens. Here is a case to give the idea:

print S(B̂ixµ [[y], None]L) = NAM(x) :: NAM(y) :: µ′ :: (print SL)

Here µ′ is the token for comma if µ is a comma or the token for ⇒ if µ is ⇒.

3.4 There Is No Grammar

During the development process I wrote many grammars. Here I will give two which
correspond, more or less, to the implemented parser. Looking at the Coq code, how-
ever, it is clear that there actually is no grammar. A grammar would correspond to a
collection of inductive predicates on lists of tokens (one predicate for each category).
Instead of having such a collection of predicates, there is a collection of inductive rela-
tions which relate lists of tokens to layout trees (more or less – more details will come
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description ASCII math ocaml Coq
special symbol or x x NAM(x) NAM(x)
alphanumeric name
starting with _

or a letter
number [-]n[.m][Ek] [−]n[.m][Ek] NUM(neg?,n,?m,?k) NUM(neg?,n,?m)
maybe negative
maybe with a decimal
maybe with an exponent (not in Coq version)

( ( LPAREN LPAREN

) ) RPAREN RPAREN

, , COMMA COMMA

: : COLON COLON

=> ⇒ DARR DARR

let let LET LET

:= := DEQ DEQ

in in IN IN

:e ∈ MEM MEM

c= ⊆ SUBEQ SUBEQ

| | VBAR VBAR

[ [ LBRACK LBRACK

] ] RBRACK RBRACK

{ { LCBRACE LCBRACE

} } RCBRACE RCBRACE

if if IF IF

then then THEN THEN

else else ELSE ELSE

Figure 3.1: Tokens
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later). In some cases the layout trees are used in the definition of the inductive relation.
Hence there is no obvious way to “erase” the layout trees from the definition and simply
obtain a traditional grammar.

Having said that, we give these grammars anyway. They might make things clearer.
We first give a simple category U which is a list of names which are not binders or

operators.
U ::= (empty)|xU(where x ∈ Nam)

We first approximate the grammar we target in Figure 3.2 using three categories,
one of which depends on a priority: Sq, TV s and N . A priority q is a number between
0 and 1023.

We can remove left recursion by adding another category S ′(q) and modifying the
category Sq. This is shown in Figure 3.3 and is a grammar closer to what is implemented.

3.5 Semantic Parsing Relations

Instead of having a grammar, there are relations between lists of tokens and other
information for each category. The relations say that if one is trying to parse the
tokens for a category, possibly with some auxiliary information, then it should succeed
and the relation gives the appropriate value the parser should return.

We start with something simple. Recall the category U :

U ::= (empty)|xU(where x ∈ Nam)

We will use l and r to range over lists of tokens. We use x to range over lists of names.
We can define the following corresponding relation U l x with two rules:

U [] []

U l x

U (NAM(x) :: l)(x :: x)
x ∈ Nam

In the Coq code, this is the inductive relation pReln Names.
The lemma pReln Names map ensures that when we print a list of names from Nam,

then the resulting list of tokens is U -related to the list of names. That is,

U (map NAM y) y

assuming every y ∈ y is in Nam.
A corresponding parsing function is parse Names which takes a list l of tokens and

returns a pair (x, r) where x is a list of names from Nam and r is a list of tokens (a
sublist of l, the leftover tokens). This function simply traverses l as long as the head
of the list is a name from Nam and when it no longer is it returns the names collected
and the leftover tokens.

Let + denote the operation of appending lists. It is easy to see that if U l x and r is
not a list with some x ∈ Nam at the head, then parse Names (l + r) = (x, r). This is
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Sq ::= x (x ∈ Nam)

| n (n is a number)

| xSp+1 (x ∈ Prep, p < q)

| Sp+1 x (x ∈ Postp, p < q)

| Sp z Sp (z ∈ InfN∗
p , p < q)

| Sp+1 xSp (x ∈ InfLp , p < q)

| Sp xSp+1 (x ∈ InfRp , p < q)

| S1 S0 (q > 0)

| x y U µS1010 (q > 0, y ∈ Nam, µ is , or ⇒ and x ∈ Bindµ)

| xTV s µS1010 (q > 0, µ is , or ⇒ and x ∈ Bindµ)

| letx ε S1010 := S1010 inS1010 (q > 0, ε ∈ {:,∈,⊆} and x ∈ Nam)

| letx := S1010 inS1010 (q > 0 and x ∈ Nam)

| {xδS500|S1010} (x ∈ Nam, δ ∈ {∈,⊆})

| {S1010|xδS500} (x ∈ Nam, δ ∈ {∈,⊆})

| {S1010|xδS500, S1010} (x ∈ Nam, δ ∈ {∈,⊆})

| {}

| {S1023N}

| [S1023N ]

| (S1023N)

| ifS1010 thenS1010 elseS1010

TV s ::= (empty)

| (xU)TV s (x ∈ Nam)

| (xU εS1010)TV s (x ∈ Nam, ε ∈ {:,∈,⊆})

N ::= (empty)

| , S1023 N

Figure 3.2: Not the grammar
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S ′
q ::= (empty)

| xS ′
q (x ∈ Postp, p < q)

| z Sp S
′
q (z ∈ InfN∗

p ∪ InfLp , p < q)

| xSp+1 (x ∈ InfRp , p < q)

| S0 S
′
q (q > 0)

Sq ::= xS ′
q (x ∈ Nam)

| nS ′
q (n is a number)

| xSp+1 S
′
q (x is prefix with priority p < q)

| (S1023 N)S ′
q

| x y U µS1010 (q > 0, y ∈ Nam, µ is , or ⇒ and x ∈ Bindµ)

| xTV s µS1010 (q > 0, µ is , or ⇒ and x ∈ Bindµ)

| letx ε S1010 := S1010 inS1010 (q > 0, x ∈ Nam)

| letx := S1010 inS1010 (q > 0, x ∈ Nam)

| {xδS500|S1010}S
′
q (x ∈ Nam, δ ∈ {∈,⊆})

| {S1010|xδS500}S
′
q (x ∈ Nam, δ ∈ {∈,⊆})

| {S1010|xδS500, S1010}S
′
q (x ∈ Nam, δ ∈ {∈,⊆})

| {}S ′
q

| {S1023N}S
′
q

| [S1023N ]S ′
q

| (S1023N)S ′
q

| ifS1010 thenS1010 elseS1010

TV s ::= (empty)

| (xU)TV s (x ∈ Nam)

| (xU εS1010)TV s (x ∈ Nam, ε ∈ {:,∈,⊆})

N ::= (empty)

| , S1023 N

Figure 3.3: Also not the grammar
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the lemma parse Names lem in the Coq code. This is the essential “correctness” lemma
we need for the parser for U . Actually, I think correctness should be the following:

parse Names (map NAMx) = (x, [])

Of course, there would need to be an assumption that every x ∈ x is in Nam. I don’t
seem to have an explicit result stating this version of correctness, but it follows from
the lemma using map NAMx for l and nil for r.

The example of the category U should indicate where we are going. For each cat-
egory there will be a relation relating a list of tokens to its intended parsing. We will
then write a parsing function for that category and prove that if something is in the
relation, then the parser will obtain the intended result.

At a high level, this is what happens in the Coq code. The relations are pReln S′ ,
pReln S , pReln TVs and pReln N are defined by mutual induction in ParsePrintFull3a.v.
In the cases of pReln S′ and pReln S the first argument is a priority q. We write the
q as a subscript in these two cases and so write the relations here as S ′

q, Sq, TV s and
N . Here is more information:

• S ′
q l LM relates a list of tokens l to two layout trees L and M . The idea is that

we assume L represents what has been parsed so far. Building on L, l should be
parsed to give M .

• Sq l L relates a list of tokens l to a layout tree L. The idea is that l should parse
to give L.

• TV s l [(x0, (ε0, L0)
?), · · · , (xn−1, (εn−1, Ln−1)

?)] means l is a list of tokens specify-
ing a list of (bound) variables possibly with ascriptions. In practice, this is what
may follow a binder.

• N l L means l parses to a list of layout trees, each of which is separated by a
comma in l.

There are two new auxiliary definition used in the definition: a predicate Eq on lists
of tokens and a set SetInfix of certain layout trees.

We define SetInfix to be the set of all Înf-nodes where the infix operator is ∈ or
⊆.

SetInfix := {(Înf δ LM)|δ ∈ {∈,⊆}}

Eq is a test to see if we should stop parsing l for S ′
q. We call it Eq(l). It is S’ endp

in the Coq code. Looking at it now, I think it’s easier to say when Eq(l) is false (i.e.,
when we should continue parsing l for S ′

q). Eq(l) does not hold if q > 0, l is nonempty
and one of the following holds:

• The head of l is NAM(x) where either x ∈ Nam or x ∈ InfNp ∪ InfLp ∪ InfRp with
p < q.
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• The head of l is a number.

• The head of l is a left parenthesis, left curly brace or left bracket (i.e., one of ({[).

• The q > 500 and the head of l is ∈ or ⊆.

The rules defining the four relations are given in Figures 3.4 and 3.5. In the rules
we use the ocaml notation to specify the tokens except for the following: If µ is comma
or ⇒, we write µ as a token to mean COMMA or DARR, respectively. If δ ∈ {∈,⊆}, we
write δ as a token to mean MEM or SUBEQ. If ε ∈ {:,∈,⊆}, we write ε as a token to mean
COLON, MEM or SUBEQ.

The following results (among others) are proven in ParsePrintFull3a.v:

• pReln S’ S’ leq: If q ≤ q′ and S ′
q l LM , then S ′

q′ l LM .

• pReln S S leq: If q ≤ q′ and Sq l L, then Sq′ l L.

• pReln S’ S’ app: If S ′
q l LM , M is not binderish, q′ ≥ q − 1, Eq′(r) and there

is no right associative infix operator of priority q′, then S ′
q′+1 rM M ′ implies

S ′
q′+1 (l + r)LM ′.

• pReln S S’ app: If Sq l L, L is not binderish, q′ ≥ q − 1, Eq′(r) and there is no
right associative infix operator of priority q′, then S ′

q′+1 r LM implies Sq′+1 (l +
r)M .

• pReln S InfixRight: If x ∈ InfRp , Sp l L, Sp+1 rM and L is not binderish, then

Sp+1 (l + NAM(x) r) (Înf xLM).

• print S Bindvars: Printing an appropriate list of bound variable info gives some-
thing TV s-related to the input.

• print S main: If L is a p supported layout tree, then Sp (print SL)L. The
lemma also gives information about the N -relation as lists of 1023 supported
layout trees.

• print S thm: If L is a p supported layout tree and p ≤ q, then Sq (print SL)L.

3.6 Parser

The parser is defined in the Coq code near the end of ParsePrintFull3a.v. The
main functions are parse S’ , parse S , parse TVs and parse N which are defined by
mutual recursion. The definition is preceeded by a number of definitions to handle
special cases. These helper functions are also in the ocaml code in parser.ml.

In the code you find many arguments of the form (tsubl l r). These are the uses of
the Tebbi sublist function so that Coq can tell the parser is structurally recursive. The
value of (tsubl l r) is the same as r.
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S ′
q []LL

S ′
q l (P̂oxL)M

S ′
q (NAM(x) :: l)LM

x ∈ Postp, q < p

Sp l L
′ S ′

q r (Înf z LL′)M

S ′
q (NAM(x) :: l + r)LM

z ∈ InfN∗
p ∪ InfLp , p < q, L′ not binderish, Ep(r)

Sp l M

S ′
q (NAM(x) :: l)L (Înf xLM)

x ∈ InfRp , p < q, M binderish

S0 l L
′ S ′

q r ( ̂ImplicitLL′)M

S ′
q (l + r)LM

q > 0
S ′
q l x L

Sq (NAM(x) :: l)L
x ∈ Nam

S ′
q l n L

Sq (NUM(n) :: l)L

Sp+1 l L

Sq (NAM(x) :: l) (P̂r xL)
x ∈ Prep, p < q, L binderish

Sp+q l L S ′
q r (P̂r xL)M

Sq (NAM(x) :: l + r)M
x ∈ Prep, p < q, L not binderish, Ep(r)

S1023 l L N l′ L′ S ′
q r (P̂arenLL′)

Sq (LPAREN :: l + l′ + RPAREN :: r)M

U l (y :: y) S1010 r L

Sq (NAM(x) :: l + µ :: r) (B̂ixµ [(y :: y, None)]L)
q > 0, x ∈ Bindµ

U l y S1010 l′ L S1010 rM

Sq (NAM(x) :: l + µ :: l′ + r) (B̂ixµ [(y, (µ, L))]M)
q > 0, x ∈ Bindµ

TV s l V S1010 r L

Sq (NAM(x) :: l + µ :: r) (B̂ixµV L)
q > 0, x ∈ Bindµ

S1010 l L S1010 rM

Sq (LET :: NAM(x) :: DEQ :: l + IN :: r) (L̂etx NoneLM)
q > 0, x ∈ Nam

S1010 l′ L
′ S1010 l L S1010 rM

Sq (LET :: NAM(x) :: DEQ :: l + IN :: r) (L̂et x (ε, L′)LM)
q > 0, ε ∈ {:,∈,⊆}, x ∈ Nam

Figure 3.4: Semantic Parsing Relation Rules (1)
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S500 l L S1010 l′ L
′ S ′

q r (Ŝepx δ LL′)M

Sq(LCBRACE :: NAM(x) :: δ :: l + VBAR :: l′ + RCBRACE :: r)M
x ∈ Nam, δ ∈ {∈,⊆}

S1010 l L S500 l′ L
′ S ′

q r (R̂epx δ LL′)M

Sq(LCBRACE :: l + VBAR :: NAM(x) :: δ :: l′ + RCBRACE :: r)M
x ∈ Nam, δ ∈ {∈,⊆}, L /∈ SetInfix

S1010 l L S500 l′ L
′ S1010 l′′ L

′′ S′
q r (ŜepRepx δ LL′ L′′)M

Sq(LCBRACE :: l + VBAR :: NAM(x) :: δ :: l′ + COMMA :: l′′ + RCBRACE :: r)M
x ∈ Nam, δ ∈ {∈,⊆}, L /∈ SetInfix

S ′
q r (ŜEnum [])M

Sq (LCBRACE :: RCBRACE :: r)M

S1023 l L N l′ L′ S ′
q r (ŜEnum (L :: L′))M

Sq (LCBRACE :: l + l′ + RCBRACE :: r)M

S1023 l L N l′ L′ S ′
q r (M̂Tuple (L :: L′))M

Sq (LBRACK :: l + l′ + RBRACK :: r)M

S1010 l L S1010 l′ L
′ S1010 l′′ L

′′

Sq (IF :: l + THEN :: l′ + ELSE :: l′′) (Îf LL′ L′′)
q > 0

TV s [] []

U l x TV s r V

TV s (LPAREN :: l + RPAREN :: r) ((x, None) :: V )

U l x S1010 l′ L TV s r V

TV s (LPAREN :: l + ε :: l′ + RPAREN :: r) ((x, (ε, L)) :: V )
ε ∈ {:,∈,⊆}

N [] []

S1023 l L N l′ L′

N (COMMA :: l + l′) (L :: L′)

Figure 3.5: Semantic Parsing Relation Rules (2)
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The ocaml code is in parser.ml. The functions are also named parse S’ , parse S ,
parse TVs and parse N. There is no need to use the Tebbi sublist function here.

The reader can check by hand that the Coq version and ocaml version correspond.
That was the intention. I wrote the ocaml code following the Coq code and it’s, of
course, possible I made a mistake. I’m not going to check now.

Only the function parse S is provided in the interface file parser.mli.
You can get a good idea of what the parser does by examining the rules in Figures 3.4

and 3.5. These essentially define the functions as their graph. The parser functions
return values of option type, where None means the list of tokens does not parse. If it
returns a value, it also returns a list of remaining tokens to parse.

3.7 Correctness

The rest of the Coq code consists of the correctness proof. There are a few small helper
definitions and lemmas at the end of ParsePrintFull3a.v after the parser is defined.
For the most part though, the correctness proof boils down to proving parse S lem in
ParsePrintFull3e.v. This lemma takes effort to state, so I won’t try. It consists of
four conjuncts, one for each of S ′

q, Sq, TV s and N . It is proven by mutual induction
and has a case for each rule in Figures 3.4 and 3.5. Most of the cases correspond to a
lemma like parse S lem 1, parse S lem 2, and so on, each of which is stated and proven
in one of the files ParsePrintFull3b.v ParsePrintFull3bb.v ParsePrintFull3bc.v

ParsePrintFull3bd.v ParsePrintFull3be.v ParsePrintFull3c.v ParsePrintFull3cb.v

ParsePrintFull3d.v and ParsePrintFull3db.v. The proofs for these lemmas are
long and tedious. I don’t want to look at them again.

After one has the main lemma above, one can use it to prove print parse S id

which says if L is q-supported, then

parse S q (print SL) = Some(L, [])

This is the main thing I am calling “correctness of the parser,” though probably “parser-
printer coherence” would be a more appropriate name. Note that it doesn’t mention
the semantic parsing relations. Those relations were, of course, used to prove the result.
The final result is print parse S id which makes the result specific to q = 1023.

3.8 Conversion to Nameless Representation

After obtain a layout tree from the parser, we can easily convert it to an abstract tree
(using ltree to atree in the Egal ocaml code). We then usually need to interpret this
abstract tree as either a simple type, a simply typed term or a proof of a simply typed
proposition. The code for doing this is in interpret.ml.

• extract tp: Given an abstract tree and a list of names for type variables, return
a nameless simple type or raise a Failure exception.
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• extract tm: Given an abstract tree along with signature and context information,
return a nameless well-typed term and its nameless type. Otherwise, raise a
Failure (or maybe Not found).

• check tm: Given an abstract tree and a nameless type, along with signature
and context information, return a nameless well-typed term of the given type.
Otherwise, raise a Failure (or maybe Not found).

• extract pf: Given an abstract tree along with signature and context informa-
tion, return a nameless proof term and a nameless proposition (nameless term
of type prop) that the proof term proves. Otherwise, raise a Failure (or maybe
Not found).

• check pf: Given an abstract tree and nameless proposition, along with signature
and context information, return a nameless proof term that proves the nameless
proposition. Otherwise, raise a Failure (or maybe Not found).



Chapter 4

Documents

For you, this is the beginning. Chapter one, paragraph one, as they say.
The Doctor, The Trial of a Time Lord, Part Four (1986)

Now that we have a way to specify types, terms and proofs, we can organize the pre-
sentation of them using documents. Documents consist of comments, document items
and proof tactics. Comments were mentioned earlier: Text (without *) surrounded
by (** and **) is skipped as comments. Content outside proofs are document items.
Content inside proofs are proof tactics. The code to read and process documents is in
the main file mgcheck.ml.

Again, many of the document items and proof tactics are very similar to those in
Coq [33]. I even wrapped some of the document items in (* and *) so that Coq could
(sometimes) read the same code.

In the descriptions we write L to refer to a layout tree. In practice it is given as
ASCII which can be lexed to be a list of tokens l such that S1023 l L, as defined in
Chapter 3. We also use M to refer to layout trees. We use x and y for names. We use
s and s′ for strings. Strings are specified by wrapping text in ".

4.1 Document Items

Each possible document item is described below. Document items are parsed with the
function parse docitem in parser.ml.

• (* Parameter x y *)
This associates the name x with the global identifier y. This must be used before
importing a previously defined object. It may also be used before giving a defi-
nition if you want to make sure the definition is the same as the one you intend
(up to the names used).

• Parameterx :L.
Declare the name x to be a constant of type L (i.e., the nameless type extracted
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from L). If x is one of the primitive names (Eps, In, Empty, Union, Power, Repl,
UnivOf), then it is an error to assign it anything other than its expected type (see
Chapter 5). If x is not a primitive name, then it must have already been declared
to correspond (via a global identifier) to an object previously defined (according
to the database ∆, see Section 2.8). The database ensures that the same simple
type is assigned to the name x as the global identifier has in the database. The
information is put onto the signature Σ. (If there is a context Γ, then the actual
type of x is the result of popping the types of variables from Γ, but throughout
the rest of the section the name x will be used as if it is applied to the variables
in Γ. This is similar to the way AUTOMATH and Coq behave.)

• Definitionx :=M.

This declares x to be defined by M . That is, a typed term t and its simple type
α is extracted from M . If there are no type variables and no variables on Γ, then

x :
(0,t)♯

0 α := t is added to Σ. If Γ is empty but there are i type variables, then

x :
(i,t)♯

i α := t is added to Σ. Suppose there are no type variables but Γ consists
of one variable y : β. In this case what is added to Σ is

x :
(0,λ:β.t)♯

0 β → α := λ : β.t.

In general, if the number of type variables are recorded and the variables from Γ
are abstracted away before the declaration is added to Σ. Nevertheless, as long as
these variables are in context, you can use the name x without explicitly applying
it to the necessary type variables or typed variables, as with parameters.

• Definitionx :L :=M.

In this case the intended type is made explicit. That is, a type α is extracted
from L, a term t is extracted from M and checked to have type α. (Knowing the
intended type α allows one to omit type annotations on initial λ-abstractions.)
After this, Σ is extended as described above.

• Axiomx :L.
A proposition t is extracted from L. A proposition t̃ is constructed to be inde-
pendent of the context Γ by

1. popping each assumption y : t′ from Γ and changing the proposition t to
t′ → t,

2. popping each variable y : α from Γ and changing the proposition t to ∀y : α.t
and

3. doing something reasonable with y : α := t′. (I think it makes a β redex like
(λy : α.t)t′.)

Egal checks if the axiom is allowed. It does this by computing (i, t̃)
♯

where i is the

number of type variables and checking if (i, t̃)
♯

is either an axiom of the theory
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(see Chapter 5) or is a previously proven result (according to the database ∆, see

Section 2.8). In this case, x :
(i,t̃)

♯

i t̃ is added to Σ.

• Theoremx :L.
A proposition t is extracted from L. Egal then switches into proof mode and
begins reading proof tactics to construct a proof term. When the proof mode
begins, it has a single goal which is to prove t in the context Γ. The proof mode
remembers the name x as well as the version t̃ of t independent of Γ (computed as
described for Axiom) and the corresponding global identifier m. After the proof
is finished, x :mi t̃ is added to Σ and m can be added to the database. Even if
the proof is admitted, x :mi t̃ is added to Σ. The database only contains fully
proven theorems. The following are synonyms for Theorem: Lemma, Example,
Fact, Remark, Corollary, Proposition and Property. They all behave the
same way, but are rendered using the synonym in the html versions.

• Sectionx.
This begins a section named x. Within a section you can declare local variables
an hypotheses which are put onto Γ and are popped from Γ when the section
ends.

• End x.
This ends the current section, which should be named x.

• Variablex :L. If L is SType, then this declares each variable in x to be a type
variable. Otherwise, this declares each variable in x to be of the type extracted
from L, adding each to Γ. Note: Instead of : you can use :e (∈) or c= (⊆) and
it will parse. I never wrote the code to support these kinds of ascriptions though.
It would have added a variable and a hypothesis to Γ.)

• Hypothesisx :L.
A proposition t is extracted from L and x : t is added to Γ. After this, x can be
used as a proof term proving t.

• Let x :=M.

A typed term t of type α is extracted from M and x : α := t is added to Γ. Local
definitions like this have not been thoroughly tested.

• Let x :L :=M.

In this case, a simple type α is extracted from L and this is used to extract a
term t of type α from M . Then x : α := t is added to Γ. Again, using :e (∈) or
c= (⊆) will parse, but the code to interpret it has not been written.

• Infixx p :=L.
This declares the name x to be an infix operator with priority p and no associa-
tivity which expands to be the term extracted from L.
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• Infixx p left :=L.
This declares the name x to be an infix operator with priority p and left associa-
tivity which expands to be the term extracted from L.

• Infixx p right :=L.
This declares the name x to be an infix operator with priority p and right asso-
ciativity which expands to be the term extracted from L.

• Postfixx p :=L.
This declares the name x to be a postfix operator with priority p which expands
to be the term extracted from L.

• Prefixx p :=L.
This declares the name x to be a prefix operator with priority p which expands
to be the term extracted from L.

• Binderxµ :=L.
This declares the name x to be a binder with separator µ (which must be , or
=>). The meaning of the binder is given by the term extracted from L.

• Binderxµ :=L ;M.

This declares the name x to be a binder with separator µ (which must be , or
=>). The meaning of the binder is given by the terms extracted from L and M .

• Binder+xµ :=L.
This declares the name x to be a binder which can bind several variables at once
and uses separator µ (which must be , or =>). The meaning of the binder is given
by the term extracted from L.

• Binder+xµ :=L ;M.

This declares the name x to be a binder which can bind several variables at once
and uses separator µ (which must be , or =>). The meaning of the binder is given
by the terms extracted from L and M .

• Notationx y.
This handles a few special cases for notation: IfThenElse, Repl, Sep, ReplSep,
SetEnum, SetEnum0, SetEnum1, SetEnum2, Nat, SetLam and SetImplicitOp. I’m
not motivated to describe all of these. An example of each of them occurs in
the treasure documents under the formaldocs directory, and you can probably
determine what they mean by how they’re used.

• (* Unicodex s1 . . . sn *)
This associates the name x with a sequence of unicode symbols. I used this for
creating html versions that I thought looked nice. It was probably a waste of
time, so I’ll delete it from the examples in this manual and not say anything more
about it.
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• (* Subscriptx *)
Wrap html sub tags around the html presentation of the name so it will be a
subscript.

• (* Superscriptx *)
Wrap html sup tags around the html presentation of the name so it will be a
superscript.

• (* Author s s′ *)
Specify the authors of the document.

• (* Title s *)
Specify the title of the document.

• (* Treasure s *)
Specify the bitcoin treasure address for the next proof. If it doesn’t match the
given proof (if there is one), Egal will tell you. If it does match the given proof,
Egal will tell you the private key.

• (* Salt s *)
Set a salt string which is used for computing bitcoin private keys and addresses.

• (* ShowProofTerms *)

(* HideProofTerms *)

These were supposed to turn on and off whether proof terms are shown in the
html versions, but the variable they toggle (showproofterms) doesn’t seem to be
used.

The details of the semantics for Binder and Binder+ are complicated. If you want
to know more, look at the definition of declare binder in parser.ml and the usage of
bindersem in interpret.ml. There are comments in the code in interpret.ml that
describe the 7 cases for declared binders.

4.2 Proof Tactics

While Egal is in proof mode, it reads proof tactics, proof braces and proof bullets. Proof
braces are { and }. When the ending proof brace is encountered, a proof of precisely
the subgoal which existed when the opening proof brace was encountered should be
completed. Proof bullets are -, + and * and are used to keep up with which subgoal
is being proven. Proof braces and proof bullets are intended to behave like they do in
Coq, and as far as I know they do behave in Egal like they do in Coq.

The code to parse items in proof mode is found in parse pftacitem in parser.ml.
Egal will leave proof mode in one of two ways:
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• Qed.

This means the proof is finished. If there were no admits in the proof, a complete
proof term will be constructed and double checked. Nothing should go wrong.
Famous last words.

• Admitted.

This means you’re not going to finish the proof now. All remaining subgoals
are forgotten and the theorem is treated as if it were proven for the rest of the
document.

The proof tactics are similar to ones in Coq. Some of them have the same name
(e.g., exact, apply and rewrite). The tactics let and assume are both like intros in
Coq. The tactic prove is like change in Coq. The tactic claim is like assert in Coq.
The tactic witness is like exists in Coq.

Here are the proof tactics.

• exactL.
Assume the current goal is t in context Γ. Egal tries to extract a proof term
proving t from L. If it succeeds then this goal is popped off the stack of subgoals.

• applyL.
Assume the current goal is t in context Γ. Egal extracts a proof term and a
proposition t′ from L. Egal tries to match t′ with t, progressively going underneat
universal quantifiers and implications to do so. If there is a match, then the
current subgoal is removed from the stack and a subgoal is added to the stack for
each of the antecedents of the implications in t′ which were progressed through.
If apply fails and you think it should succeed, it might mean you need to use the
prove tactic first so that the current goal has a form similar to the proposition
proven by the proof term given to apply.

• let x :L.
Assume x consists of n names and a type α is extracted from L. This will only
succeed if the current goal has the form

∀ : α · · · ∀ : α︸ ︷︷ ︸
n

.t

in a context Γ. The result will be to replace the current goal with t in context
Γ, x : α.

• let x1 . . . xn.

In this case no type is given, so it can succeed more generally. This will succeed
if the current goal has the form

∀ : β1 · · · ∀ : βn.t

in a context Γ. The result will be to replace the current goal with t in context
Γ, x1 : β1, . . . , xn : βn.
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• assumex :L.
Assume x consists of n names and a proposition t′ is extracted from L. This will
only succeed if the current goal has the form

t′ → . . . t′ →︸ ︷︷ ︸
n

t

in a context Γ. The result will be to replace the current goal with t in context
Γ, x : t′. Almost all the time, n will be 1 if assume is used this way.

• assumex1 . . . xn.

In this case no proposition is given, so it can succeed more generally. This will
succeed if the current goal has the form

t1 → · · · tn → t

in a context Γ. The result will be to replace the current goal with t in context
Γ, x1 : t1, . . . , xn : tn.

• proveL.
This extracts a proposition t′ from L. If the current goal is t, then Egal checks
if t and t′ are the same up to conversion. If they are, then the current goal is
replaced by t′.

• claimx :L.
Assume the current goal has context Γ. A proposition t is extracted from L. The
context of the current goal is changed to be Γ, x : t. A new goal of proving t
under Γ is pushed onto the goal stack. The effect of this is that you need to prove
t under Γ and afterwards you can use t as a new hypothesis.

• witnessL.
If the current goal is existential, then a term is extracted from L and this term
is used as the existential witness. This only works after a certain existential
introduction lemma is known.

• rewriteL.
Assuming L is the proof of a Leibniz equation (possibly universally quantified),
use the equation to rewrite the current goal form right to left. This only works
after symmetry of equality is known.

• rewriteL atn.
Assuming L is the proof of a Leibniz equation (possibly universally quantified), use
the equation to rewrite the current goal form right to left at the given positions.
The positions count the subterms of the goal that are matched by the equation.
This only works after symmetry of equality is known.
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• rewrite <-L.
Assuming L is the proof of a Leibniz equation (possibly universally quantified),
use the equation to rewrite the current goal form left to right. Ironically, this
works even before symmetry of equality is known.

• rewrite <-L atn.
Assuming L is the proof of a Leibniz equation (possibly universally quantified), use
the equation to rewrite the current goal form right to left at the given positions.
The positions count the subterms of the goal that are matched by the equation.
Again, this works even before symmetry of equality is known.

• set x :=M.

This adds a local definition the current goal’s context. Warning: It hasn’t been
used much, and may be buggy.

• set x :L :=M.

This adds a local definition the current goal’s context. Warning: It hasn’t been
used much, and may be buggy.

• proveL0,L1, · · · Ln.

This parses, but the code to interpret it was never written. The idea is to split
the current subgoal into several (explicitly given) subgoals, assuming Egal can
figure out how to make the decomposition.

• casesL : . . ..
This was never written beyond the parser. The idea was to figure out that L proves
a disjunction (or something like a disjunction) and then use that disjunction to
have several cases.



Chapter 5

The Foundation:
Tarski-Grothendieck Set Theory

The whole of creation is very delicately balanced in cosmic terms, Jo.
The Doctor, The Time Monster, Episode Six (1972)

We can now turn to the theory we use as a foundation for mathematics. The theory
is Tarski-Grothendieck set theory [44, 23]. This is the same foundational theory used
in the Mizar Mathematical Library [45], although the set of theorems for Egal is larger
since Egal is higher order and Mizar is (more or less) first-order. Like everything else,
this doesn’t really matter because no one is ever going to even notice that Egal exists.

The Egal document giving the foundation is Foundation.mg and can be found in the
directory formaldocs. The only reason certain parameters and axioms can be included
here even though the database is empty is because they are hard-coded into Egal as
primitive names and axioms. For example, the primitive names for parameters can be
found in the function primname in syntax.ml. There it associates the following names
with an internal number for the “primitive” used in the tm type, the number of type
variables they expect and their type. Here is this information.

• Eps: This corresponds to the nameless term Prim(0). It is the only polymorphic
primitive and depends on one type. Its nameless type is (0 → prop) → 0. Using
the primitive name, a term of type (α→ prop)→ α can be written as the layout
tree EpsLα where Lα is a layout tree corresponding to α. Usually, however, a
binder notation is declared for Eps so that terms of the form Epsα (λx : α.s) can
be laid out as somex : Lα, Ls where Lα corresponds to α and Ls corresponds to
s.

• In: This corresponds to the nameless term Prim(1) and has type set→ set→ prop.
It is a priori associated with the infix notation :e (ASCII for ∈). Likewise,
the notation c= (ASCII for ⊆) is a priori associated with λ : set.λ : set.∀ :
set.0 ∈ 2 → 0 ∈ 1. (Actually, c= can also be used for any R and S of type
β1 → · · · → βn → prop.) These notations are hard coded because ∈ and ⊆ are
used in several special ways in the syntax.
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• Empty: This corresponds to the nameless term Prim(2) and has type set. It means
the empty set, obviously, which is usually written as ∅.

• Union: This corresponds to the nameless term Prim(3) and has type set → set.
Applying this function to a set X yields what is usually written as

⋃
X.

• Power: This corresponds to the nameless term Prim(4) and has type set → set.
It corresponds to power sets. Applying this function to a set X yields what is
usually written as ℘X.

• Repl: This corresponds to the nameless term Prim(5) and has type set→ (set→
set) → set. This corresponds to sets formed by replacement. A term like
(Repl s (λx.t)) corresponds to what is usually written as {t|x ∈ s}.

• UnivOf: This corresponds to the nameless term Prim(6) and has type set → set.
The idea is that this takes a set and gives the least Grothendieck universe for
which the set is a member.

Likewise, mgcheck.mg explicitly contains the global identifier for a collection of (some-
times polymorphic) propositions in the variable indexknowns.1 If a proposition has one
of the global identifiers, then it is allowed to be assumed as an axiom.

We walk through most of the document Foundation.mg here.
First we define the logical connectives and quantifiers we will need along with no-

tation. More information about these are given in Section 6.1. We need them here in
order to state axioms in a convenient way.

Definition False : prop := forall P:prop, P.

Definition not : prop -> prop := fun A:prop => A -> False.

Prefix ~ 700 := not.

Definition and : prop -> prop -> prop :=

fun A B:prop => forall P:prop, (A -> B -> P) -> P.

Infix /\ 780 left := and.

Definition or : prop -> prop -> prop :=

fun (A B : prop) => forall P:prop, (A -> P) -> (B -> P) -> P.

Infix \/ 785 left := or.

Definition iff : prop -> prop -> prop :=

1This is equivalent to always ensuring these knowns are in the database ∆.
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fun (A B:prop) => (A -> B) /\ (B -> A).

Infix <-> 805 := iff.

Section Eq.

Variable A:SType.

Definition eq : A->A->prop :=

fun x y:A => forall Q:A->prop, Q x -> Q y.

End Eq.

Infix = 502 := eq.

Section Ex.

Variable A:SType.

Definition ex : (A->prop)->prop :=

fun Q:A->prop => forall P:prop, (forall x:A, Q x -> P) -> P.

End Ex.

Binder+ exists , := ex.

We next give two extensionality principles as axioms. These are accepted as axioms
because their global identifiers are hard coded into the Egal source code. The first
axiom is propositional extensionality which states that two propositions are equal if
they are equivalent. The second axiom is functional extensionality. Since it depends on
two horrible type variables, one can also think of functional extensionality as a scheme
of infinitely many axioms. It says that if α and β are types, and f and g are functions
from α to β, then f = g if fx = gx for every x of type α. That is, two functions are
equal if they give the same value for every input.

Axiom prop_ext : forall A B:prop, (A <-> B) -> A = B.

Section FE.

Variable A B:SType.

Axiom func_ext : forall (f g : A -> B), (forall x:A, f x = g x) -> f = g.

End FE.
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We next turn to the choice operator. In this case we have a primitive Eps which
takes a type α and gives a term of type (α→ prop)→ α. The corresponding axiom (or
axiom scheme) says that for each type α, if P is a predicate on α and x is an element
of type alpha satisfying P , then Eps gives an element of type α satisfying P . The x is
simply a witness that P is not the empty predicate; the value Eps gives does not depend
on the witness x. Note that when the axiom is given the name Eps is not applied to
the type A. The reason is because we are still in the section where the type variable A
was declared. After the section is closed, every time Eps is used it must be explicitly
given the type α as its first argument. It would not be hard to modify Egal to infer
the type α in many cases, but whenever I faced such a choice I always chose the route
of making polymorphism inconvenient to keep the code simpler and to discourage the
use of polymorphism, which is evil.

Section Choice.

Variable A:SType.

Parameter Eps : (A->prop)->A.

Axiom EpsR : forall P:A->prop, forall x:A, P x -> P (Eps (fun x => P x)).

End Choice.

Next we define the binder notation so that we can write somex : Lα, Ls as mentioned
above. In mathematical notation we write εx : α.s. Recall that the , means that we
separate the specification of the variable(s) bound from the body using a comma. The
only other alternative is =>. In the unlikely event that you are reading this manual
linearly, you read about this in Section 4.1.

Binder some , := Eps.

The axioms above are at the level of the simple type theory, and are often included
in versions of higher-order logic. Without these axioms, by default the simple type
theory described in Chapter 2 is intuitionistic. The combination of extensionality and
choice allow one to prove the logic is classical (see Section 6.2).

We next turn to the primitives and the axioms of set theory (Tarski-Grothendieck).
The good news is that no more polymorphism is required.

First we declare the set membership relation using the primitive name In.

Parameter In:set->set->prop.

Notationally the infix operator :e (with priority 500 and no associativity) is automat-
ically registered for this primitive as soon as it is declared. We do not explicitly give it
in the code. (In fact, technically there is no way to declare it, since :e is, unlike most
infix operators, lexically not a “name”.) Again, :e comes from Mizar, and is ASCII for



75

∈. It’s probably obvious, but assuming Ls and Lt are layout trees for terms s and t of
type set, respectively, then Ls :eLt is a layout tree for In s t.2

We also define Subq for the subset relation, using the infix notation built into the
code for set membership.

Definition Subq : set->set->prop :=

fun X Y => forall x:set, x :e X -> x :e Y.

The infix notation c= (corresponding to ⊆) is hard-coded to correspond to this term
when it is used with two terms of type set.

The first set theory axiom is set extensionality which states that two sets are equal
if they have the same elements. Or, as it is actually stated here, if X ⊆ Y and Y ⊆ X,
then X = Y .

Axiom set_ext : forall X Y:set, X c= Y -> Y c= X -> X = Y.

The next axiom is an ∈-induction principle. This corresponds to what is often
called the axiom of foundation in set theory. It is a higher-order axiom since it involves
quantification over a predicate P on sets, and these predicates P may also depend on
quantification over predicates. There is a classically equivalent first-order presentation
called regularity, which is given as a theorem in a the document EpsInd.mg. The
induction principle says that if you want to prove P holds for all sets X, it is enough to
prove it holds for a generic X under the assumption of an inductive hypothesis that P
holds for every member of X. This axiom corresponds to thinking of the sets as being
constructed iteratively, where a set is formed from elements constructed at a previous
stage.

Axiom In_ind : forall P:set->prop,

(forall X:set, (forall x:set, x :e X -> P x) -> P X)

-> forall X:set, P X.

We now turn to set contructors. First there is the empty set. There is a correspond-
ing axiom saying the empty set has no members.

Parameter Empty : set.

Axiom EmptyAx : ~exists x:set, x :e Empty.

Next there is the union operator. The corresponding axiom says that x ∈
⋃

X if
and only if there is some Y such that x ∈ Y and Y ∈ X.

2In some ways it would be preferable to reverse the arguments so that x ∈ X would be InX x and
so the η-short form of the predicate (or “class”) corresponding to the set X would be InX. I did
this in Scunak. It was cool, but for some reason I decided not to do this in Egal. So the predicate
corresponding to the set X is the ugly λx : set.InxX.
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Parameter Union : set->set.

Axiom UnionEq : forall X:set, forall x:set,

x :e Union X <-> exists Y:set, x :e Y /\ Y :e X.

Next there is the power set operator. The corresponding axiom says Y ∈ ℘X if and
only if Y ⊆ X. That is, ℘X is the set of all subsets of Y .

Parameter Power : set->set.

Axiom PowerEq : forall X Y:set, Y :e Power X <-> Y c= X.

Now we turn to the replacement operator which will be used to form sets like
{s|x ∈ X}. The primitive name Repl is used to declare the operator with the appropriate
type.

Parameter Repl : set->(set->set)->set.

We next use a special Notation declaration so that Egal knows how to interpret layout
trees of the form {Ls|x ∈ Lt}. Literally we say to interpret the replacement notation
using the parameter Repl. It looks like we’re stuttering, but we’re not. The first Repl

says what kind of special notation we’re declaring.

Notation Repl Repl.

Now that we have this notation, we can state the corresponding axiom in what I hoped
was a readable way. It says y ∈ {F x|x ∈ X} if and only if there is some x ∈ X such
that y = Fx.

Axiom ReplEq :

forall X:set, forall F:set->set, forall y:set,

y :e {F x|x :e X} <-> exists x:set, x :e X /\ y = F x.

Finally we turn to Grothendieck universes. This is a strong form of the axiom of
infinity that one finds in Zermelo-Fraenkel set theory.

We first define the notation of a transitive set. A set U is transitive if every member
is a subset.

Definition TransSet : set->prop := fun U:set => forall X:set, X :e U -> X c= U.

A Grothendieck universe is a transitive set which is closed under the operators given
above. We first define three definitions for what it means for U to be closed under each
of these operators, and then conjoin them into the single definition ZF closed.

Definition Union_closed : set->prop

:= fun U:set => forall X:set, X :e U -> Union X :e U.

Definition Power_closed : set->prop
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:= fun U:set => forall X:set, X :e U -> Power X :e U.

Definition Repl_closed : set->prop

:= fun U:set => forall X:set, X :e U -> forall F:set->set,

(forall x:set, x :e X -> F x :e U) -> {F x|x :e X} :e U.

Definition ZF_closed : set->prop := fun U:set =>

Union_closed U

/\ Power_closed U

/\ Repl_closed U.

We now give the last primitive name: UnivOf. This is an operator which takes a
set N and returns a Grothendieck universe U such that N ∈ U . The first axiom says
N ∈ UnivOfN . The second axiom says UnivOfN is transitive. The third axiom says
UnivOfN is closed under the operations.

Parameter UnivOf : set->set.

Axiom UnivOf_In : forall N:set, N :e UnivOf N.

Axiom UnivOf_TransSet : forall N:set, TransSet (UnivOf N).

Axiom UnivOf_ZF_closed : forall N:set, ZF_closed (UnivOf N).

Finally we have one last axiom which states that Univ Of N is the least Grothendieck
universe containing N . That is, if U is a Grothendieck universe with N ∈ U , then
UnivOfN is a subset of U . I don’t think I used this axiom in any of the treasure hunt
documents, but I remember using it in other developments. For example, one can use
it to prove that UnivOf Empty is the set of hereditarily finite sets.

Axiom UnivOf_Min : forall N U:set, N :e U

-> TransSet U

-> ZF_closed U

-> UnivOf N c= U.

And this all the material one needs to build up all the usual mathematical universe
and even a bit more. I sometimes used the cool picture in Figure 5.1 to illustrate the
mathematical universe. The cone represents the iterative conception of the set theoretic
universe. Starting from the empty set, the set constructors allow one to fill up the first
Grothendieck universe with all the hereditarily finite sets. After that one can fill up the
next Grothendieck universe with all the sets one expects to find in Zermelo-Fraenkel
set theory. And so on.

I don’t know the young lady in the photo. That part of the photo is from Shutter-
stock. Well, I think the picture looks cool, but no one else has ever told me that. And
certainly I’ve found over the years that hardly anyone shares my tastes in, well, much
of anything.
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At one time I had planned to help produce a series of math related images working
with a model/artist I met in Poland in 2011. We lost touch and it never happened.3

Hopefully she’s involved in bigger and better projects and finding a lot of success. She
was very talented.

3I lost touch with almost everyone from my past in 2012 after I realized I’m not human and have
essentially nothing in common with the humans I used to know.
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Figure 5.1: The Mathematical Universe
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Chapter 6

Examples: The 2014 Treasure Hunt

Well done! I’m very glad to hear that you’re bringing logic into your guesses.
The Doctor, The Final Test (The Celestial Toymaker, Episode 4) (1966)

The bitcoin theorem proving treasure hunt at mathgate.info took place from March
2014 until September 2014. There were 25 documents, each of which had bitcoin trea-
sures which could be claimed by giving a certain proof of a theorem. For all but the first
document there was also a preamble document importing previous objects and results
for use in the new document. All these documents can be found in the formaldocs

directory.
The purpose of the 25 documents is to provide many of the basic building blocks of

mathematics, ultimately ending with pairs, functions, sets of pairs and sets of functions.
We survey the 25 documents in this chapter pointing out what was supposed to be
important. In some cases we present them in a different order than they were released
in the treasure hunt.

6.1 Basic Logic

The two documents PropLogic1.mg and ExEq1.mg define the basic logical connectives
and quantifiers, as well as equality. The definition of equality is often called Leibniz
equality, because the idea that two things are equal if they share all the same properties
is attributed to Leibniz. The definitions of conjunction, disjunction and existential
quantification are sometimes called the Russell-Prawitz definitions. They are definitely
in Prawitz [39] (in 1965, though the publication date here is given as 2006). If you
look at the English in specific passages carefully enough you can find some of them in
Russell [42] (in 1903).

We start with the file PropLogic1.mg. Since this file has no preamble signature file
and imports nothing, it can be checked by calling Egal as follows:

egal PropLogic1.mg

Here are a few examples.

81
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Definition False : prop := forall P:prop, P.

Here we have defined False by ∀P : prop.P . That is, False holds if every proposition
holds. In other words, False is the “least likely” proposition to be provable. We can
make this precise by proving a lemma corresponding to an elimination principle for
False: If we have a proposition P and a proof of False, then we also have a proof of P .
In mathematical notation, we write ⊥ for False and so the propostion we want to prove
is

∀P : prop.⊥ → P.

The proof term is easy:
λP : prop.λH : ⊥.HP.

The reader should examine the rules in Figure 2.2 to be convinced that the proof term
proves the proposition. Egal can determine the ascription of prop for P and ⊥ for H
and so we can specify the proof term more concisely as λPH.HP . Here is the Egal
code.

Theorem FalseE : forall P : prop, False -> P.

exact (fun P H => H P).

Qed.

The definition of True is similar, except True is provable.

Definition True : prop := forall P:prop, P -> P.

Theorem TrueI : True.

exact (fun P p => p).

Qed.

We next define negation. In mathematical notation we write ¬A for the negation of
A when A is a proposition. By definition ¬A is A→ ⊥. In ASCII the ¬ prefix operator
is ~.

Definition not : prop->prop := fun A:prop => A -> False.

Prefix ~ 700 := not.

We next define conjunction (and). If A and B are propositions, then A∧B is notation
for andAB. In ASCII we write /\ for ∧. This infix operator is left associative.1 By
definition A ∧ B is

∀P : prop.(A→ B → P )→ P.

That is, if we know A ∧ B and want to prove P , then it is enough to prove P under
the assumptions of A and B. This is essentially defining conjunction based on its
elimination principle.

1This is different from Coq, where conjunction is right associative. I had a reason for doing things
this way, but I don’t remember it now.
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Definition and : prop->prop->prop :=

fun A B:prop => forall P:prop, (A -> B -> P) -> P.

Infix /\ 780 left := and.

The first thing we prove is a lemma andI giving an introduction principle. Again, the
exact proof term is given, and again it is left to the reader to check the proof using the
rules in Figure 2.2.

Theorem andI : forall (A B : prop), A -> B -> A /\ B.

exact (fun A B a b P H => H a b).

Qed.

We next prove lemmas for left elimination and right elimination. The idea is that if
we know A∧B, then we know A by one lemma and B by the other lemma. In practice,
these two lemmas are not used very often. Usually, we simply apply the proof of the
conjunction A∧B and as a result are able to assume both A and B. Nevertheless, one
of the two lemmas can be used if only one side of the conjunct is required.

Theorem andEL : forall (A B : prop), A /\ B -> A.

exact (fun A B H => H A (fun a b => a)).

Qed.

Theorem andER : forall (A B : prop), A /\ B -> B.

exact (fun A B H => H B (fun a b => b)).

Qed.

Disjunction (or) is also defined using an elimination principle. In this case we write
A ∨B for the disjunction of A and B. We write \/ for ∨. If we know A ∨B and want
to prove P , it is enough to prove two cases: (1) P holds if A holds and (2) P holds if B
holds. Two introduction principles are proven: A∨B follows from A and A∨B follows
from B.

Definition or : prop->prop->prop :=

fun (A B : prop) => forall P:prop, (A -> P) -> (B -> P) -> P.

Infix \/ 785 left := or.

Theorem orIL : forall (A B : prop), A -> A \/ B.

exact (fun A B a P H1 H2 => H1 a).

Qed.

Theorem orIR : forall (A B : prop), B -> A \/ B.

exact (fun A B b P H1 H2 => H2 b).

Qed.
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Equivalence (iff) is defined using conjunction and implication. We write ↔ (in
ASCII <->) as infix notation for equivalence.

Definition iff : prop->prop->prop := fun (A B:prop) => (A -> B) /\ (B -> A).

Infix <-> 805 := iff.

The file PropLogic1.mg also includes a number of lemmas for working with several
conjuncts or several disjuncts. Here are the cases for 3. These are sometimes imported
as axioms for use in later files.

Section PropN.

Variable P1 P2 P3:prop.

Theorem and3I : P1 -> P2 -> P3 -> P1 /\ P2 /\ P3.

exact (fun H1 H2 H3 => andI (P1 /\ P2) P3 (andI P1 P2 H1 H2) H3).

Qed.

Theorem and3E : P1 /\ P2 /\ P3 -> (forall p:prop, (P1 -> P2 -> P3 -> p) -> p).

exact (fun u p H => u p (fun u u3 => u p (fun u1 u2 => H u1 u2 u3))).

Qed.

Theorem or3I1 : P1 -> P1 \/ P2 \/ P3.

exact (fun u => orIL (P1 \/ P2) P3 (orIL P1 P2 u)).

Qed.

Theorem or3I2 : P2 -> P1 \/ P2 \/ P3.

exact (fun u => orIL (P1 \/ P2) P3 (orIR P1 P2 u)).

Qed.

Theorem or3I3 : P3 -> P1 \/ P2 \/ P3.

exact (orIR (P1 \/ P2) P3).

Qed.

Theorem or3E : P1 \/ P2 \/ P3 ->

(forall p:prop, (P1 -> p) -> (P2 -> p) -> (P3 -> p) -> p).

exact (fun u p H1 H2 H3 => u p (fun u => u p H1 H2) H3).

Qed.

End PropN.

We next turn to the file ExEq1.mg. First note that it depends on the preamble
ExEq1Preamble.mgs. It can be checked by calling Egal as follows:
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egal -ind IndexMar2014 -I ExEq1Preamble.mgs ExEq1.mg

The preamble file repeats the definitions of the logical connectives from PropLogic1.mg

and states some of the theorems from PropLogic1.mg as axioms. The index file
IndexMar2014 is needed so that the database knows these theorems were proven at
some point.

We first define equality using Leibniz equality, giving infix notation =, as expected.
At the same time we define its negation (disequality) and give infix notation <> for
disequality (mathematically written 6=).

Section Poly1_eq.

Variable A:SType.

Definition eq : A -> A -> prop := fun x y => forall Q:A -> prop, Q x -> Q y.

Definition neq : A -> A -> prop := fun x y => ~eq x y.

End Poly1_eq.

Infix = 502 := eq.

Infix <> 502 := neq.

There are a number of proofs about equality. Below we show eqE for an elimination
principle, eqI for an introduction principle (reflexivity of equality), eq sym for symmetry
of equality and eq trans for transitivity of equality.

Section Poly1_eqthms.

Variable A:SType.

Theorem eqE : forall x y:A, forall q:A->prop, q x -> x = y -> q y.

exact (fun x y q H1 H2 => H2 q H1).

Qed.

Theorem eqI : forall x:A, x = x.

exact (fun x q H => H).

Qed.

Theorem eq_sym : forall x y:A, x = y -> y = x.

exact (fun x y H => H (fun y => y = x) (eqI x)).

Qed.

Theorem eq_trans : forall x y z:A, x = y -> y = z -> x = z.

exact (fun x y z H1 H2 => H2 (fun z => x = z) H1).

Qed.

Whenever the current goal is to prove t = t where t has type α, we can complete the
proof of the goal with the apply tactic:
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apply eqILα

where Lα is a layout tree corresponding to α.2

As soon as we have defined equality, the tactic rewrite with <- (to rewrite from right
to left) works immediately. After eq sym has been proven, then we can use rewrite

without <- (to rewrite from left to right).3 Here are three examples demonstrating the
rewrite tactic.

Section Poly1_eq_Examples.

Variable A:SType.

Example rewrite_example_1 :

forall P:A->A->prop, forall x y:A, x = y -> P x x -> P y y.

let P x y.

assume H1: x = y.

assume H2: P x x.

prove P y y.

rewrite <- H1.

prove P x x.

exact H2.

Qed.

Example rewrite_example_2 :

forall P:A->A->prop, forall x y:A, x = y -> P y x -> P x y.

let P x y.

assume H1: x = y.

assume H2: P y x.

prove P x y.

rewrite H1.

prove P y y.

rewrite <- H1 at 2.

prove P y x.

exact H2.

Qed.

Example rewrite_example_3 :

forall f:A->A->A, (forall x y:A, f x y = f y x)

-> forall x y:A, f (f x y) y = f y (f y x).

let f.

assume H1: forall x y:A, f x y = f y x.

2Yes, you really have to give the α. I may have mentioned how much I hate type variables. If it
bothers you, then prove enough monomorphic instances like eqI set and eqI set prop and use these. I’m
not sure why I didn’t do this. It sounds like something I would have done.

3Of course, only the global identifier of the proposition of eq sym matters, not the name eq sym.
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let x y.

prove f (f x y) y = f y (f y x).

rewrite H1.

prove f y (f x y) = f y (f y x).

rewrite H1 at 2.

prove f y (f y x) = f y (f y x).

apply (eqI A).

Qed.

End Poly1_eq_Examples.

Next we define existential quantification. Again we are guided by the elimination
principle. Let α be a type and Q : α → prop be a predicate on α. We want to define
the proposition ∃x : α.Qx. This in fact will be binder notation for exα (λx : α.Qx). So
what we really want to define is ex which is (unfortunately) polymorphic (again). The
idea for the definition is to say that if we know ∃x : α.Qx and we want to prove P ,
then it is enough to prove P under the assumption that we have an x such that Qx.
The way this is realized is by defining exα to be

λQ : α→ prop.∀P : prop.(∀x : α.Qx→ P )→ P.

In Egal we do this as follows:

Section Poly1_exdef.

Variable A:SType.

Variable Q:A->prop.

Definition ex : prop := forall P:prop, (forall x:A, Q x -> P) -> P.

End Poly1_exdef.

We next declare the ASCII name exists to be binder notation for ex, as indicated
above. In ASCII, we use a comma to precede the body. In addition, for the first time we
are declaring a binder that is allowed to bind many variables at once. This corresponds
to applying ex to a corresponding λ-abstraction for each of the variables. We indicate
this by using Binder+ instead of Binder. The Egal code figures out how to make sense
of this.

Binder+ exists , := ex.

We prove an elimination principle (which is rarely, if ever, used) and an introduction
principle.

Section Poly1_exthms.

Variable A:SType.

Theorem exE : forall P:A->prop, forall Q:prop, (forall x:A, P x -> Q)
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-> (exists x:A, P x) -> Q.

exact (fun P Q H1 H2 => H2 Q H1).

Qed.

Theorem exI : forall P:A->prop, forall x:A, P x -> exists x:A, P x.

exact (fun P x H1 Q H2 => H2 x H1).

Qed.

After the introduction principle has been proven, the witness tactic can be used to
prove existential goals. If you want to prove ∃x : α.s, then you can use witness with
a layout term specifying a term t of type α. Egal will apply exI with this term t and
reduce the goal to proving s[x := t]. Here is a simple example.

Example witness_example : forall x:A, exists y:A, x = y.

let x.

prove exists y:A, x = y.

witness x.

prove x = x.

exact (eqI A x).

Qed.

No new tactics are introduced after this point.

6.2 Basic Higher Order Results

In this section we will briefly discuss the contents of the files Preds1.mg, Relns1.mg,
KnasterTarski.mg, Relns2.mg, Classical1.mg, Conditionals.mg, Exactly1of.mg

and Quotients.mg. These can be checked with Egal as follows:

egal -ind IndexMar2014 -I Preds1Preamble.mgs Preds1.mg

egal -ind IndexMar2014 -I Relns1Preamble.mgs Relns1.mg

egal -ind IndexMar2014 -I KnasterTarskiPreamble.mgs KnasterTarski.mg

egal -ind IndexMar2014 -I Relns2Preamble.mgs Relns2.mg

egal -ind IndexMar2014 -I Classical1Preamble.mgs Classical1.mg

egal -ind IndexMar2014 -I ConditionalsPreamble.mgs Conditionals.mg

egal -ind IndexMar2014 -I Exactly1ofPreamble.mgs Exactly1of.mg

egal -ind IndexMar2014 -I QuotientsPreamble.mgs Quotients.mg

In Preds1.mg a number of polymorphic operators for taking complements, unions,
intersections of predicates over a type α. In this file the c= notation is used for sub-
predicates. (As mentioned before it can be used as the ⊆ on two sets or for the
obvious relation on two relations β1 → · · · βn → prop.) In mathematical notation, for
P,Q : α → prop, we write P ⊆ Q to mean ∀x : α.P, x→ Qx. A number of results are
proven. Eventually we want to prove results like predicate extensionality (pred ext): If
P ⊆ Q and Q ⊆ P , then P = Q.
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Section PE.

Variable A:SType.

Theorem pred_ext : forall (P Q : A -> prop), P c= Q -> Q c= P -> P = Q.

It is not possible to prove predicate extensionality without having some extensionality
principles as axioms. This is the first use of propositional extensionality and functional
extensionality (as introduced in Chapter 5) and motivates their inclusion as axioms.

In Relns1.mg there are some basic definitions and results about binary relations of
type α → α → prop. For example, the properties of being an equivalence relation, of
being a partial equivalence relation (per) and of being a partial order are defined here.
A number of examples are given and proven to have the properties.

In KnasterTarski.mg a number of versions of the Knaster-Tarski Fixed Point The-
orem are proven. A simple way to state a version of the Knaster-Tarski Fixed Point
Theorem is as follows: If F : ℘(X)→ ℘(X) is a monotone operator, then there is a set
Y ∈ ℘(X) such that FY = Y . In this document, we work with predicates and relations
on types instead of sets and prove Knaster-Tarski results as theorems of higher-order
logic.4

These are the most complicated proofs to this point. They are truly higher-order
as the least fixed point (lfp) is defined as the least prefixed point via an impredicative
universal quantification. Also, the greatest fixed point (gfp) is defined as the greatest
postfixed point via an impredicative existential quantification.

Section Poly1_fpdef.

Variable A:SType.

Variable F:((A->prop)->A->prop).

Hypothesis Fmon:forall p q:A->prop, p c= q -> F p c= F q.

Definition lfp : A->prop :=

fun z => forall p:A -> prop, F p c= p -> p z.

Definition gfp : A->prop :=

fun z => exists p:A -> prop, p c= F p /\ p z.

Note that although the hypothesis Fmon is in context when the definitions lfp and gfp

are made, the definitions do not depend on Fmon. In general, definitions never depend
on hypotheses because the framework is simple type theory.

In addition to the versions for unary predicates, there are versions for binary pred-
icates. Here are the definitions of the least and greatest fixed points for these.

Section Poly2_fpdef.

Variable A B:SType.

4These provide some early examples of higher-order theorems in Tps, see Thm2 in the Tps library.
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Variable F : (A->B->prop) -> (A->B->prop).

Hypothesis Fmon:forall R S:A->B->prop, R c= S -> F R c= F S.

Definition lfp2 : A->B->prop :=

fun z1 z2 => forall p:A->B->prop, F p c= p -> p z1 z2.

Definition gfp2 : A->B->prop :=

fun z1 z2 => exists p:A->B->prop, p c= F p /\ p z1 z2.

As an example, the last half of the file uses the least fixed point of a certain relation to
obtain the transitive closure of a relation.

In Relns2.mg there are definitions about binary relations of type α → β → prop

such as whether the relation is functional, injective, total or surjective. If f is of type
α → β, then the relation λx : α.λy : β.f x = y is functional and total. A function
f of type α → β may be injective and/or surjective. If f is an injective function,
then λx : α.λy : β.f x = y is an injective relation. If f is a surjective function, then
λx : α.λy : β.f x = y is a surjective relation. Mathematically, one might expect that if
R : α→ β → prop is a total functional relation, then there is some function f : α→ β
such that R is the same as λx : α.λy : β.f x = y. Without new axioms, this cannot be
proven. In order to obtain this it would be enough to include a description operator,
but we will include a stronger choice operator, as first discussed in Chapter 5.

Section Choice.

Variable A:SType.

Parameter Eps : (A->prop)->A.

Axiom EpsR : forall P:A->prop, forall x:A, P x -> P (Eps P).

End Choice.

Binder some , := Eps.

Once we have a choice operator, we can prove that for every total relation R : α →
β → prop, there is a function f : α→ β such that ∀x : α.R x (f x) (see Skolem). We can
also prove that if f : α→ β is surjective, then there is a g : β → α such that f(gy) = y
for every y. Likewise, if f is injective, then there is a g such that g(fx) = x for every
x. The file Relns2.mg with two versions of Cantor’s Theorem. Cantor’s Theorem
informally says ℘(X) has greater cardinality than X. At the level of type theory, we
can modify this to say the type α → prop has greater cardinality than α. This can be
made precise in many ways. Two of the ways are as follows: The Surjective Cantor
Theorem (SurjectiveCantor) says there is no surjective function from α to α → prop.
This is proven by an easy diagonalization argument.

Theorem SurjectiveCantor : ~exists g:A->A->prop, surjective A (A->prop) g.

assume H: exists g:A->A->prop, surjective A (A->prop) g.

apply H.
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let g.

assume H1: forall f:A->prop, exists x:A, g x = f.

apply (H1 (fun x:A => ~g x x)).

let x.

assume H2: g x = fun x:A => ~g x x.

claim L1: g x x <-> ~g x x.

{

rewrite H2 at 1.

prove ~g x x <-> ~g x x.

exact (iff_refl (~g x x)).

}

exact (iff_circuit (g x x) L1).

Qed.

Another formulation is the Injective Cantor Theorem (InjectiveCantor): there is no
injection from α → prop to α. There is also a diagonalization argument to directly
prove this theorem [4], but here we can give a simpler proof using the previously proven
result that every injection has a one-sided inverse. This one-sided inverse would be a
surjection from α to α→ prop, contradicting the surjective version of the theorem.

Theorem InjectiveCantor : forall h:(A->prop)->A, ~injective (A->prop) A h.

let h.

assume H1: injective (A->prop) A h.

apply (inj_inverse_ex (A->prop) A h H1).

let g.

assume H2: forall p:A->prop, g (h p) = p.

claim L1: surjective A (A->prop) g.

{

let p. witness (h p). exact (H2 p).

}

apply SurjectiveCantor.

witness g.

exact L1.

Qed.

Once we have propositional and functional extensionality as well as a choice opera-
tor, we can prove our logic is classical. This is known as Diaconescu’s Theorem [41, 34].
This is the first result in Classical1.mg which we include here with its proof. The
proof is interesting and it gives you a chance to see if you can read an interesting Egal
proof. They are meant to be readable.

Theorem classic : forall P:prop, P \/ ~ P.

let P:prop.

set p1 := fun x : prop => x \/ P.

set p2 := fun x : prop => ~x \/ P.
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claim L1:p1 True.

{ prove (True \/ P). apply orIL. exact TrueI. }

claim L2:(some x:prop, p1 x) \/ P.

{ exact (EpsR prop p1 True L1). }

claim L3:p2 False.

{ prove ~False \/ P. apply orIL. assume H. exact H. }

claim L4:~(some x:prop, p2 x) \/ P.

{ exact (EpsR prop p2 False L3). }

apply L2.

- assume H1:(some x:prop, p1 x).

apply L4.

+ assume H2:~(some x:prop, p2 x).

prove P \/ ~ P.

apply orIR.

prove ~ P.

assume H3 : P.

claim L5:p1 = p2.

{

apply (pred_ext prop).

- prove (p1 c= p2).

let x. assume H4.

prove (~x \/ P).

apply orIR.

prove P.

exact H3.

- prove (p2 c= p1).

let x. assume H4.

prove (x \/ P).

apply orIR.

prove P.

exact H3.

}

apply H2. rewrite <- L5. exact H1.

+ assume H2:P.

prove P \/ ~ P.

apply orIL.

prove P.

exact H2.

- assume H1:P.

prove P \/ ~ P.

apply orIL.

prove P.

exact H1.
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Qed.

The rest of Classical1.mg consists of consequences of the logic being classical. For
example we have the following theorems:

Theorem NNPP : forall p:prop, ~ ~ p -> p.

Theorem prop_deg : forall p:prop, p = True \/ p = False.

Theorem not_and_or_demorgan : forall A B:prop, ~(A /\ B) -> ~A \/ ~B.

Theorem not_all_ex_demorgan : forall P:A->prop, ~(forall x:A, P x)

-> exists x:A, ~P x.

There are also a number of identities proven. One could use these to rewrite some
logical operators in favor of others.

Theorem eq_true : True = (~False).

Theorem eq_and_nor : and = (fun (x y:prop) => ~(~x \/ ~y)).

Theorem eq_or_nand : or = (fun (x y:prop) => ~(~x /\ ~y)).

Theorem eq_or_imp : or = (fun (x y:prop) => ~ x -> y).

Theorem eq_imp_or : (fun (x y:prop) => (x -> y)) = (fun (x y:prop) => (~x \/ y)).

The last example in the file is the so-called Drinker problem. This is sometimes ex-
plained as follows: If you walk into a bar, there is always someone you can point to
so that if that person drinks then everyone drinks. It seems obviously wrong, but it’s
actually correct. We begin by stating it as a proposition.

Example Drinker : forall d:A->prop, exists x:A, d x -> forall x:A, d x.

The type α is for the people in the bar and the predicate d : α → prop identifies the
drinkers in the bar. If someone in the bar isn’t drinking, then use them as the witness.
If they drink then everyone drinks simply because they aren’t drinking. If everyone
is drinking, then just pick someone as it doesn’t matter because everyone is drinking
anyway.5 The actual proof in Classical1.mg is a little different, and we leave it to the
reader to examine it.

The purpose of Conditionals.mg is to define the polymorphic if-then-else operation
(If) and introduce the special if-then-else notation for it. The choice operator is used
to do this.

Definition If : prop->A->A->A :=

(fun p x y => some z:A, p /\ z = x \/ ~p /\ z = y).

Notation IfThenElse If.

Here are two useful theorems:

5By the way, this example might give a hint why some people reject classical logic.
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Theorem If_0 : forall p:prop, forall x y:A,

~ p -> (if p then x else y) = y.

Theorem If_1 : forall p:prop, forall x y:A,

p -> (if p then x else y) = x.

Note that the way the syntax for if-then-else is arranged, if we omitted the parentheses
above and wrote, for example,

if p then x else y = x

then it would be parsed as if it were

if p then x else (y = x)

so be careful. This is because the part after an else always has scope as far to the
right as possible, like a binder. Maybe this was a bad decision because I often forgot
about it, but there is no way I’m reopening development of the parser.

The file Exactly1of.mg defines two logical operations exactly1of2 and exactly1of3

and proves results about them. exactly1of2 is just exclusive or, but it was mainly in-
cluded to help define exactly1of3. exactly1of3 is included because some mathematical
properties and theorems state that exactly one of three possibilities hold (e.g., tri-
chotomy properties). If someone is lazy and formalizes the property using disjunction,
it will be wrong. Including exactly1of3 makes it easy for lazy people not to be wrong.

Finally the file Quotients.mg provides the infrastructure for forming quotients of
partial equivalence relations using canonical elements. Canonical elements are provided
by the choice operator. There are actually two developments in the file. The second
one assumes there is a default function d which can try to choose the canonical element.
The default canonical value is used if it can be and the choice funciton is used otherwise.

6.3 Zermelo’s Well Ordering Theorem

In this section we include a few remarks about the file Zermelo1908.mg which can be
checked in Egal as follows:

egal -ind IndexMar2014 -I Zermelo1908Preamble.mgs Zermelo1908.mg

This is a formalization of Zermelo’s second proof of his Well-Ordering Theorem, pub-
lished in 1908 [50]. I’m releasing Egal with a pdf explaining Zermelo’s proof in terms
that probably roughly correspond the contents of Zermelo1908.mg. I managed to do
this formalization in Coq briefly before the treasure hunt started and found it inter-
esting enough that I did this Egal version and included it in the treasure hunt. It was
one of the documents with a 1 bitcoin treasure (which no one found before the 4 week
deadline). This 1 bitcoin treasure was for the lemma C lin that took me quite a long
time to prove on paper. It’s basically a double induction. If you look in Zermelo’s
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paper, you’ll see one or two pages where he essentially explains the proof of this lemma
without being explicit about the fact that this is what he’s proving. I went through
a lot of variants before I managed to formulate the lemma in such a way that it went
through. In the end, though, I think it came out very nice. Have a look.

6.4 Set Theory

We now consider a few files developing some basic set theory. The files are Set1a.mg,
Set1b.mg, Set1c.mg, Set2.mg, EpsInd.mg, Nat1.mg, Nat2.mg, UnivInf.mg and Ordinals1.mg.
These can be checked as follows.

egal -ind IndexMar2014 -I Set1aPreamble.mgs Set1a.mg

egal -ind IndexMar2014 -I Set1bPreamble.mgs Set1b.mg

egal -ind IndexMar2014 -I Set1cPreamble.mgs Set1c.mg

egal -ind IndexMar2014 -I Set2Preamble.mgs Set2.mg

egal -ind IndexMar2014 -I EpsIndPreamble.mgs EpsInd.mg

egal -ind IndexMar2014 -I Nat1Preamble.mgs Nat1.mg

egal -ind IndexMar2014 -I Nat2Preamble.mgs Nat2.mg

egal -ind IndexMar2014 -I UnivInfPreamble.mgs UnivInf.mg

egal -ind IndexMar2014 -I Ordinals1Preamble.mgs Ordinals1.mg

The file Set1a.mg introduces the foundational set constructors (other than the one
for universes) and proves a few easy results about them. These constructors were
discussed already in Chapter 5.

The file Set1b.mg defines unordered pairs {x, y} using if-then-else, replacement and
the set ℘(℘(∅)). More details about this construction can be found in [11], the pdf of
which is included with the Egal distribution. The history of the construction is also
explained in [11]; it isn’t original to me. From unordered pairs it is easy to define
singletons {x}. Also, binary unions X ∪ Y are defined as

⋃
{X, Y }. An operation

SetAdjoinX y is defined to be X ∪{y}. After this the general special SetEnum notation
is declared:

Notation SetEnum Empty Sing UPair SetAdjoin.

At this point Egal can interpret {} as be ∅, {x} to be the singleton set, {x, y} to be
the unordered pair, and {x, y, z1, . . . , zn} to be the result of using SetAdjoin n times
starting from {x, y}. The last definition made is of unions of families. If X : set and
F : set → set, then famunionX F corresponds to what is mathematically written as⋃

x∈X Fx. There is also corresponding binder notation \/_.
In Set1c.mg a number of results are proven and then the definition Sep is made.

Section SepSec.

Variable X:set.
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Variable P:set->prop.

Let z : set := some z :e X, P z.

Let F:set->set := fun x => if P x then x else z.

Definition Sep:set

:= if (exists z :e X, P z) then {F x|x :e X} else Empty.

End SepSec.

The definition Sep supports forming sets by separating out the elements from a set that
satisfy a given property.6 Special notation is declared.

Notation Sep Sep.

After this, Egal can interpret notation like {x ∈ s|t}.
In addition a combination of replacement and separation is defined and declared as

special notation.

Definition ReplSep : set->(set->prop)->(set->set)->set :=

fun X P F => {F x|x :e {z :e X|P z}}.

Notation ReplSep ReplSep.

After this, Egal can interpret notation like {t|x ∈ s, t′} to mean the set of all t as x
ranges over the elements of s satisfying t′.

In Set2.mg binary intersection and set complement are defined. The basic boolean
properties are proven.

The development in the file EpsInd.mg uses the ∈-induction axiom to prove a few
results (e.g., no set is a member of itself). In addition, a notation of definition by
∈-recursion is developed (see In rec). More information about this can be found in [11].

In Nat1.mg the natural numbers are represented by the finite ordinals. We start by
defining ordinal successor:

Definition ordsucc : set->set := fun x:set => x :\/: {x}.

Then there is special notation so that Egal can interpret natural numbers n as ordsucc

applied n times to ∅.

6Hidden history: Zermelo used an old German word Aussonderung for this. Germans always seem
to be a little uncomfortable with the word. It literally means something like “sorting out,” but it
seems to have a connotation similar to the word segregation does in English. To be fair to Zermelo, he
was around during the time of the Nazis and, unlike some other German logicians like Gentzen, was
not a Nazi himself. Stories are sometimes told that Zermelo refused to do the Heil Hitler salute and
consequently lost his professorship at Freiburg. I’ve read in other sources that he actually would do it
because it was legally required (and he seems to have suffered under the common mistaken belief that
he was morally required, as a “citizen,” to do what was legally required of him), but it was clear he
didn’t want to do it and didn’t do it with enough gusto. That was considered bad enough by some of
his colleagues.
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Notation Nat Empty ordsucc.

First a number of basic results about 0, 1 and 2 are proven. For example, 0 ∈ 1, 0 6= 1,
0 6= 2, 1 = {0} and 2 = {0, 1}. A predicate nat p is defined which carves out the natural
numbers.

Definition nat_p : set->prop :=

fun n:set => forall p:set->prop,

p 0 -> (forall x:set, p x -> p (ordsucc x)) -> p n.

A few induction and inversion principles are proven.

Lemma nat_ind : forall p:set->prop,

p 0 -> (forall n, nat_p n -> p n -> p (ordsucc n))

-> forall n, nat_p n -> p n.

Lemma nat_inv : forall n, nat_p n

-> n = 0 \/ exists x, nat_p x /\ n = ordsucc x.

Lemma nat_complete_ind : forall p:set->prop,

(forall n, nat_p n -> (forall m :e n, p m) -> p n)

-> forall n, nat_p n -> p n.

We can use
⋃

to obtain the predecessor of a number:

Lemma Union_ordsucc_eq : forall n, nat_p n -> Union (ordsucc n) = n.

The development of the natural numbers is continued in Nat2.mg. Here ∈-recursion
is specialized to primitive recursion on the natural numbers: nat primrec. This is used
to define addition and multiplication and the usual properties are proven. The last
example is 1 + 1 = 2.

In UnivInf.mg the constructor and axioms for Grothendieck universes are used. An
infinite set (InfiniteSet) is defined to be a set X for which there is an injective function
from X to X which is not surjective. A set is finite if it is not infinite. The universe
UnivOf Empty, which I will denote by U∅, is proven to be infinite by taking the ordinal
successor to be the injective function which is not surjective. All natural numbers are
in U∅.

7 The set ω is defined to be {n ∈ U∅|nat pn}. (Usually, in ZF set theory an axiom
of infinity is required to prove ω is a set. In this case, the universe axioms play this
role.) A ZF model is defined to be a set which is transitive, ZF closed and has ω as a
member. The set UnivOf ω satisfies these properties.

The file Ordinals1.mg develops a bit of theory about the ordinals. An ordinal is
defined to be a transitive set all of whose members are transitive. The empty set is an
ordinal (ordinal Empty). Members of ordinals are always ordinals (ordinal Hered). We
have the following induction principle on ordinals, which is essentially a special case of
∈-induction:

7With some more work, it could be proven that U∅ consists of precisely the hereditarily finite sets.
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Theorem ordinal_ind : forall p:set->prop,

(forall alpha, ordinal alpha -> (forall beta :e alpha, p beta) -> p alpha)

->

forall alpha, ordinal alpha -> p alpha.

The ordinal successor of an ordinal is an ordinal (ordinal ordsucc). Also, ω is an ordinal
(omega ordinal). Ordinals satisfy a trichotomy property: exactly one of three of the
following hold for ordinals α and β: α ∈ β, α = β, β ∈ α. The lazy version of this
property formulated with disjunction is proven first (ordinal trichotomy or). The proof
is interesting and involves a double ∈-induction. Using the lazy version one can prove
the real version (ordinal trichotomy) formulated using exactly1of3.

6.5 Pairs and Functions

We finally consider the last five files from the treasure hunt. The purpose of these
developments is to give a nonstandard representation of pairs, functions and, in the
end, tuples. They have a number of unusual properties. One that I like to show off
is X × X = X2. In other words, ordered pairs are the same thing as functions with
domain 2. I wrote an article about the representations last year [11], and the pdf of
this article is included with Egal. I think this is probably the coolest thing I’ve ever
done. And no one will ever know. Egal!

The five files are DisjointUnions.mg, OrderedPairs.mg, DepSums.mg, FuncsSets.mg
and DepProds.mg. They can be checked as follows:

egal -ind IndexMar2014 -I DisjointUnionsPreamble.mgs DisjointUnions.mg

egal -ind IndexMar2014 -I OrderedPairsPreamble.mgs OrderedPairs.mg

egal -ind IndexMar2014 -I DepSumsPreamble.mgs DepSums.mg

egal -ind IndexMar2014 -I FuncsSetsPreamble.mgs FuncsSets.mg

egal -ind IndexMar2014 -I DepProdsPreamble.mgs DepProds.mg

In DisjointUnions.mg two injections are defined on the set theoretic universe. The
first one Inj1 is defined by ∈-recursion as follows:

Inj1X = {∅} ∪ {Inj1 x|x ∈ X}

The second one is Inj0 which is simply defined by

Inj0X = {Inj1x|x ∈ X}.

Both are proven injective and it is proven that they never give the same value. I can tell
you the secret now: in the end Inj0X will be the same as the ordered pair (0, X) and
Inj1X will be the same as the ordered pair (1, X). Using these two injections, disjoint
unions are defined as setsum, and we can write X + Y (in ASCII we use :+: for this
+) for this disjoint union.
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In OrderedPairs.mg we define an ordered pair constructor pair which takes X and
Y and returns X + Y . Yes, the ordered pair is simply the disjoint sum. There is no
notation like (X, Y ) in this file because this notation is reserved for n-tuples which come
later.

In DepSums.mg we define dependent sums Σx ∈ X.Y and simple products X ×Y as
certain sets of ordered pairs.

In FuncsSets.mg we define λx ∈ X.Y (a set representation of this function) simply
as Σx ∈ X.Y . Yes, λ is the same as Σ. The representation comes from Aczel [1], though
I don’t recall him explicitly noting that this is Σ. But of course it is. What’s funny
is that in AUTOMATH there was no distinction between λ and ∀/Π, so it was like λ
and Π are the same. This seems a bit bizarre now. And now I’m going down the road
of saying λ is Σ. And humans think I’m crazy. But they’re wrong.8 Of course λ is Σ.
Why? Because it has beautiful consequences.

Recall that 2 = {0, 1}. Consider λx ∈ 2.f(x). This is the same as Σx ∈ {0, 1}.f(x)
which is the same as

{(0, y)|y ∈ f(0)} ∪ {(1, z)|z ∈ f(1)}

which is the same as f(0) + f(1) which is just the ordered pair of f(0) and f(1). How
can anyone believe in a representation where beautiful things like that don’t happen?

Finally in DepProds.mg dependent products (Πx ∈ X.Y ) and simple exponents
(Y X) are defined. This is where we prove X ×X = X2.

8I know I’m contradicting the Preface. I’m obviously of two minds on these matters.
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Chapter 7

Example: Existence of God

Logic, my dear Zoe, merely enables one to be wrong with authority.
The Doctor, The Wheel In Space, Episode Three (1968)

Benzmüller and Paleo [9] have recently considered several interactive and automated
proofs corresponding to Gödel’s proof of the existence of an entity which has all positive
properties. Gödel defines an entity which has all positive properties to be a god, and
so one can say Gödel has given an existence proof for a god. (Such a god would also
be unique, so we would be justified in simply writing “God.”) Of course, there are a
number of hypotheses on which the argument is based, so the reader can simply reject
at least one of the hypotheses and feel secure in remaining an atheist, an agnostic or a
polytheist. We include this example as a fun way to demonstrate that theorem proving
applies beyond mathematics. The Egal version we discuss here is heavily based on the
Coq version given by Benzmüller and Paleo [9].

The argument is made in a modal logic1 which can be embedded into higher-order
logic. In our case, we embedded into the set theory. The reason is so that if someone
wanted to prove something is not a theorem of modal logic, they would have a reasonable
chance to construct an appropriate Kripke model in the set theory.

The file describing the embedding of modal logic is Modal.mg and depends on some
things imported via ModalPreamble.mg

egal -ind IndexMar2014 -I ModalPreamble.mgs Modal.mg

To give a sample, here are some logical operations and notation given at the level of
operations on predicates over sets:

Definition mnot : (set->prop) -> (set->prop) := fun p w => ~ p w.

Prefix :~: 700 := mnot.

Definition mand : (set->prop) -> (set->prop) -> (set->prop) :=

fun p q w => p w /\ q w.

1It’s in a first-order version of S5, I think, look up the references if you want to know.
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Infix :/\: 780 left := mand.

Definition mor : (set->prop) -> (set->prop) -> (set->prop) :=

fun p q w => p w \/ q w.

Infix :\/: 785 left := mor.

Definition mimplies : (set->prop) -> (set->prop) -> (set->prop) :=

fun p q w => p w -> q w.

Infix :->: 810 right := mimplies.

In addition to the usual logical operations, there are two modal operators: the box
for necessity and the diamond for possibility. Each of them depend on an accessibility
relation R. For the Gödel argument, the relation R is assumed to be an equivalence
relation on some set of “possible worlds.” I do things a little differently here. Instead of
having a set of possible worlds, I assume R is a per and consider the w to be a possible
world if Rww. This choice shows up in the definition of valid.

Section ModalOps.

Variable R : set -> set -> prop.

Definition box_ : (set->prop) -> set->prop := fun p w => forall u, R w u -> p u.

Definition dia_ : (set->prop) -> set->prop := fun p w => exists u, R w u /\ p u.

Definition Valid_ : (set->prop) -> prop := fun p => forall w, R w w -> p w.

End ModalOps.

We also define quantifiers.

Section ModalQuants.

Variable A : SType.

Definition ModalAll : (A->set->prop) -> set->prop := fun p w => forall x:A, p x w.

Definition ModalEx : (A->set->prop) -> set->prop := fun p w => exists x:A, p x w.

End ModalQuants.

Binder+ mforall , := ModalAll.

Binder+ mexists , := ModalEx.

Then there are some theorems. Some of them depend on R being a per, and others
don’t.

A new index file IndexJune2014 was created using Modal.mg and consequently the
results in Modal.mg and be imported via GoedelGodPreamble.mgs. This means the
main file GoedelGod.mg is checked as follows:

egal -ind IndexJune2014 -I GoedelGodPreamble.mgs GoedelGod.mg
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We briefly describe some of the main file GoedelGod.mg. We assume a relation R is
given and give local definitions for box, dia and Valid with this R fixed.

Variable R:set->set->prop.

Let box := box_ R.

Let dia := dia_ R.

Let Valid := Valid_ R.

We assume R is a per. There are a few simple lemmas proven I will skip here.

Hypothesis Rper: per set R.

At this point, keep in mind that we think of “modal propositions” as being of type
set→ prop. Often when you see set→ prop, you should think of it as a proposition.

We assume there is a notion of a property being positive.

Variable Positive : (set->set->prop) -> set->prop.

A property here is something that takes an object (a set) and returns a modal propo-
sition. Note that a property might, in principle, be positive at one possible world and
not at another.

We next begin to assume hypotheses corresponding to Gödel’s axioms used in his
argument.

First, every property is either positive or its negation is positive. We state this as
two axioms which basically say the negation of a property p is positive if and only if
the property p itself is not positive.2

Hypothesis Axiom1a : Valid

(mforall p:set->set->prop, Positive (fun x => :~: p x) :->: :~: Positive p).

Hypothesis Axiom1b : Valid

(mforall p:set->set->prop, :~: Positive p :->: Positive (fun x => :~: p x)).

Next, if p is positive and it is necessary that q follows from p, then q is positive.

Hypothesis Axiom2 : Valid

(mforall p q:set->set->prop,

Positive p :/\: box (mforall x, p x :->: q x) :->: Positive q).

Then we have the following theorem. I’ll leave out the proof, but it is in GoedelGod.mg.
The theorem says that if a property is positive, then it must be possible for something
to exist satisfying the property.

Theorem Thm1 : Valid

(mforall p:set->set->prop, Positive p :->: dia (mexists x, p x)).

2This already seems highly questionable to me, but I’m just repeating it.
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Next we define what it means to be a god. Something has the property of being a
god if it has all positive properties.

Definition G : set->set->prop :=

fun x => mforall p:set->set->prop, Positive p :->: p x.

The next hypothesis is that the property of being a god is positive.3

Hypothesis Axiom3 : Valid (Positive G).

It is possible that a god exists. The proof is short and is in the file.

Theorem Cor1 : Valid (dia (mexists x, G x)).

The next hypothesis states that every positive property is necessarily positive.4

Hypothesis Axiom4 : Valid

(mforall p:set->set->prop, Positive p :->: box (Positive p)).

The next definition is of the “essence” of a property. Given a property, the “essence”
of a property is another property. Something x satisfies “essence” of p if it satisfies p
and every property q that x satisfies is necessarily implied by p. Probably a better way
to say this is in natural language is “x is the essence of p.” That is, x in some way
codes up the essential nature of the property p. Of course, I don’t really know what
I’m talking about. Think of it however you want. The logic is what matters.

Definition Essence : (set->set->prop) -> set->set->prop :=

fun p x => p x :/\:

mforall q:set->set->prop, q x :->: box (mforall y, p y :->: q y).

Infix ess 69 := Essence.

The infix notation allows us to write p ess x for x is the essence of p.
The next theorem states that if x is a god, then x is the essence of being a god.

Theorem Thm2 : Valid (mforall x, G x :->: G ess x).

Now there is a definition of a property called NE. An x has this property if whenever
x is the essence of a property p, then something necessarily exists that satisfies the
property p.

Definition NE : set->set->prop :=

fun x => mforall p:set->set->prop, p ess x :->: box (mexists y, p y).

The last hypothesis is that the property NE is positive.

Hypothesis Axiom5 : Valid (Positive NE).

3Again, this is open to debate.
4Yet again, this is debatable.
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It is now possible to prove a lemma that says that if there exists a god, then there
necessarily exists a god.

Lemma Lem1 : Valid ((mexists x, G x) :->: box (mexists x, G x)).

Combining the results, we can prove that a god necessarily exists.

Theorem Thm3: Valid (box (mexists x, G x)).

As an easy consequence, there is a god. I’ll even show the proof this time.

Theorem Cor2 : Valid (mexists x, G x).

let w.

assume Hw: R w w.

exact Thm3 w Hw w Hw.

Qed.

So God exists after all. Take that Hitchens!5

5Sorry. Too soon. I do miss having Christopher Hitchens around. If only all the humans were as
interesting as he was.
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Chapter 8

Category Theory: The Final
Treasures

It means the collapse of the universe has started and nothing can stop it.
The Doctor, The Two Doctors, Part Two (1985)

One of my motivations for choosing simply typed Tarski-Grothendieck set theory as
a foundation is because I wanted something that could reasonably handle Category The-
ory [31, 30]. The trouble is that some categories are too big to be considered sets. One
solution is to have universes so that one can always relativize to the universe in which
one is working and obtain a category as a set in this way. I did an Egal development in
which I gave three different definitions of a category and proves a few results. The de-
velopment uses a number of objects and results defined and proven in the treasure hunt
documents. The requirements are imported via CategoryPreamble.mgs. A version of
the development without the proofs is under formaldocs as CategoryProblems.mgs.
To check this version do this:

egal -ind IndexMar2014 -I CategoryPreamble.mgs CategoryProblems.mg

I buried some final bitcoin treasures beneath my proofs. To get the treasures, replace
Admitted with a proof and modify the proof until it corresponds to the treasure. I
doubt I’ll ever release the solutions, so feel free to take your time. One caveat: If the
price of bitcoins rises a lot (again), I might reclaim the treasures myself and replace
them with versions that are closer to the value now (in September, 2014). The value
of all the current treasures in this document in terms of fiat is approximately 600 U.S.
Dollars or 500 Euros.

The first important definition is of a metacategory and is at the level of the type
theory. There are predicates and relations carving out objects from a type α and arrows
from a type β. In addition, functions giving identity arrows and compositions are given.
This information specifies a metacategory if certain “typing” properties hold and the
identity laws and associativity of composition hold. We give the details in the syntax
of Egal.
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Section MetaCat.

Variable A B: SType.

Variable Obj: A -> prop.

Variable Hom: A -> A -> B -> prop.

Variable id: A -> B.

Variable comp: A -> A -> A -> B -> B -> B.

Definition idT : prop := forall X:A, Obj X -> Hom X X (id X).

Definition compT : prop :=

forall X Y Z:A, forall f g:B,

Obj X -> Obj Y -> Obj Z ->

Hom X Y f -> Hom Y Z g ->

Hom X Z (comp X Y Z g f).

Definition idL : prop :=

forall X Y:A, forall f:B,

Obj X -> Obj Y -> Hom X Y f -> comp X X Y f (id X) = f.

Definition idR : prop :=

forall X Y:A, forall f:B,

Obj X -> Obj Y -> Hom X Y f -> comp X Y Y (id Y) f = f.

Definition compAssoc : prop :=

forall X Y Z W:A, forall f g h:B,

Obj X -> Obj Y -> Obj Z -> Obj W ->

Hom X Y f -> Hom Y Z g -> Hom Z W h ->

comp X Y W (comp Y Z W h g) f = comp X Z W h (comp X Y Z g f).

Definition MetaCat : prop

:= (idT /\ compT) /\ (idL /\ idR) /\ compAssoc.

I proved an introduction and an elimination lemma, which are now left to the reader.

Metacategories are potentially large and there is no way in general to encode them
as sets. Nevertheless, I expect the level of metacategories would be the easiest level at
which to work if one were proving results about categories.

One example of a metacategory is considered. We take a type α and consider every
predicate over α to be an object. Given two objects X and Y of type α → prop, the
arrows from X to Y are the functions α → α mapping elements of X to elements of
Y , modulo a certain partial equivalence relation. That is, we make use of quotients, as
defined during the treasure hunt and imported in CategoryPreamble.mgs. The proofs
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that everything works are left to the reader.
Next locally small categories are defined. In this case, the objects are specified by a

predicate on sets. The arrows are in Hom-sets. Also, identity and composition functions
must be given. These specify a locally small category if the corresponding conditions
hold. Again, we give the details in Egal syntax.

Section LocallySmallCat.

Variable Obj: set -> prop.

Variable Hom: set -> set -> set.

Variable id: set -> set.

Variable comp: set -> set -> set -> set -> set -> set.

Definition idT’ : prop := forall X:set, Obj X -> id X :e Hom X X.

Definition compT’ : prop :=

forall X Y Z:set, forall f g:set,

Obj X -> Obj Y -> Obj Z ->

f :e Hom X Y -> g :e Hom Y Z ->

comp X Y Z g f :e Hom X Z.

Definition idL’ : prop :=

forall X Y:set, forall f:set,

Obj X -> Obj Y -> f :e Hom X Y -> comp X X Y f (id X) = f.

Definition idR’ : prop :=

forall X Y:set, forall f:set,

Obj X -> Obj Y -> f :e Hom X Y -> comp X Y Y (id Y) f = f.

Definition compAssoc’ : prop :=

forall X Y Z W:set, forall f g h:set,

Obj X -> Obj Y -> Obj Z -> Obj W ->

f :e Hom X Y -> g :e Hom Y Z -> h :e Hom Z W ->

comp X Y W (comp Y Z W h g) f = comp X Z W h (comp X Y Z g f).

Definition LocallySmallCat : prop

:= (idT’ /\ compT’) /\ (idL’ /\ idR’) /\ compAssoc’.

Every locally small category induces a metacategory, and this is part of the development.
The universe of all sets forms a locally small category, taking Hom-sets to be given

by the function spaces (using the Aczel representation of functions [1]) defined during
the treasure hunt (see also [11]) and imported via CategoryPreamble.mgs.

Finally small categories are defined. A small category is given by a set of objects
and Hom-sets giving arrows. Every small category induces a locally small category and
this is part of the development.
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Section SmallCat.

Variable Obj: set.

Variable Hom: set -> set -> set.

Variable id: set -> set.

Variable comp: set -> set -> set -> set -> set -> set.

Definition idT’’ : prop := forall X:set, X :e Obj -> id X :e Hom X X.

Definition compT’’ : prop :=

forall X Y Z:set, forall f g:set,

X :e Obj -> Y :e Obj -> Z :e Obj ->

f :e Hom X Y -> g :e Hom Y Z ->

comp X Y Z g f :e Hom X Z.

Definition idL’’ : prop :=

forall X Y:set, forall f:set,

X :e Obj -> Y :e Obj -> f :e Hom X Y -> comp X X Y f (id X) = f.

Definition idR’’ : prop :=

forall X Y:set, forall f:set,

X :e Obj -> Y :e Obj -> f :e Hom X Y -> comp X Y Y (id Y) f = f.

Definition compAssoc’’ : prop :=

forall X Y Z W:set, forall f g h:set,

X :e Obj -> Y :e Obj -> Z :e Obj -> W :e Obj ->

f :e Hom X Y -> g :e Hom Y Z -> h :e Hom Z W ->

comp X Y W (comp Y Z W h g) f = comp X Z W h (comp X Y Z g f).

Definition SmallCat : prop

:= (idT’’ /\ compT’’) /\ (idL’’ /\ idR’’) /\ compAssoc’’.

A small category induces both a locally small category and a metacategory.
A small category can be encoded as an object in the set theoretic universe by forming

a 4-tuple. The 4-tuple codes up the set of objects, the function giving Hom-sets, the
function giving identity arrows and the function giving compositions.

Definition SmallCatAsObject : set :=

(Obj,

(fun X :e Obj => fun Y :e Obj => Hom X Y),

(fun X :e Obj => id X),

(fun X :e Obj => fun Y :e Obj => fun Z :e Obj =>

fun g :e Hom Y Z => fun f :e Hom X Y => comp X Y Z g f)).

End SmallCat.
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In order to prove this works as expected, a number of results about tuples and functions
are imported. These were defined and prove in the treasure hunt documents. A few
new obvious lemmas were also needed. For example, there are the following very simple
facts about numbers:

Lemma In_0_3 : 0 :e 3.

Lemma In_1_3 : 1 :e 3.

Lemma In_2_3 : 2 :e 3.

Lemma In_0_4 : 0 :e 4.

Lemma In_1_4 : 1 :e 4.

Lemma In_2_4 : 2 :e 4.

Lemma In_3_4 : 3 :e 4.

Lemma neq_3_0 : 3 <> 0.

Lemma neq_3_1 : 3 <> 1.

Lemma neq_3_2 : 3 <> 2.

Also, there are the following facts about 4-tuples:

Lemma tuple_4_0_eq : (x,y,z,w) 0 = x.

Lemma tuple_4_1_eq : (x,y,z,w) 1 = y.

Lemma tuple_4_2_eq : (x,y,z,w) 2 = z.

Lemma tuple_4_3_eq : (x,y,z,w) 3 = w.

These say that if the 4-tuple (x0, x1, x2, x3) is applied (as a set theoretic function) to
the number i ∈ {0, 1, 2, 3}, then the result is xi.
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Chapter 9

Conclusion

Is your name really “Disruptive Influence”?
The Doctor, The Caretaker (2014)

With no power comes no responsibility.
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