
Dynamics and Trajectory Optimization for a Soft Spatial Fluidic
Elastomer Manipulator

Andrew D. Marchese, Russ Tedrake, and Daniela Rus

Abstract— The goal of this work is to develop a soft robotic
manipulation system that is capable of autonomous, dynamic,
and safe interactions with humans and its environment. First,
we develop a dynamic model for a multi-body fluidic elastomer
manipulator that is composed entirely from soft rubber and
subject to the self-loading effects of gravity. Then, we present a
strategy for independently identifying all unknown components
of the system: the soft manipulator, its distributed fluidic
elastomer actuators, as well as drive cylinders that supply
fluid energy. Next, using this model and trajectory optimization
techniques we find locally optimal open-loop policies that allow
the system to perform dynamic maneuvers we call grabs. In 37
experimental trials with a physical prototype, we successfully
perform a grab 92% of the time. By studying such an extreme
example of a soft robot, we can begin to solve hard problems
inhibiting the mainstream use of soft machines.

I. INTRODUCTION

Industrial-style manipulators have discrete joints and rigid
links. They have been transformative for industrial repetitive
tasks. However, these robots are often considered too rigid
for human-centered environments where the tasks are unpre-
dictable and the robots have to ensure that their interaction
with the environment and with humans is safe. Our goal is to
develop soft robot manipulators capable of autonomous, safe,
and dynamic interactions with people and their environments.
In this paper we present a suite of algorithms for dynamically
controlling a soft fluidic elastomer manipulator acting under
gravity.

In this work we provide an approach for dynamically
controlling soft robots. That is, an entirely soft fluid-powered
multi-segment robot can be autonomously positioned to ac-
complish tasks outside of its gravity compensation envelope.
Specifically, we begin by developing a dynamic model for
such a soft manipulation system as well as a computa-
tional strategy for identifying the model. Then, we use
this model and trajectory optimization methods to execute
dynamic motion plans. Through simulation and experiments
we demonstrate repeatable positioning of the aforementioned
manipulator to states outside of the statically reachable
workspace in dynamic maneuvers we call grabs (See Fig.
1). For example, consider a soft manipulator that can safely
and dynamically interact with humans by quickly grabbing
objects directly from a human’s hand. To the best of our
knowledge, this is the first instance of dynamic motion
control for a soft fluidic elastomer robot.
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Fig. 1. Sequenced photographs from experiments three and four.

A. Prior Work

Soft robots have continuously deformable backbones that
undergo large deformations. This attribute means soft robots
are a subclass of continuum robots, as reviewed by Robinson
and Davies [1]. However, not all continuum robots are soft
and even continuum robots referred to as soft have varying
degrees of rigidity.

1) Dynamics and Control for Continuum Robots: Purely
kinematic approaches to continuum robot control and plan-
ning work in simulation and when the robot is sufficiently
constrained by the rigidity of its actuators or backbone. For
example, Hannan and Walker [2] develop novel continuum
kinematics for a hyper-redundant elephant trunk and demon-
strate how these enable capabilities like obstacle avoidance.
Jones and Walker [3] [4] provide kinematic algorithms for
controlling the shape of multi-segment continuum manipula-
tors. Chirikjian and Burdick [5] use a continuous backbone
model to plan optimal hyper-redundant manipulator config-
urations using calculus of variations. Additionally, Xiao and
Vatcha [6] introduce a planar continuum arm planner that
enables simulated grasping in uncertain, cluttered environ-
ment.

Dynamic models of continuum robots open the door for a
variety of control techniques. Chirikjian [7] uses a continuum
approach to model the dynamics of a hard hyper-redundant
manipulator and uses this for computed torque control.
Gravagne and Walker [8] dynamically model the Clemson
Tentacle Manipulator, a hard continuum robot, and show a
PD plus feed-forward regulator is sufficient for stabilizing the
system. They further develop a large deflection model and
controller in [9]. Snyder and Wilson [10] [11] dynamically
model polymeric pneumatic tubes subject to tip loading using
a bending beam model but do not use this for control. Using
a Lagrangian approach Tatlicioglu, Walker, and Dawson [12]



develop a dynamic model for and provide simulations of a
planar extensible continuum manipulator. Braganza, Dawson,
Walker, and Nath [13] develop a neural network controller
for continuum robots such as OctArm [14] based on a
dynamic model.

2) Dynamics and Control for Soft Elastomer Robots: To
the best of our knowledge, highly compliant robots whose
bodies are made from soft elastomer and distributed fluidic
actuators have not used dynamic model-based control. Prior
work in this field uses model-free open-loop control policies,
but because this existing work does not derive control poli-
cies from nonlinear dynamic models these approaches cannot
efficiently plan motions for novel tasks without sufficient
trial-and-error. Most fluid powered soft robots use model-
free open-loop valve sequencing to control body segment
bending. That is, a control valve is turned on for a user-
determined duration of time to pressurize an elastomer
actuator and then off to either hold or deflate the actuator
[15], [16], [17], [18], [19]. Previously we have demonstrated
an approach to motion control for planar soft elastomer
manipulators using closed-loop kinematic control [20], [21],
but again a dynamic model was not used in the control
strategy. Open-loop model-free control is also common for
soft elastomer robots that do not use pneumatic actuation
[22], [23], [24], [25]. Luo, Agheli, and Onal [26] develop
and verify a planar dynamic model for a soft snake but do
not use it for control. Martinez et al. [27] develop manually
operated elastomer tentacles containing 9 PneuNet actuators
embedded within 3 body segments.

B. Contributions

Our work builds on this previous work. Specifically, this
paper contributes the following:

• A dynamic model for a fluid powered manipulator made
entirely from soft elastomer as well as a process for
fitting this model to experimental data;

• Dynamic control algorithms that allow such a soft
manipulator operating under gravity to be precisely
positioned;

• A manipulation primitive built on these dynamic control
algorithms, grabbing;

• Extensive experiments with a physical prototype.

II. DEVICE OVERVIEW

To start, we provide the reader with a brief overview of
the soft arm prototype and its drive mechanisms developed
by the authors in [28]. The soft arm is pictured in an
unactuated configuration in the left panel of Figure 2. It is
composed entirely of low durometer rubber and is powered
by fluidic elastomer actuators. These actuators are distributed
throughout the arm’s four body segments and allow each
segment to bend with two actuated degrees of freedom.
Driving actuation is an array of fluidic drive cylinders (Fig. 2
right). These devices consist of a fluidic cylinder at (a)
coupled to an electric linear actuator at (b). They move
fluid into and out of the arm’s soft actuators in a closed
circuit and provide continuous adjustment of fluid flow.

The actuated region of one of the manipulator’s soft arm

Fig. 2. Left: A soft continuum manipulator composed entirely from low
durometer rubber developed by the authors in [28]. Right: An array of
high capacity fluidic drive cylinders [20] used to drive the manipulator’s
distributed fluidic elastomer actuators.

segments is observed to bend with approximately constant
curvature κ and bend angle θ (i.e. κ = θ

L ) within a sagittal
plane defined by the bend angle orientation γ. In order to
transform from a segment’s base to a point s along the
neutral axis of its actuated region, i.e. s = [0, L] where L is
undeformed actuator length, we use the following kinematic
model transformation

Sbase
s = Rz (γ) Tz (LP ) Ry

(
κ s
2

)
Tz (d (κ s)) Ry

(
κ s
2

)
,

(1)
where R and T are rotations and translations about and along
the subscript axes and LP is the length of the segment’s
unactuated region and accounts for deadspace produced by
channel inlets and/or soft end-plate connectors. This model
is consistent with continuum manipulator literature [29] and
is developed and validated in the context of the soft fluidic
elastomer manipulator in [28].

The transformation from base to tip of a multi-segment
soft arm composed of N segments confined to a sagittal plane
defined by γ can be represented by cascading single segment
transformations together

Mbase
tipN

= Sbase
tip (γ, θ1) Sbase

tip (0, θ2) · · · Sbase
tip (0, θN ) .

(2)

III. DYNAMIC MODEL

To begin, we develop a dynamic model. The benefit of
using a dynamic model within the iterative learning control
algorithm is that control policies can be generated using
a model-based open-loop policy search algorithm, such as
trajectory optimization, and these are well-suited for under-
actuated systems.

A. Energetics

Our objective is to write the equations of motion for
this soft fluidic elastomer manipulator. To do this we can
first find the potential, kinetic, and input components of
energy for a single arm segment and then use a Lagrangian
approach to derive the equations of motion with respect to the
segment’s generalized coordinate. A fundamental difference
between soft and hard robot manipulators is in the way
energy is stored. In a soft fluidic elastomer manipulator,
input fluid energy is delivered from a power supply and
stored as both strain energy along its continuum segments Vε



and gravitational potential energy Vg . Both forms of stored
energy serve to deform the manipulator and are transferred
to kinetic energy T .

1) Potential Energy of a Segment: Consider a single arm
segment deforming in a sagittal plane defined by a fixed γ.
By approximating the center of mass to be located half-way
along the segment’s neutral axis, we can use S base

s to express
the center of mass position in R

3 as (xm (θ), ym (θ), zm (θ)).
Bend angle θ is understood to be time dependent. The
gravitational potential energy of the segment is

Vg (θ) = m g zm (θ) (3)

where m is the segment’s mass and g is the gravitational
constant. For a fluidic soft manipulator made of deformable
elastomer, a significant component of potential energy is
strain energy. For strain below 60%, we can approximate
the stress strain relationship of the arm segment’s outer layer
with a constant elastic modulus E. This was determined from
the specific material properties of the chosen elastomer. With
this, the strain energy developed in an actuated channel is

Vε =
1
2
∨ E ε2 → Vε =

1
2
π t̄ (h̄ + t̄) L E ε2 (4)

where ε is material strain, ∨ is the material volume incurring
strain, and t̄ and h̄ are the wall thickness and diameter of
the actuated channel. In a segment subject to circumferential
and longitudinal strain that deforms under constant curva-
ture, material strain ε and bend angle θ can be related by
decomposing the actuated region into J cross-sectional x-y
slices of z-axis length w as outlined in [28] and the law of
cosines

ε j =
h̄ j

w j

√
2 − 2 cos θ j ∀ j = 0 .. J → ε =

h̄
w
θ.

(5)
There are several important observations that allow us to
express this relationship between ε and θ: First, the dimen-
sions of each slice are uniform under the aforementioned
constant curvature assumption. Second, in general h̄ is not
constant, but rather changes as a function of strain h̄(ε )
and this is consistent with the analysis contained in [15]
where pneumatic channels similar to the type described here
increase in stiffness and potential energy when pressurized.
However, we observe that after undergoing initial circum-
ferential expansion, the diameter of the actuated channels
here changes little. Approximating the diameter h̄ to be
constant is valid to describe the regime of operation after
the initial circumferential change. Lastly, using the small
angle approximation cos θ ≈ 1 − θ2

2 for the argument θ
J

where J is chosen such that the approximation is valid, we
can linearize the relationship between ε and θ in order to
arrive at a constant stiffness coefficient and help reduce the
complexity of the model.

Now, we can write strain energy in the segment as a
function of bend angle

Vε (θ) =
1
2

(
π t̄ (h̄ + t̄) L E h̄2

w2

)
θ2 → Vε (θ) =

1
2

k θ2,

(6)

where k is an effective stiffness for the generalized coordi-
nate θ. The total potential energy of the arm segment in the
sagittal plane defined by γ is V (θ) = Vg + Vε .

2) Input to a Segment: We develop an independent gener-
alized force τ that acts on an arm segment by differentiating
the total potential energy with respect to the generalized
coordinate, i.e. τ = ∂

∂θ V

τ = k θ + a g Lm cos

(
θ

2

)
θ − 1

4
g L m sin

(
θ

2

) (
−1 + a θ2

)
(7)

We can substitute in the approximations sin
(
θ
2

)
≈ θ and

cos
(
θ
2

)
≈ 1 − 1

8θ
2 with less than 5% error at θ equal to 50◦

and 100◦ respectively

τ = k θ +
1
8

(1 + 8 a) g L m θ − 1
4

a g L m θ3 . (8)

This approximation will help simplify the identification
process in Section IV-C. Next, we can express the change
in channel volume Vc as a function of material strain and,
because of our aforementioned strain assumption, a function
of θ

Vc =
1
2
π h̄2

4
L ε → Vc =

π h̄3 L
8w

θ. (9)

Substituting this into the generalized force yields:

τ = −128 a g m w3

L2 π3 h̄9
V

3
c +

(
8 k w

π h̄3 L
+

(1 + 8 a) g m w

π h̄3

)
Vc ,

(10)
revealing that there is a cubic relationship between the
generalized force and the change in channel volume.

B. Multi-Segment Equations of Motion

We can write the equations of motion for a multi-segment
soft manipulator using multiple generalized coordinates as
follows. The center of mass position of the n th soft segment
is represented by Pn and can be expressed as

Pn =Mbase
tipn−1

Sbase
Ln

2

0 ∀ n = 1 .. N, (11)

where 0 is a vector of zeros. The total kinetic energy of a
manipulator with N segments is

T =
N∑
n=1

1
2

mn
d
dt

Pn · d
dt

Pn . (12)

And the total potential energy is

V =
N∑
n=1

1
2

kn θ
2
n + g

N∑
n=1

mn Pn · k̂. (13)

Using the Lagrangian L = T − V , N independent nonlinear
equations of motion can be written, one for each generalized
coordinate

d
dt
∂L

∂θ̇n
− ∂L
∂θn
= τn − bn θ̇n ∀ n = 1 .. N. (14)

where b is a damping term used to account for the non-
conservative nature of the generalized forces. The soft robot



dynamics can now be written in traditional manipulator
equation form

H(θ) θ̈ + C
(
θ , θ̇

)
θ̇ +G(θ) = B τ. (15)

Figure 3 provides an illustration of this model for a soft
manipulator composed of four segments. The sagittal plane
is defined by a traditional rotational degree of freedom γ
located at the manipulator’s base. In the most general case,
the dynamic model is parameterized by four generalized
coordinates θ1 . . . θ4 and four corresponding segment masses
m, generalized stiffnesses k, and damping coefficients b.
Additionally there are three generalized input forces τ.

xB
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xγ

yγ
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m2
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γ
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k4

τ2
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Fig. 3. Visualization of the multi-segment soft manipulator model. The
first soft segment is unactuated.

IV. SYSTEM IDENTIFICATION

In order to use the dynamic model developed in Section
III for automated control we must first develop a strategy
for identifying the model’s unknown physical parameters.
In addition to this, we must also define an approach for
identifying an accurate model for the manipulator’s soft
actuators as well as its drive mechanisms. In this section
we first present a high-level algorithm used to identify the
aggregate manipulation system composed of three distinct
subsystems: fluidic drive cylinders, distributed soft actuators,
and the soft manipulator. Then, we look specifically at how
these unknown model parameters arise from each subsystem.

A. Approach Overview

Identification of the aggregate dynamical manipulation
system arm is performed by iteratively adjusting a parameter
set p such that a model instantiated from p follows the
same N-segment endpoint Cartesian trajectory as measured
on the physical system. Specifically, we do this by solving
the nonlinear optimization within Algorithm 1 for a locally
optimal parameter set p∗. Here, En, i is a discrete trajectory
of the measured cartesian endpoint coordinates of the n th arm
segment. The manipulator state trajectory x(t) is composed
of segment bend angles θ and corresponding velocities θ̇.
The function FORWARDKINn uses the multi-segment trans-
formation to return the cartesian endpoint coordinates of the
nth arm segment. The function UPDATEMODEL instantiates
arm according to the parameter set p and the function
SIMULATE forward simulates the response of the dynamic

Algorithm 1 System Identification

min
p

∑
i

N∑
n=1

‖arm .FORWARDKINn (xi ) − En, i ‖

subject to arm ← UPDATEMODEL(p)

x(t ) ← SIMULATE
(
u(t ), arm, [0, t f ], x0

)
,

i = 
 t
dt
� ∀ t = 0 .. t f .

And initial conditions x0 are found according to

x0 = min
x

N∑
n=1

‖arm .FORWARDKINn (x) − En, 0 ‖

subject to xmin
n ≤ xn ≤ xmax

n ∀ n = 1 .. N .

model to input trajectory u(t) over the time interval t =
[0, t f ] from initial conditions x0.

The aggregate manipulation system arm consists of four
fluidic drive cylinder pairs (Figure 2 right panel) connected
to eight fluidic elastomer actuators distributed within the
soft manipulator. We break this aggregate system into three
distinct subsystems with the following input → output rela-
tionships:

1) Fluidic Drive Cylinders:
reference inputs u → cylinder displacements V s

2) Fluidic Elastomer Actuators:
cylinder displacements Vs → generalized torques τ

3) Soft Manipulator:
generalized torques τ → manipulator states x

Both the dynamic manipulator model and system identifi-
cation algorithm were implemented using Drake [30], which
is an open-source planning, control, and analysis toolbox for
nonlinear dynamical systems.

B. Fluidic Drive Cylinders

Volumetric fluid changes to each agonistic pair of embed-
ded channels within a soft arm segment are controlled by a
pair of position-controlled fluidic drive cylinders, a device
developed by the authors in [20]. In this work we further
develop and identify the device’s dynamic model. Each pair
is identified as an independent subsystem, and under the
sagittal plane assumption N of these subsystems are required.

The input to each subsystem is u, a reference differ-
ential volumetric displacement to the position controlled
cylinder pair and the output of each subsystem is V s , the
differential volumetric displacement of the cylinders. One of
two identical cylinders in the pair is driven at a time and
pressurizes either half of the attached bending segment. To
experimentally identify this subsystem we conduct several
trials of the same experiment. The experiment consists of
exciting the system with a reference wave w(t). We fit a
second order state space model to measured input-output data
from one of five trials and then validated the model prediction
against the remaining four trials. An example verification is
shown in Figure 4. The identification and verification process
was repeated for each of the 4 cylinder pairs used in later
experiments.
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Fig. 4. Example experimental identification of a position controlled fluidic
drive cylinder subsystem. The identification process consists of exciting each
independent subsystem with several randomized wave profiles and fitting
and verifying a two state LTI black-box model to measured input-output
data. Top: model predicted and measured output in blue and red respectively.
Bottom: subsystem input.

C. Fluidic Elastomer Actuators

To identify the dynamics of the arm’s soft actuators, we
rely on the predicted cubic relationship between internal
channel volume Vc and generalized torque τ as developed
in Section III-A.2. Also, the relationship between piston
pressure ps and channel volume Vc indicates a delay due
to the impedance of the transmission line Rt

ṗs =
1
C
V̇s (t) − 1

C Rt
ps +

1
Ca C Rt

Vc ,

V̇c = − 1
(C + Ca ) Rt

Vc +
Ca

(C + Ca ) Rt
ps (16)

where Vs (t) is considered the subsystem input and Ca and
C is a first order approximation of the actuator’s channel
compliance and air respectively. Combining these effects we
define a simplified identifiable model in the form

τ(t) = cV3
s (t − td ) . (17)

The model constants c for each actuator pair and a single
td are added to the main algorithm’s parameter set p for
identification, as the soft actuators are subject to dynamic
fatigue and their performance is susceptible to change over
time.

To validate this input output relationship, we again per-
form several trials of the aforementioned experiment, this
time deriving actuator torque through a custom apparatus
that measures the blocked tip force exerted by a segment
fixed at its base. Figure 5 shows an example input-output
identification for this subsystem.

D. Soft Manipulator

The manipulator’s dynamic model is symbolically param-
eterized by N masses m, stiffnesses k, and damping coef-
ficients b. In the actuated case, there are also N additional
actuator parameters, N − 1 unknown coefficients c and a
single time delay td . To reduce the parameter set p from
4 N parameters to 2 N + 2 parameters we make the following
observations: according to the expression for Vε in Section
III-A.1 stiffness changes linearly with channel length L and
therefore we can replace k with Li

L1
k where i is the segment
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Fig. 5. Example experimental identification of a soft actuator subsystem.
Again the identification process consists of exciting each independent
subsystem with several randomized wave profiles, but here we fit and
verify a two parameter nonlinear model to measured input-output data. Top:
model predicted and measured output in blue and red respectively. Bottom:
subsystem input.

index and k is a single unknown stiffness. Furthermore,
we hypothesize the non-conservative components of force
b θ̇ are similar along the length of the arm, therefore we
approximate the coefficients bi to be equal ∀ i.

V. GRABBING EXPERIMENTS

A primitive enabled by the developments in Sections III
and IV is grabbing. Grabbing is defined as bringing the arm’s
end effector to a user specified, statically unreachable goal
point with near zero tip velocity. Grabbing is an advanta-
geous strategy to employ during manipulation as it enables
the soft arm to reach areas that are statically unreachable due
to gravity.

There are several major challenges that arise when trying
to autonomously move the soft manipulator. First, we leave
the top segment unactuated to accommodate external loads
acting on the distal segments. Second, the system is tightly
constrained by generalized torque limits. That is, the low
operating pressures of the fluidic actuators in combination
with their very low durometer rubber composition equate
to constraints on input forces. To exemplify this problem
consider the following search for feasible solutions that
statically position the arm’s end effector to a goal point in
task space

find s.t. C − B τ = 0,

τ, θ ‖arm.FORWARDKINN (θ) − Goal‖ − ε = 0,

τmin
m ≤ τm ≤ τmax

m ∀m = 1 ..M,

θmin
n ≤ θn ≤ θmax

n and θ̇n = 0 ∀ n = 1 .. N.
(18)

By looking for solutions to goal points in the vicinity of the
end effector, we quickly bring to light the limitations of a
purely kinematic approach to motion planning for this class
of manipulators subject to gravity. Table I depicts feasible
static solutions in green for identified arms under estimated
torque limits.

A. Grabbing Algorithms

We develop an algorithm, Algorithm 2, that can plan
and execute a grab maneuver. The algorithm uses trajectory



optimization to both plan a locally-optimal policy in gener-
alized torque space as well as to determine an optimal input
trajectory to the aggregate manipulation system to realize this
policy. The trajectory optimizations were implemented using
Drake [30]. Algorithm 2 can be interpreted as an iterative
learning control, which after a couple grabbing attempts is
able to successfully perform the desired maneuver. Here,

Algorithm 2 Iterative Learning Control
1: arm0 ← SYSTEMID (xm (t ), u(t )).
2: i = 0.
3: while Goal is not met do
4: Π ← TRAJOPT (armi, Goal).
5: u(t ) ← INVERTACTUATORS (armi , Π).
6: xm (t ) ← RUNPOLICY (u(t )).
7: armi+1 ← SYSTEMID (armi , xm (t ), u(t )).
8: i + +.

xm (t) represents a measured state trajectory of the soft
manipulator over the time interval t = [0, t f ], u(t) is the
reference input trajectory to the manipulation system, and
Π represents a matrix of locally-optimal generalized torque
and state trajectories. The function SYSTEMID describes the
identification process in Section IV, the functions TRAJOPT

and INVERTACTUATORS embody processes described in
Subsections V-A.1 and V-A.2, and RUNPOLICY represents
executing the reference input policy u(t) on the physical
manipulation system.

1) Trajectory Optimization: We use a direct collocation
approach to trajectory optimization [31] in line 4 of Algo-
rithm 2. In short, this is a model-based open-loop policy
search that finds a feasible input trajectory that moves the
manipulator from an initial state to a goal state given both
input and state constraints. The policy Π can generally
be a function of both state and time, but in this case is
parameterized by M × t f

dt free parameters α where M is
the number of inputs and dt is a discrete time step

Πα (x, t) = αm, i ∀m = 1 ..M,

i = 
 t
dt
� ∀ t = 0 .. t f . (19)

In the case of the soft manipulator each α is a generalized
torque τ for each actuated segment augmented with the
manipulator’s state vector at each time step

Πα =

⎡⎢⎢⎢⎢⎣

τ0 τ1 τ2 . . . τ t f
dt

x0 x1 x2 . . . x t f
dt

⎤⎥⎥⎥⎥⎦
. (20)

The following trajectory optimization is performed to iden-
tify a locally-optimal policy Π∗α
Π∗α = min

α

∑
i

g(xi , τi ) ⇐ Objective Function

subject to 0 = xi − f (xi−1,τi−1) dt − x0 ∀ i = 1 ..
t f
dt
,

0 = h(x t f
dt

), ⇐ Enforce Tip Motion

τmin
m ≤ τm,i ≤ τmax

m and τm, 0 = 0 ∀m, ∀ i,

θmin
n ≤ θn, i ≤ θmax

n ∀ n, ∀ i,

θn, 0 ← measured and θ̇n, 0 = 0 ∀ n.
(21)

The first line of constraints forces the policy to obey the
manipulator’s dynamics and leverages a sequential quadratic
program’s ability to handle constraints. The second line
consists of general nonlinear constraints enforced at the
last point in the trajectory t = t f . In the specific case of
performing a grab we formulate h as follows:

hp = ‖arm.FORWARDKINN (θ) − Goal‖ − εp , (22)

hv = ‖arm.FORWARDVELN

(
θ , θ̇

)
‖ − εv, (23)

where hp constrains end effector position to the goal point
and hv constrains end effector velocity to be near zero at
the point in time the goal is reached. In both constraints ε
represents a definable error tolerance.

For the task of grabbing, the objective function g() can
be used to minimize end effector velocity at t f , i.e. taking

the form g
(
x t f

dt

)
= ‖arm.FORWARDVELN

(
x t f

dt

)
‖. Alterna-

tively, g() can be used to find a minimal effort policy and
take the form g (τ i ) = τT

i R τi , where R is a scalar weight.
2) Inverting Actuators: The manipulator’s motion is

planned in reference to its generalized torques. Using the soft
actuator model developed in Section IV-C, this motion plan
can be expressed in reference to cylinder displacements Vm

s ,
where superscript m denotes an individual cylinder model
for each input

V
m
s (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

−12/3 τ1/3
m (t )

a1/3
m

: τm (t) ≤ 0

τ1/3
m (t )

a1/3
m

: τm (t) > 0
(24)

Since the target motion plan V
∗
s (t) is a volume profile,

many alternative drive systems can be used to realize the
manipulator’s trajectory. In this work we use fluidic drive
cylinders and this approach allows us to closely match
the prescribed volume profile. To effectively invert the LTI
fluidic drive cylinder model, developed in the Section IV-
B, we use M direct collocation trajectory optimizations. In
these problems

Πm
α =

⎡⎢⎢⎢⎢⎢⎣

um
0 um

1 um
2 . . . um

t f
dt

xm
0 xm

1 xm
2 . . . xm

t f
dt

⎤⎥⎥⎥⎥⎥⎦
. (25)

And the following optimization, performed for each cylinder
model, identifies a locally-optimal reference input u∗(t). The
superscript m has been omitted for convenience

Πα
∗ = min

α

∑
i

‖Vs (i) − C xi + D ui ‖ ⇐ Track Vs

subject to 0 = xi − (A xi−1 + B ui−1) dt − x0 ∀ i = 1 ..
t f
dt
,

umin ≤ ui ≤ umax ∀ i and x0 = 0.
(26)

It is important to note that the locally-optimal input tra-
jectories u∗(t) returned by the above optimization represent
the best realization of a given volume profile subject to the
dynamic limitations of the drive mechanism. For example,
areas of high-frequency oscillation within τ ∗(t) can result
in significant localized tracking errors. As a solution, if the



discrepancy between simulated model output and volume
profile, i.e. ‖Vs (t)−C x(t)+D u(t)‖, exceeds an experimen-
tally determined threshold for some span of time, we simply
rerun the policy search procedure with a randomized τ(t)
until a suitable realization is found. Alternative solutions may
include planning directly in u space; however, this requires a
single optimization to handle a dynamic model of the entire
manipulation system, i.e. manipulator, actuator models, and
cylinder models.

B. Grabbing Evaluations

In order to experimentally validate the outlined approach
for grabbing with a soft and highly-compliant arm, we con-
duct multiple trials of four experiments, summarized in Table
I. The goal of these experiments is to have the aggregate ma-
nipulation system autonomously perform a grab maneuver.
A successful grab is defined as attaching to and removing
a 4 cm diameter table tennis ball from a holder at the goal
position; refer to Figure 1. Locally-optimal input trajectories
u∗(t), as determined in Section V-A.2, are executed on the
aggregate manipulation system. Trials reported in Table I and
Figure 6 occurred after successful completion of Algorithm
2. The arm’s torque limits are controlled and varied between
experiments, i.e. experiments one and two to three and four.
Among these groups goal location is also controlled for and
varied, i.e. one to two and three to four. In experiments
one and two the ball, represented as the black circle in
Table I, is fixed at the user specified goal location around
which the plan is derived. In experiments three and four the
ball location underwent an initial one-time, experimentally
determined adjustment by 2 cm to ensure it corresponded
to the simulated realization of the plan, which considers the
dynamic limitations of the fluidic drive system. Important
simplifications: In these evaluations the unactuated regions
between segments Lp were assumed zero. Additionally, for
model stability purposes, the center of mass locations were
redefined as

Pn = Mbase
tipn−1

Rz (γ) Tz (LP ) Ry

(
κ s
2

)
Tz

(
d (κ s)

2

)
0 ∀ n.

(27)
This adjustment effectively amplifies center of mass mo-
tion as segment curvature increases; However, for segment
curvatures achieved during these experiments, this model
assumption captures the dynamics of interest.

TABLE I

SUMMARY OF GRABBING EXPERIMENTS

Exp. Sys Consec. Success Plan Realization
# IDs Attempts Grabs at t = t f
1 2 10 10
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]

21

Ball
−0.2 −0.1 0 0.1 0.2

−0.5

−0.4

−0.3

−0.2

−0.1

0

x [m]

z 
[m

]

4 3

2 0 10 9†

3 2 5 4�

4 1 12 11�

† Actuator burst during 10th attempt.
� A successful grab occurred after the failed attempt.

The aggregate system was able to successfully grab the
ball in approximately 92% of trials. Experiments one and
two were performed consecutively. Although 2 iterations of
system identification were performed on the actuator model
parameter set during experiment one, no additional identifi-
cations were performed during experiment two. Similarly,
experiments three and four were performed consecutively
and two identifications were required during experiment
three and one during experiment four.

Figure 6 shows the cartesian state trajectories of the
manipulator’s end effector for each experiment. Trials for
which motion capture data was lost for a significant portion
of time were omitted. This occurred when the end-effector
endpoint was misinterpreted as the ball center-point and is
a limitation of the experimental setup. Raw end effector
velocity measurements were filtered using a 5-point moving
average, removing jitter from numerical differencing.

E
xp

er
im

en
t

1
−0.2 −0.1 0 0.1 0.2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

xt [m]

ẋ
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Fig. 6. Cartesian state trajectories of the manipulator’s end effector for
each experiment. The left and right figures show x and y tip velocity
versus position, respectively. The trajectories of independent trials for each
experiment are overlaid in black. These trajectories originate from the origin
and terminate at red markers indicating t = tf . The vertical blue lines
represent planned end-effector realizations ± 2 cm.

VI. CONCLUSION

In these initial experiments we found it feasible to compute
a sufficiently accurate dynamic model to make planning
viable for a soft elastomer manipulator. However, to obtain
the required performance for executing specific tasks, like



grabbing, we found it necessary to use iterative learning
control. Also, during grab experiments, hook and loop fas-
teners were used on the manipulator’s end effector and
the ball. To some degree, this mechanism compensated for
positional errors as the ball and end effector were securely
connected after the moment of contact. In future work, these
trajectories may be stabilized using linear time-varying linear
quadratic regulators (LTV LQRs) [32] making them robust
to uncertainty in initial conditions and tolerant of modeling
inaccuracies. Although this class of robot is well-suited for
environmental contact (e.g. whole arm grasping and bracing),
the modeling assumptions used here may not suffice under
these conditions. This work suggests dynamic model-based
planning and control may be an appropriate approach for soft
robotics.
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