
Lisp and Symbolic Computation, 2, 51-89 (1989)
© 1989 Kluwer Academic Publishers--Manufactured in The Netherlands.

Integrating Logic and Functional Programming*
HASSAN AIT-KACI
ROGER NASR
Microelectronics and Computer Technology Corporation
Austin, Texas 78759, U.S.A.

(hassan@mec.com)
(nasr@mcc.com)

Abstract. The intent of this article is twofold: To survey prominent proposals for the integration of logic
and functional programming and to present a new paradigm for the same purpose. We categorize current
research into four types of approaches, depending on the level at which the proposed integration is
achieved. Unlike most current work, our approach is not based on extending unification to general-purpose
equation solving. Rather, we propose a computation delaying mechanism called residuation. This allows
a clear distinction between functional evaluation and logical deduction. The former is based on the
)t-calculus, and the latter on Horn clause resolution. Residuation is built into the unification operation
which may then account for r-reduction. In clear contrast with equation-solving approaches, our model
supports higher-order function evaluation and efficient compilation of both functional and logic program-
ming expressions, without being plagued by non-deterministic term-rewriting. In addition, residuation
lends itself naturally to process synchronization and constrained search. We describe an operational
semantics and an implementation of a prototype language called LeFun--Logic, equations, and Functions.

I. Introduction

A surge o f research act ivi ty has been devo ted la te ly to " in tegra t ing logic and funct ion-
al p r o g r a m m i n g . " As usual , a rgumen t s ranging f rom mat te rs o f taste or p r agma t i c
performanlce, to deep theoret ica l concerns have been pu t forth, some quiet ly, some
forcefully. We, the au thors , do no t wish to con t r ibu te to the debate . R a t h e r - t h a n
tell ing the rest of the wor ld how this ought to be done, or even why it ought to be done
at all, we shall ab ide by a more peaceable m o d e o f descr ib ing wha t we do, why we do
it, and how. By no means , however , do we wish to a p p e a r "ho l ie r t han thou!" Indeed,
we th ink tha t some other p roposa l s have definite elegance, are o f prac t ica l use, or even
achieve high per formance . Ra ther , our answer came to us na tu ra l ly when we t r ied to
define precisely wha t we wanted , and real ized tha t none o f the p roposa l s k n o w n to us
would answer all and only our needs. Thus, we shall a t t emp t to mot iva te our work
by first laying out ou r desiderata; then, reviewing some o f the p r o m i n e n t p roposa l s
k n o w n to us, po in t ing ou t where each falls shor t o f some o f ou r wishes ~.

Here is the way we organized this article. Sect ion 2 in t roduces our specific mot iva -
tion. There, we first s tate our wishes, then we survey a sample o f a l ternat ive
endeavors 2. A l o n g the way, we shall po in t ou t how our wishes are m o r e o r less
satisfied, or how some ideas will concur with our p roposa l . The la t te r is overviewed

*This article is a revised and extended version of [1].

52 AIT-KACI AND NASR

in Section 2.3. In Section 3 we illustrate some details, operational points of our idea,
by means of Le Fun example programs. Section 4 presents Le Fun's unification
algorithm, which accounts for dynamic function evaluation. Section 5 gives a state
transition semantics for Le Fun. The implementation realizing Le Fun's modus
operandi is detailed in Section 6.4. Finally, a discussion relating our work to similar
approaches closes the main body of this article. Appendix A gives more examples of
how Le Fun's execution models constraint propagation.

2. Motivation and background

(...) the link between a 'higher' (in the sense
of 'more complex') and a 'lower" field results
neither in a reduction of the first to the sec-
ond nor in greater heterogeneity of the first,
but in mutual assimilation such that the sec-
ond explains the first, but does so by enrich-
ing itself with properties not previously per-
ceived (...)

Jean Piaget, Main Trends in Interdisci-
plinary Research.

2.1. Desideratum

To start with, let us define what we mean by functional programming and logic
programming. A better qualifier would be "functional and relational" in the following
sense.

• By functional, we understand a (1) directional, (2) deterministic, and (3) convergent
flow of information.

• By relational, we understand a (1) multidireetional, (2) non-deterministic, and (3) not
nec~essarity convergent flow of information.

That is (1) functions expect input and return output, whereas relations do not, (2)
functions do not fail or backtrack, whereas relations do, and (3) functions must
terminate on all legal input, whereas relations may enumerate infinitely many alter-
native instances of their arguments.

Now that we have defined our terminology, it seems that functional programming
is subsumed by relational programming. In a pragmatic sense, this is untrue since the
specificity of functional programming allows the elimination of rather heavy computa-
tional overhead. Importantly, we shall view functional programming as computat ion
in evaluation mode (no information guessing is allowed) and relational programming
as computat ion in a deduction mode (information guessing is allowed). This is an

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 53

essential delineation since it explains why functional programming can easily handle
higher-order objects. Indeed, missing arguments cannot be synthesized in functional
programming as they can in relational programming by way of unification. Synthesiz-
ing higher-order objects is, if not impossible, at best computationally very difficult and
expensive [31].

Although it is often the case that application problems can be solved entirely in
evaluation or deduction mode, these do not constitute all programming applications.
From our programming experience using a logic or functional programming
language, we have repeatedly found ourselves in frustrating situations where parts of
the problem we have at hand were of a functional nature, and others of a relational
nature. Of course, we could always fit those parts into the language, but at the cost
of some unnatural and often non-trivial thinking. Thus, having better things to do
than to argue with the High Priests of each camp, we came to the natural conclusion
that both modes were appropriate in different situations. Many others seem to have
as well conceded this, and have thus proposed solutions. Let us review some in light
of our wishes.

2.2. A survey

Roughly, there seem to be four main trends: an embedding approach; a syr, actic
approach; an algebraic approach; and a higher-order logic approach.

The embedding approach typically proposes that a particular logic or functional
language is all that one needs by showing how one can "easily and elegantly"
implement the other camp's approach without losing access to the native powers of
the chosen language: The syntactic approach is characterized as accommodating the
functionality of the other camp through syntactic sugar. The algebraic approach uses
the notion of term rewriting as the operational semantics for functional program-
ming. The higher-order logic approach takes the daring stand of immersing computa-
tion in combinatory logic which has the theoretical power of handling functions and
relations alike.

2.2.1. The embedding approach. This is the most immediate approach. It consists of
implementing X in Y so as to have all the goodies of X without losing Y's. For
example, Darlington [16] implements sets (logical predicates) as set expressions in a
KRC manner [64], Mellish and Hardy implement Prolog in POP-2 (PopLog) [45],
Robinson allows logic quantifiers in Lisp [57], and Felleisen "transliterates" Prolog
into Scheme [22].

This approach does not meet our desideratum in that it does not really integrate
logic and functional programming, insofar as a BASIC implementation of a Lisp
interpreter does not integrate BASIC and Lisp. The implementation language is
simply the metalanguage of the implemented language and obscures the potential for
native computational optimization of the rendered language.

54 AIT-KACI AND NASR

2.2.2. The syntactic approach. Let us take the standard "higher-order" functional
definition of map, a function which returns the list off-images of elements of a list.

m a p (f , 1) = if I = nil
then nil
else cons(f(head(1)), m a p (f , t a i l (1)))

This example uses standard informal syntax of (sugared) 2-calculus [40]. An equa-
tional syntax which may conveniently give the advantage of being dually interpreted
as rewriting rules as well as yet another sugaring of the 2-calculus, would be:

map(F, []) = [] .
map(F, [HIT]) = [F (H)] m a p (F , T)] .

Another example of such a "higher-order" definition expresses the fold functional
which cumulatively performs a given operation on a list of arguments.

fo!d(Op, ld, []) = Id.
fold(Op, Id, [HIT]) = Op(H, fold(Op, Id, T)).

In these examples, we use the now well-known and convenient syntax of Prolog's
notation for lists using square brackets, and capitalized logical variables. This syntax
is not hard to understand. However, the reader is likely to fancy more than one
semantics, even operational ones, which may compute with this functional specifica-
tion. Thus, besides the 2-calculus, various combinatory logics with various combina-
tor bases [63, 32], as well as categorical logic [13, 14], and algebraic semantics, whether
first-order [39], second-order [12], or co-order [15, 24, 25], to name just a few, could
be used, some being perhaps a bit of an overkill for the purpose of a simple functional
evaluator.

One may thus choose to proceed as syntactically as possible, and let such notation
as above be the tip of a preprocessing iceberg. Thus and typically, the works that we
classify as using this approach choose some Turing-equivalent (operational)
semantics, like Natural Deduction (e.g., Prolog [65]), Equational Logic (e.g., TEL
[62]), or Applicative Programming [4], and give methods to transform statically a
given syntax of terms intended for one computational semantics into one alternate
such logical, equational, or functional specification whose realization on the opera-
tional engine at hand behaves according to the intended semantics--all in a manner
that could be made invisible to the user. Let us look at a couple of these proposals
to illustrate our point. Namely, Warren's [65] and Smolka's [61] desugaring of
applicative expressions into Prolog and TEL, respectively.

Warren's proposal suggests using Prolog as the operational target for a sugared
notation of functional expressions, and Smolka's uses typed equational logic with
innermost narrowing ~. Both methods center around representation of curryed
functions--partial applications--in the language of first order terms--i.e., fixed-arity

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 55

terms of first-order type. The aim is to provide an operationally explicit trick for
making sense out of syntactic terms which do not respect arity constraints or allow
functional formal arguments. This is achieved by expressing everything at a meta-level
with a binary function a p p l y denoting (curryed) function application. No'assumption
need thus be made on the arity of function symbols--which become 0-ary (constant)
symbols in the meta-alphabet, perhaps with the pragmatic exceptions of constructors;
i .e. , symbols that denote data structures. By the same token, this also transforms
variables previously of higher-order sort into first-order variables.

Thus, for Warren, an application of a function to n arguments is seen as an
(n + 1)-ary predicate whose (n + 1)-st argument is to be the result of applying the
function to the n first arguments. Applicative function composition is unnested into
a sequence of n subsequences of predicate invocations--one subsequence per function
argument--followed by one application of the outermost function feeding the n
results into the ultimate invocation. For example, such an expression a s f (g (a , b) , f (c))

denotes the result of applying a function called f, of arity at least 2, to two arguments,
which are respectively the result of applying a function g, of arity at least 2, to two
arguments a and b, and the functionfto one argument c. The leaves a, b and c denote
indefinite constants. Thus, using its operational semantics with a ternary a p p l y

predicate such that a p p l y (X , Y , Z) means Z = X (Y) , the Prolog way of paraphrasing
the above denotation would be:

Conjunct
apply(g, a, X),
apply(X, b, Y),
apply (f, Y, Z),
apply(f, c, U),
apply(Z, U, V),

Meaning
X = g(a) = 2x.g(a,x)
Y = 2x.g(a,x)(b) = g(a,b)
Z = f(g(a,b)) = 2xf(g(a,b) ,x)
U = f (c) = 2x. f (e , x)
V = 2x . f (g(a,b),x)(2xf (c,x)) = f (g(a,b),2xf (c,x))

where the denoted value is referenced by the logical variable V. Note that in order to
be correctly executable in Prolog, explicit currying of all possible partial applications
for f and g must somehow be provided. Namely,

a p p l y (f , X , f (X)) .
a p p l y (f (X) , Y , f (X , Y)) .
a p p l y (g , X , g (X)) .
a p p l y (g (X) , Y , g (X , Y)) .

Warren's proposal amounts to generating explicitly the necessary additional clauses.
Looking back at the m a p example, this is desugared into Prolog as:

apply(map, F, map (F)).
apply(map(F), [], []).
apply(map(F), [HIT], [FHIFT])
"- apply (F,H, FH),

apply(map (F), T, FT).

56 AIT-KACI AND NASR

and the fold example is desugared as:

apply(fold, Op, fold(Op)).
apply(fold(Op), Id, fold(Op, Id)).
apply(fold(Op, Id), [], Id).
apply(fold(Op, Id), [HIT],Val)
: - apply(Op, H, Oph),

apply(fold(Op, Id),T, Tval),
apply(Oph, Tval, Val).

In Smolka's TEL programming language (Typed Equational Logic [62]), i f f is a
defined n-ary function, currying is achieved by introducing n new k-ary constructors
for 0 ~< k ~< n - 1 and new equations for a binary apply combinator of the form:

apply(fk(X1 X~), [Y1 Yt]) =fk+t(Xl Xk, Y~ Yt)

for each k and l such 0 ~ k ~<l ~< k + l ~< n, and wherefn stands f o r f 4. At the same
time, all partial f-expressions (application of n - a r y f t o less than n arguments) of the
f o r m f (f i , . . . , 4) are desugared into expressions of the formfk(s~, . . . , sk) where the
si's are the desugared t;'s.

Again, the trick also takes care of higher-order variables by desugaring all ex-
pressions of the form F (t t , . . . , 4) into apply(F,[sl sk]), thus turning them into
first-order variables. Even further, 2-expression of the form 2x.t , where t contains k
free variables x l , . . . ,xk, is desugared into f k (x l Xk), where f is a new symbol
defined by the new equation f (x~ , xk, x) = t.

This syntactic transformation will take the map definition into:

map(F, []) = [] .
m a p (F , [H I T]) = [a p p t y (F , [H]) t m a p (F , T)] .

apply(map0,[F]) = mapl(F).
apply(map0,[F,L]) = map(F,L).
apply(mapl(F), [L]) = map(F,L).

and the f o l d definition into:

fola(Op, Zd, [])
fomd(Op, Zd, [Hl'rl

apply(fold0,[Op])
appiy(fold0, [Op, ld])
apply(fold0, [Op, Id, L]) =
apply(foldl(0p),[Id]) =
apply(foldl(0p), [Id, L] =
apply(fold2(0p, ld),[L])=

= I d .

= apply(Op, [F, fold(Op, Id, T)]).

= foldl(Op).
= fold2(Op, Id).

fold(Op, Id, L).
fold2 (Op, Id).
fold(Op, Id, L)
fold(Op, Id, L).

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 57

The syntactic transformation approach does not meet our desideratum either. Both
Warren's and Smolka's methods are making the assumption that somehow functions
will not be synthesized. When apply is invoked with its first functional argument
uninstantiated, many spurious functions are examined as potential candidates.
However, most such calls do not denote anything (e.g., consider the call
a p p l y (F , [0, 1, 2] , [1, 2, 3]) in the context of Warren's map definitions). Such
calls will aimlessly wander through all possible currying of all known functions before
eventually failing---time and'space consuming for a simple failure.

Warren's idea looks less prolific in the number of generated definitions. However,
it is not difficult to see that it will pay some run-time price that Smolka's statically
explosive method will not. Indeed, Warren's method insists on systematically currying
all functions. In particular, if a call has all or some of its arguments present, these will
be sequenced into successive unary abstractions. This, naturally, makes run-time
function application less efficient since n formal arguments mean n function invoca-
tions. Whereas, Smolka's method uses memo-lists of arguments already present at
parse-time, and provides for run-time argument memoizing as well, thus generating
less run-time calls to the detriment of an explosive number of new definitions, not to
mention as many new constructor symbols to garbage-collect.

Of course, one could venture many ways of optimizing the methods, but this would
strike as odd since one would then be trying to "fix a fix" rather than the original
problem.

2.2.3. The algebraic approach. We put in this category works that are based on
equational logic as part of their operational semantics. Such proposals are due to
Goguen and Meseguer (EqLog) [28], Hsiang [30], Josephson and Dershowitz (Rite)
[35], Fribourg (Slog) [23]. The reason why we do not put Smolka's TEL [62] in this
category is that although he expresses the semantics of his language as equational
logic, the implementation relies on compiling equations into Horn clauses whose
execution by Prolog realizes innermost narrowing. Other more or less operational
approaches (e.g., [2, 55, 67]) have been proposed recently that exploit some of the
same ideas with roughly the same justifications, some a priori, others perhaps as
afterthoughts. We shall rapidly gloss over EqLog and Hsiang's approach.

Goguen and Meseguer have stressed InitiaIity as the essence of model-theoretic
semantics for programming languages [27, 46]. The idea has great elegance and
simplicity, and is a model-theoretic property which guarantees that all well-formed
the syntactic constructs denote a precise abstract object in all models. Thus, using
first-order terms on a ranked alphabet as syntactic objects for the representation of
programs (a Herbrand Universe), one can be guaranteed a unique interpretation
(homomorphism) of programs into their abstract denotations, sets of which elements
constitute models for well-formed programs. All such program expressions unam-
biguously denote all and only elements of the model. This is paraphrased by Goguen
and Meseguer as no junk, no confusion models. The elegance of the theory appears as
the initiality property is preserved under equational congruences for finitely presented
equational models. That is, adding (finitely many) equations (any finite binary

58 AIT-KACI AND NASR

relation) to the language of term expressions generates a congruence relation where
one same denotation is now given in the same unambiguous way to (congruence)
classes of expressions. Hence, semantics of a program expressed as a finite number of
first-order equations is obtained as a simple algebraic quotient.

Operationally, this translates as term-rewriting as a computation procedure (term
evaluation), and equation-solving as deduction (equal denotation for two terms). The
latter may be given many realizations depending on the various restrictions one may
put on the syntax of terms. Narrowing [21, 33, 56], congruence closure [7, 26],
Knuth-Bendix completion [18, 19], and all variations thereof induced by miscella-
neous E-unification operations [52, 66, 37, 38], are thus all effectively complete
enumeration procedures of sets of principal solutions of equations. Divergence is, of
course, possible when no solution exists or the complete set of solutions is unbounded.

Understanding the concept of initiality, one must naturally ask whether this nice
property can be taken further into model varieties that are not equational. That is,
what if program specifications are not longer just equations, but built in richer
languages like logics and sub-logics of any order. More precisely, the question may
be cast in so many words as, "'Is there a larger (largest?) class of models than first-order
equational varieties which can be guaranteed the existence of an initial model?" A very
beautiful discovery by two model-theorists, Mahr and Makowsky [42], provides an
answer to this question for first-order varieties 5. Namely, the Mahr-Makowsky
result states that yet another class of models which is guaranteed the initiality
property are those models algebraically characterized as being closed under direct
products. Another name for these structures which is perhaps more familiar to the
reader is Horn Models. That is, models of Horn Logic. In other words, if in addition
to equations, Horn clauses were also used to specify programs, a very clear model
theoretic semantics is obtained for free, together with the natural operational
semantics of Horn clause resolution interleaved with any complete equation-solving
in lieu of unification.

Thus is EqLog justified and defined: exploiting greater power of initial model
semantics as well as being operationally realized by, say, Prolog and Narrowing.
Undoubtedly, this has great syntactic and semantic clarity and tidiness. It is however
strictly first-order-although surely all the syntactic tricks of Smolka's apply. Also,
non-determinism of narrowing introduces yet another source of pragmatic problems,
even when completeness of outermost narrowing is used to simplify redex choice at
unification time. Namely, functions are no-longer determinate 6, with the granted
relative advantage of being invertible. Although, in our view, if one is interested in
inverting functions, one should not define them as functions to begin with, but as
relations--which Prolog technology may "invert" at will.

Hsiang's approach is also cleverly exploiting an algebraic result of equational logic.
It may be paraphrased as follows. Since first-order logic can be cast algebraically into
a complete set of ten reductions--a finite presentation of a boolean ring--and since
so-called logic programming is defined as some sort of decision procedure in a
boolean algebra, one can use the Knuth-Bendix method as a decision-procedure.
Specifically, a (logic) program is now seem as an equational specification enriching the

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 59

set of complete reductions. Computation is the Knuth-Bendix completion procedure
altered such that critical-pair computation is biased from the equational query of the
form q = true or q = false to the added set of rules, from which in turn critical pair
computation is performed by need toward the complete set of reductions.

Thus, evaluating a query is finding a sequence of equational lemmas, if one exists,
and a variable assignment which prove that the logical term q is tautologically
equivalent to true or false. For example, proving a first-order sentence s is done by
adding the equation s' = true, where s' is the skolemized version ofs. If no additional
rules are generated by the completion procedure, then the sentence is proven (since
s and true are shown to be in the same equational congruence class). If more rules are
generated, the sentence is false. For the reader with background in Automatic
Theorem-Proving, this may be reminiscent of a combination of set-@support resolu-
tion (the ten complete reductions) and linear resolution (resolving from goal to
assertions). Naturally, the process will diverge in the case where the query is unsolv-
able.

Our desideratum is yet again not met by the algebraic approach. Admittedly, the
idea is a good one, especially since it constitutes a radical departure from resolution-
like logic programming, and is operationally novel. It allows full first-order logic as
may be expressed using Hsiang's approach. There are however many hang-ups as far
as pragmatic exploitation of the method is concerned. The first being that it is not
clear that this is more efficient that Prol0g technology. The second being that Knuth-
Bendix completion demands a simplification ordering on terms for rule orientation,
opening a Pandora's box of many yet unsolved problems, especially when combined
with E-unification (e.g., termination of AC-rewriting). Finally, this method being
based on first-order equational logic as Goguen-Meseguer's and Smolka's, the same
observations apply. At any rate, the method is a very active field of research which
deserves attention.

2.2.4. The higher-order logic approach. Naturally, there are also those who do not
hesitate to make the jump into hyperspace. Indeed, since the 2-calculus is a common
language to combinatory logic and functional programming, and knowing that the
key operation in ~o-order logic (higher-order unification) is semi-decidable [31, 29]
------i.e., not worse than, say, Horn clause resolution--why not just use these tools,
which are available, to construct a (relatively) complete operational calculus. Such is
the approach of Nadathur's and Miller's [47, 49], who explore programming language
design based on higher-order logics.

Strange as it seems, this approach is not any more complex than first-order
equation solving methods. In fact, the two methods are operationally homomorphic
as we shall see. That is, we can transform a higher-order equation into a first-order
equation modulo a first-order theory. We summarize the trick next. This trick was
suggested to us by Dale Miller.

Let us consider the 2-calculus, augmented with logical variables of any finite order
---i.e., first-order (element) variables, second-order (function, or set, or predicate)
variables, third-order (functional, or set of sets, or recta-predicate) variables, etc. We

60 AIT-KACI AND NASR

have as usual, constants (of any order), functional abstractions, and applications 7.
Now, higher-order unification is simply solving equations in this language, modulo

)u-conversion, a binary relation on 2-terms which is the composition of three other
relations:

(~) alphabetical renaming--which considers two terms equivalent up to a renaming of
their 2-bound identifiers.

(fl) functional application--which relates a 2-term of the form (2x.e)(e') to the term
e[x ~- e'], i.e., the term e in which the term e" is substituted for all free occurrences
of x in e.

(q) extensionality--which asserts that a functional t e rmf is equivalent to any term of
the form 2x.f(x), where x does not occur free in f . This relation expresses that
functions which are pointwise equal are equal.

Now, considering the (non 2-bound) variables as constants, we can translate these
Z-terms into combinations (binary application trees) of combinators--for example,
using the standard S, K, I basis (although any complete combinator basis would do
[5, 631).

Recall that,

I---- /~X.X

K = Zx.2y.x

s = ;~f ,~g.;~x. f (x)(g(x))

Rewriting this using well known syntactic sugar yields the following equations:

I (X) ~ X

K(x, y) = x

S(f ,g ,x) = f (x)(g(x))

Thus, the SKI-calculus has three reduction rules. Of course, this looks almost
first-order, and invites a confusion. Indeed, it looks as if I is a unary operator, K is
a binary operator, and S is a ternary operator--except that the third right-hand side
would be syntactically ill-formed.

A better trick is to consider the following first-order ranked operator signature
Z = {@2, so, ko,io}, where subscripts denote arity, @ stands for apply, and s, k, i are
three distinguished constants; together with the following reduction rules:

@(i, x) --+ x

@(@(k, X), Y) --+ X

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 61

@(@(@(S, F), G), X) --+ @(@(F, X'), @(G, X))

What happens now if one plays the game of narrowing modulo this set of reduc-
tions? That is, can equations be solved after a syntactic sweetener translated your
favorite syntax of the 2-calculus into the above first-order combinations? The answer
is simple: Yes--higher-order unification.

Of course, with these combinators and rules alone innermost narrowing is not
possible. However, it is possible with the following set of combinators {S, S', S", K,
K', I} together with the translation rules:

kx -~ k 'x

Sf-+ S ' f

S'fg --+ S"fg

and the reduction rules:

Ix-+ x

K'sy--+ x

S"fgx --+ (fx)(gx)

And now, consider Y~ = {@2, i0, k0, So, k'~, s], s'; } and the new first-order rewrite
rules:

@(i, x) --, Jr

@(k, X) --, k ' (X)

@(k ' (x) , r) ~ x

@(s, F) --+ s'(F)

@(s'(F), 6) -+ s"(F, G)

@(s"(F, 6) , X) -~ @(@(F, X), @(6,X))

can be cast immediately in the following (innermost narrowing) Prolog program:

apply(i, X, X).
apply(k, X, kl(X)).
a p p t y (k t (X) , - ,X) .

62 AIT-KACI AND NASR

a p p l y (s , F, s l (F)) .
a p p l y (s l (F) , a, s2(F, G)).
apply(s2 (F, G), X, Y)

: - a p p l y (F , X, FX),
app ly (G, X, GX),
a p p l y (FX, GX, Y) .

Clearly, any complete combinator basis will do. However, pragmatic trade-offs of
time versus space may arise, as more combinators mean more equations, which in turn
mean more nondeterminism. Nevertheless, more combinators, if adequately chosen,
also mean more compact programs, and thus less narrowing work.

Yet another game one can play with the above is constructing a "higher-order"
EqLog where higher-order terms are translated as combinations. Interleaving nar-
rowing modulo combinator reduction with Prolog hence yields a higher-order Prolog.

Our desideratum is overmet by the higher-order logic approach. Namely, using
higher-order unification (i.e., synthesizing program expressions) is going beyond
simple needs for programming. This is clearly too powerful and expensive a tool.

2.3. Overview of our approach

We now introduce a relational and functional programming language called Le Fun
where first-order terms are generalized by the inclusion of applicative expressions as
defined by Landin [40] (atoms, abstractions, and applications) augmented with logical
variables. The purpose is to allow interpreted functional expressions to participate as
bona fide arguments in logical expressions.

A unification algorithm generalized along these lines must consider unificands for
which success or failure cannot be decided in a local context (e.g., function applica-
tions may not be ready for reduction while expression components are still uninstan-
tiated.) We propose to handle such situations by delaying unification until the
operands are ready. That is, until further variable instantiations make it possible to
reduce unificands containing applicative expressions. In essence, such a unification
may be seen as a residual equation which will have to be verified, as opposed to solved,
in order to confirm eventual success--whence the name residuation. If verified, a
residuation is simply discarded; if failing, it triggers chronological backtracking at the
latest instantiation point which allowed its evaluation.

Although primarily motivated as an experiment in integrating logic programming
(Horn clause resolution) and functional programming (as in 2-calculus style function-
al reduction), this residuation principle can also be generalized beyond just unification
(i.e., syntactic equality) to encompass any syntactical decisions which can be made
pending further instantiation. In particular, ground-decidable predicates like arith-
metic inequality, or syntactic inequality (forbidding physical identity) can be implicitly
handled by residuation.

A remarkable corollary of this is that such unclean patches as Prolog's is evaluation

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 63

predicate are no longer needed, yielding a truly more declarative operational
semantics. In that sense, the programmer can describe her problem as a combination
of function definitions and Horn clauses where the order in which conjuncts are
verified for a given query is completely independent of the order in which they are
specified. This frees the programmer from cumbersome explicit control annotations
[9, 59, 54]. Indeed, residuation exhibits a flavor of asynchronous computation model
that may prove amenable to efficient parallel implementation [51, 41].

3. Le Fun examples

Exposing our ideas is better done by illustrating key points of the residuation princi-
ple, giving very simple examples focusing attention away from details.

3.1. Unifying reducible expressions

SLD-resolution on which pure Prolog is based is not a complete deduction system for
Horn logic because its depth-first control strategy may diverge although finite
solutions exist. In addition, Prolog implementations are also incomplete because of
built-in arithmetic. Of course, it is possible to manipulate numbers through a first-
order axiomatization of arithmetic. However, performance of a "reaMife" program-
ruing language forbids this. Thus, arithmetic is built into Prolog as a primitive system.
Of course, this is done at the expense of completeness since numbers are thus not
synthesized by unification. As a result, a goal literal involving arithmetic variables
may not be proven by Prolog, even if those variables were to be provided by proving
a subsequent goal. This is why arithmetic expressions cannot be nested in literals other
than the is predicate, a special one whose operation will force evaluation of such
expressions, and whose success depends on its having no uninstantiated variables in
its second argument.

We give two simple examples on how this poses no problem to Le Fun.

3.1.1. Simple case. Consider the set of Horn clauses:

q(X,Y,Z) : - p (X , Y , Z , Z) , p i o k (X , Y) .

p(X,Y,X + Y,X.Y).
p(X,Y,X + Y, (X*Y)-14).

p i c k (3 , 5) .
p i c k (2 , 2) .
p i c k (4 , 6) .

and the following query:

64 AIT-KACI AND NASR

?- q(A,B, C).

From the resoivent q(A, B, C), one step of resolution yields as next goat to establish
p(A, B, C). Now, trying to prove the goal Using the first of the two p assertions is
contingent on solving the equation A + B = A • B. Naturally, using Peano's axioms
to solve this is out of the question. At this point, Prolog would fail, regardless of the
fact that the next goal in the resolvent, pick(A, B) may provide instantiations for its
variables which may verify that equation. Our solution is to stay open-minded and
proceed with the computation as in the case of success, remembering however that
eventual success of proving this resolvent must insist that the equation be verified. As
it turns out in this case, the first choice for pick(A, B) does not verify it, since
3 + 5 ¢ 3 * 5. However, the next choice instantiates both A and B to 2, and thus
verifies the equation, confirming that success is at hand.

To emphasize the fact that such an equation as A + B = A * B is a left over granule
of computation, we call it a residual equation or equational residuation--E-residuation,
for short. We also coin the verb "to residuate" to describe the action of leaving some
computation for later. We shall soon see that there are other kinds of residuations.
Those variables whose instantiation is awaited by some residuations are called resi-
duation variables (RV). Thus, an E-residuation may be seen as an equational closure
- - b y analogy to a lexicat closure--consisting of two functional expressions and a list
of RV's.

There is a special type of E-residuation which arises from equations involving an
uninstantiated variable on one hand, and a not yet reducible function expression on
the other hand (e.g., X = Y + 1). Clearly, these will never cause failure of a proof,
since they are equations in solved form. Nevertheless, they may be reduced further
pending instantiations of their RV's. Hence, these are called solved residuations or
S-residuations. Unless explicitly specified otherwise, "E-residuation" will mean
"equational residuations which are not S-residuations."

Going back to our example, if one were interested in further solutions to the
original query, one could force backtracking at this point and thus, computation
would go back eventually before the point of residuation. The alternative proof of the
goal p(A,B,C,C) would then create another residuation; namely,
A + B = (A * B) - 14. Again, one can check that this equation will be eventually
verified by A = 4 and B = 6.

One may observe that a possible realization of the residuation principle would be
to accumulate all residual equations along a depth-first walk of the and/or proof tree
until a leaf is reached; then, instantiate all E-residuations with the substitution at
hand; and succeed if and only if they are all verified. Clearly, this would be far more
expensive than using any relevant instantiations as they materialize. This is very
reminiscent of the process of asynchronous backpatching used in one-pass compilers
to resolve forward references.

3.1.2. Trickier case. Since instantiations of variables may be non-ground (i.e., may
contain variables), residuations mutate. To see this, consider the following example:

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 65

q (Z) : - p (X , Y , Z) , X : V - W, Y : V + W, p i c k (V , W) .

p (A, B, A,B) .

p i c k (9 , 3) .

together with the query:

? - q (A n s) .

The goal literal p(X, Y, Ans) creates the S-residuation Ans= X ,]1. This S-residua-
tion has RV's X and Y. Next, the literal X = V - W instantiates X and creates a new
S-residuation. But, since X is an RV to some residuation, rather than proceeding as
is, it makes better sense to substitute X into that residuation and eliminate the new
S-residuation. This leaves us with the mutated residuation Ans = (V - W)* Y. This
mutation process has thus altered the RV set of the first residuation from {X, Y} to
{v,w,Y}.

As computation proceeds, another S-residuation instantiates Y, another RV, and
thus triggers another mutation of the original residuation into Ans = (V - W) ,
(V + W), leaving it with the new RV set {V, W}.

Finally, as pick(9, 3) instantiates V to 9 and W to 3, the residuation is left with an
empty RV set, triggering evaluation, and releasing the residuation, and yielding final
solution Ans = 72.

3.2. Residuating ground-decidable predicates

Equations are not the only computations which may be residuated. A goal literal
whose decision is entailed by grounding its arguments would gain to be potentially
suspended~ expecting its arguments to become ground. More precisely, and n-ary
predicate symbol p is said to be ground-decidable if it is immediately possible to decide,
given any ground terms ~1 l n , whether the literal p(tl tn) holds true or not.
Examples of such predicates are the so-called "built-in" predicates of Prolog such as
¢ (h v a t2 succeeds if and only if h and t2 do not unify) and arithmetic comparisons
(< , ~<, >~ >~). Thus~ such predicates residuate in Ee Fun. These are called I-residua-
tions.

Consider, for example,

q (X , Y , Z) " - p (X , Y , Z) , X < Y, Y < Z, p i c k (X , Y) .

p (X, Y, X,Y).

p ± c k (3 , 9) .

66 AIT-KACI AND NASR

with the query,

?- q(A, B, c) .

Understanding this example is left as exercise.

3.3. Higher-order expressions

The last example illustrates how higher-order functional expressions and automatic
currying are handled implicitly. Consider,

s q (X) : X*X.

t w i c e (F , X) : F (F (X)) .

validop(twice).

p(1) .

pick(lambda(X,X)).

q(Val) :- G = F(X), Val : G(1), valid_op(F),

pick(X), p(sq(Val)).

with the query,

?- q(Ans).

The first goal literal G = F(X) creates an S-residuation with the RV set [F, X}.
Note that the "higher-order" variable F poses no problem since no attempt is made
to solve. Proceeding, a new S-residuation is obtained as Ans = F(X)(1). One step
further, F is instantiated to the twice function. Thus, this mutates the previous
S-residuation to Ans= twice(J()(l). Next, X becomes the identity function, thus
releasing the residuation and instantiating Ans to 1. Finally, the equation sq(l) = 1
is immediately verified, yielding success.

4. Interpreted unification

In this section we present a basic formal syntax of terms which are a blend of
2-calculus terms and first-order constructor terms. We also define substitutions for
these terms. Then, we describe a non-deterministic unification algorithm for these
terms which accounts for/~-reduction. This algorithm is presented as a set of solution-
preserving transformations on a set of equations h la Martell i-Montanari [43].

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 67

4.1. Terms and substitutions

Let {2, },~0 be an indexed family of mutually disjoint sets of constructor symbols of
arity n. Let ~; = w,~0Z,, be the set of all constructors. Let V be a countably infinite
set of variables. By convention, variables will be capitalized not to confuse them with
constructor constants in Y~0-

Let T be the set of terms defined as the smallest set such that:

• if Y e V then X ~ T ;
• if a ~ 2 0 then a ~ 7";
• if c~X~ and t~eT, (1 ~< i~< n) then c (t ~ , . . . , t ~) e T ;
• i f X ~ V and te T t h e n 2X. t~T;
• if t~ e T and t2e Y" then f i (t2)eT.

We shall denote by t[t'] the term t with a distinguished occurrence of subterm t'.
Free and bound occurrences of variables in terms are defined exactly as usual as in the
2-calculus. We shall call var(t) the set of all variables (free or bound) in a term t. The
expression t[X ~ t'] stands for the term resulting from simultaneously substituting all
free occurrences of the variable X in t by t'.

There are three basic reduction relations defined on terms: a, fi, and t/. They are
defined thus:

• ~-reduction: 2Y. t ~- ~ 2 Y . t [X ~ Y], if Y does not occur free in t;
• fi-reduction: (2X.t)(t ') >- ~ t [X ~ t'];
• q-reduction: 2Y. t (X) ;~ ,t, if Y does not occur free in t.

Combined reduction relations (e.g., aft, fitl) denote the union of the basic reductions
composing them (e.g., t~ ~ ~t2 iff tl >- ~t2 or t 1 ;~ f12).

We shall use the greek letter ~ as a generic parameter standing for any (basic or
combined) reduction relation. The following relations are derived from any reduction.

• ~-conversion: t[tl] ~ J[t2] if tl >- d2;
• symmetric l-conversion: t1 ~-~ ~t2 iff t 3 ~ ~t2 or t2 ~ ct~ ;
• reflexive transitive l-conversion: t~----* ~t2;.
• i-equivalence: tL ~ ~t2 iff tl ~ , ~t2, where ~ ~ ~ is the reflexive and transitive closure

of *---~ ~_.

Given a term, there are in general many ways in which one can apply a reduction.
A term which cannot be (G-)reduced anymore is said to be in (~-)nor/nalform. As in
the pure (untyped) 2-calculus, there may be infinite sequences of reductions. However,
there is no ambiguity among terminating reductions thanks to the following very
important and well-known result (See [3]):

Theorem 1 (Church-Rosser Property) I f a term t has a fl-normal form it is unique up
to c~ 7 conversion.

68 AIT-KACI AND NASR

Given a term t, we shall denote by t + ¢ its f l -normal form, if it exists. We shall write
t ,~ ~ = i if it has no f l -normal fo rm (i.e., if all fl-reductions f rom t do not terminate).

A substitution a is a funct ion f rom Vto ~ such that the set {Xs VIX ¢ a (X) } is finite.
This set is called the domain of a and denoted by dora(a). The set {teTtt = a(X),
Xedom(t)} is called the range of a and denoted by ran(a). Such a substi tut ion is also
writ ten as a set such as a = {ti/xi}n=l where dom(a) = {X~}7=~ and a(Xi) = t~ for i = 1
to n. A subst i tut ion a is in (~-)normat fo rm iff all the terms in ran(a) are in (~-)normal
form. We shall write a ~ ~0 whenever a (X) ~ ~O(X) for all X e V.

Given a subst i tut ion a and a variable X, the subst i tut ion ax is defined as:

x if y = x;

ax(Y) = a (Y) otherwise.

A substi tut ion a is uniquely extended to a funct ion ~ f rom ~ to ~ as follows:

• 5 (x) = a (x) , if x e v;
• 5 (a) = a, i f a e Z0;
• 5 (e (t l , . . . , t ,)) = e(5(tl) ,5(t,)), if e e Z , t i e Y ; (1 ~< i ~< n);
• 5(2X.t) = 2Y.ay(t) , where X e V, Ye V - var(ran(a)), and t e T ;
• 5(q(t2)) = 5(tl)(5(t2)), if tl e T and tzET.

Since they coincide on V, and for no ta t ion convenience, we deliberately confuse a
subst i tut ion o- and its extension 5. Also, ra ther than writing a(t), we shall write to-.
Finally, unless otherwise specified, we shall assume in the sequel that substi tut ions are
in f l -normal form, and we shall omi t the implicit subscripts "f l" in " n o r m a l f o r m " and
t +, and "~q" in ~ .

Compos i t ion is defined as usual up to fl-reduction. Given two substi tut ions
a = {ti/X~}7=, and 0 = {s)/Yj}~'=l, the compos i t ion a0 is the subst i tut ion which yields
the same result on all terms as first applying a then applying 0 on the result. One
computes such a compos i t ion as the set:

aO = ({tO +/XI t / X e a} - {X/X]Xe dom(a)}) ~ (0 - {s/YI Y e dora(a)}).

Fo r example, if a = {F(X)/Y, V(a)/U} and 0 = {a/Y ,2X.2Y.Y/F,2X.U/V} , then
aO = {~Y.Y/Y,)~X.2Y.Y/F,)~X.U/V}.

Note that this compos i t ion modu lo fl-reduction is part ial ly defined as some reduc-
t ions m a y not terminate , in which case we write aO = _l_. (Take, for example,
a = {F(F) /Y} and 0 = {2X.X(X)/F}.) However , provided that all fl-reductions ter-
minate , it is clear tha t if both a and 0 are in no rma l fo rm then so is aO.

Compos i t ion defines a preorder (i.e., a reflexive and transit ive relation) on sub-
stitutions. A subst i tut ion a is more general than a subst i tut ion 0 iff there exists a
subst i tut ion Q such tha t 0 ~ a~.

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 69

4.2. Unification algorithm

An equation is a pair o f terms, written s = t. A substi tut ion a is a solution (or a unifier)
of a set o f equat ions {s~ = t,}7=~ iffs~a $ ~ t~a $ for all i = 1 n. (That is, if all pairs
o f terms are equal up to ~/~/-conversion.)

Unless otherwise specified, we shall always assume that all terms in a set o f
equat ions are in normal form.

Fol lowing [43], we define two t ransformat ions on sets o f equations---constructor
decomposition and variable elimination. They both preserve solutions o f sets o f
equations. Two sets o f equat ions are equivalent iff they both admit all and only the
same solutions.

Constructor decomposition

I f a set E o f equat ions contains an equat ion o f the form c(s~ ,s ,) = c(fi , tn),
where c E ~,~, (n >~ 0), then the set

E ' = E - {e (s l s ,) = e(t, , . . . , t ,)} (s, =

is equivalent to E 8.

Theorem 2 Let E be a set of equations containing an equation of the form c (s l , . . . ,
s,) = d (t l , . . . , tin). I f c ~- d or n ~ m then E has no solution. Otherwise, the set E'
obtained from E by constructor decomposition using this equation is equivalent to E.

Proof: I f c ¢ d or n :A m, then it is clear that no substitution can make the two sides
identical. If, on the other hand c = d and n = m, then it is also clear that a
substitution will be a solution o f E iff it is a solution o f E ' . •

Variable elimination

I f a set E o f equat ions contains an equat ion o f the form X = t where t 4: X, then the
set

E ' = (E - { X = t})a.~ • { X = t}

where cr = { t /X} , is equivalent to E, provided all reductions terminate 9.

Theorem 3 Let E be a set of equations containing an equation of the form X = t where
t ~ X. If¢ is of the form c(tl tn), where cE E~, and i f X occurs free in t then E has
no solution. Otherwise, provided that all reductions terminate, the set E" obtained from
E by variable elimination using this equation is equivalent to E.

Proof: I f X occurs free in t = c(tl,. •. , t,), then X cannot be made identical to t as

70 AIT-KACI AND NASR

it is its strict subterm. I f X does not occur free in t, since by construction X --
t e E c~ E ' , any solution of E or E ' must make in particular X and t identical. Now
consider s = t e S distinct f rom X = t. Let s ' = t' be the corresponding equation in
E ' . Now, if tr makes s and t identical, it must also make s ' and t' identical since they
may only differ from s and t by the presence of X versus t, which are made identical
by a. The same holds conversely, if o" make s ' and t' identical. •

In addition to the two transformations above, the following holds:

Lemma 1 I f a set o f equations E contains an equation o f the f o r m 2X.s = c(tl t,)
where c e Z , , (n >I 0), then E has no solution that does not involve at least one q-reduc-
tion.

Proof: Since 2-abstraction and constructor terms are syntactically distinct objects
unless related by the rule of q-reduction, this is clearly true. Hence, unless such an
q-reduction is performed, no substitution can make them identical. For example
the equation 2X. Y (X) = a where a e Z0, has the solution { a / Y }, but it necessitates
q-reduction. •

Finally, since we need to stop short of synthesizing functional abstractions as done
by higher-order unification [31], we shall deliberately ignore solutions which involve
solving one or more equations of the form 2X.s =)~Y.t, as well as ignoring q-reduction
steps. This is the only source of incompleteness of the equation simplification
algorithm presented next.

A Non-deterministic algorithm

A set of equations E is partitioned into two subsets: its solved part and its unsolved
part. The solved part is its maximal subset of equations of the form Jr" = t such that
X occurs free nowhere in the full set of equations only as the left hand side of this
equation alone. The unsolved part is the complement of the solved part. A set of
equations is said to be fu l ly solved iff its unsolved part is empty.

The following describes a normalization procedure for a given set E of equations.
Repeatedly choose non-deterministicatly and perform one of the following trans-
formations. I f no transformation applies, stop with success.

(a) Select any equation of the form t = X where t is not a variable, and rewrite it as
X = t .

(b) Select any equation of the form X = X and erase it.
(c) Select any equation of the form c (s ~ , . . . , s ,) = d(tl t~) where c e Z , and

d e Zm, (n, m /> 0); if c ¢ d or n ¢ m, stop with failure; otherwise, if n >/1 replace
it with n equations si = ti, (i = 1 n).

(d) Select any equation of the form X = t where X is a variable which occurs free
somewhere else in the set of equations and such that t ¢ J(. I f t is of the form

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 71

c (f i , . . . , tn, where c ~ Y~,, and if X occurs free in t, then stop with failure; otherwise,
let o" = {t /X} and replace every other equation l = r by l~r+ = ro-+;

(e) Select any equation of the form ,~X.s = c(t~, . . . , t,) where c ~ 1~,, (n >~ 0), and stop
with failure;

(f) Select any equation of the form 2X.s = ,~Y.t, and stop with failure.

The set of equations which emerges as the outcome of this procedure, if any does,
is said to be in canonical form. We denote by can(E) the set resulting upon termination
of the algorithm starting with a set of equations E. If it terminates with failure, we
write can(E) = L. Given E in canonical form, its solved part is called its most general
unifier denoted by mgu(E) and its unsolved part is called its residue denoted by res(E).
Elements in res(E) are called residual equations or. residuations.

Theorem 4 Given a set E of equations, provided that all reductions terminate, the
Joregoing non-deterministic algorithm is such that: (1) i f E has no unifer then it
terminates with failure; (2) otherwise it terminates with a canonical set of equations
can(E) such that mgu(ean(E)) is the most general solution of E which does not require
solving an), equation of the form 2X.s = 2Y.t or performing some q-reduction.
Moreover, no variable in dom(mgu(can(E))) occurs free in res(E).

Proofi Steps (a) and (b) trivially preserve all solutions without failure. Steps (c) and
(d) are respectively constructor decomposition and variable elimination which
preserve all solutions or fail as no unifiers exists, by Theorems 2 and 3. Step (e) fails
in the only other case where no unifier exists for E, by Lemma 1. Step (f) discards
solutions involving function synthesis, and in particular fails in all cases where such
synthesis would fail. Hence, in all cases where unifiers do not exist for E, provided
all reductions terminate, the procedure halts with failure.
To establish that, otherwise, the procedure terminates, we make two observations.
First, steps (a), (b), and (d) cannot be repeated more times than there are free
variables in E. Moreover the equation involved in each of these steps is either
eliminated or made ineligible for any other step (a), (b), or (c). Second, constructor
decomposition replaces one equation by several, each of strictly shallower depth ~°.
Thus, a simple multiset ordering argument [20] is enough to conclude that since
depth of terms is well-founded, so is the constructor decomposition procedure.
Therefore, provided that all reductions terminate, the algorithm always terminates.

It is clear, by step (f), that mgu(ean(E)) never requires solving any equation of the
form 2X.s = 2Y.t. That it is a most general such unifier of E is also clear since,
besides step (f), transformations in all steps preserves all and only solutions to E
and thus all ensuing variable assignments are necessary conditions for all solutions
o f E 1~ . Finally, by variable elimination in step (d), no variable in dom(mgu(can(E)))
may occur free in res(E). II

72 AIT-KACI AND NASR

Example

Consider the set of equations

{ f (X(Y)(e(a, V)), h(X, a), 2U.U) = f (c(Z, b), h(2F.2X.F(F(X)), a), Y)}

A sequence of transformations from the unification algorithm applied to this set is:

(c) {X(Y)(c(a, V)) = c(Z, b), h(X, a) = h(2F.2X.F(F(X)), a), 2U. U = Y }

(a) {X(Y)(c(a, V)) = e(Z, b), h(X, a) = h(2F.2X.F(F(X)), a), Y = 2 U. U }

(d) {X(2U.U)(c(a, V)) = c(Z, b), h(X, a) = h(2F.2X.F(F(X)), a), Y = 2U. U}

(c) {X(2U.U)(c(a, V)) = e(Z, b), X = 2F.2X.F(F(X)), a = a, Y = 2U.U}

(c) { X(2 U. U)(c (a, V)) = c (Z, b), X = 2F.2X.F(F(X)), Y = 2 U. U }

(d) {e(a, V) = c (Z , b) , X = 2F.)~X.F(F(X)), r = 2 u . u }

(d) {a = Z, V = b , X = 2F.2X.F(F(X)), r = 2 u . u }

(a) {Z = a, V = b , X = 2F.2X.F(F(X)), Y = 2U.U}

The equation solving procedure described in this section is the unification algorithm
on which Le Fun's operational semantics rests. Short of synthesizing functions or
recognizing extensionally equivalent functions--neither being really needed in a
first-order logic language--Le Fun combines both 2-calculus and predicate logic
convenience.

5. Le Fun operational semantics

5.1. Le Fun syntax

We present here a minimal syntax for Le Fun. The idea is not to give an exhaustive
description of a "real-life" syntax with all conveniences and sugaring to accommodate
aesthetics, but rather to define just enough to focus the reader's attention on the
specific originality of Le Fun's syntax--namely, a generalization of applicative ex-
pressionsand first-order terms. Thus, the reader is assumed to be familiar with
Prolog's syntax as well as with basic sugaring of the 2-calculus. Therefore, many
unspecified details (e.g., pattern-directed conditionals for functions, handling of
functional recursion, etc.) are left to the reader's taste after a reading of [40, 5, 53].

Le Fun's terms are a combination of conventional first-order terms and applicative

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 73

expressions. More precisely, a Le Fun term is one of the following:

1. Variables--represented as capitalized identifiers;
2. Identifiers--represented starting with a lower case letter;
3. Abstractions--of the form 2X1... Xn .e, where Xg, i = 1 n are variables, and e is

a Le Fun term;
4. Applications--of the form e(el en), where e is a Le Fun term, and the ei's are

Le Fun terms.

All classical conventions related to left-associativity, infix notation, and currying of
applications are assumed. Those special applications of the form c(el , e,), where
c is an identifier known to be a constructor symbol, and the ei's are Le Fun terms are
called constructions.

A L e Fun program consists of a sequence of equations and clauses. An equation is
of the f o r m f = e where f i s an identifier called an interpreted symbol, and e is a Le Fun
term. In the case where e is an abstraction of the form 2 ~ 2X,.e', we may also
writef(X~ X,,) = e'. A clause is defined exactly as in Prolog, with the difference
that Le Fun terms are expected where first-order terms are in Prolog--i .e. , as predi-
cate arguments. Such literals which constitute Le Fun clauses will be called Le Fun
literals.

The lexical distinction between constructor and interpreted symbols is simply that
a constructor is any identifier which does not appear in a left-hand side of an equation.
For those, fixed arity is assumed. Hence, any construction with root constructor of
arity n must have exactly n arguments. I f it has more, the term is ill-formed. I f it has
less, then the term is not a construction, but an abstraction. Indeed, if c is an n-ary
constructor, the term c(e~ ,ek) for k < n is in reality the term
2X~ X,_k.c(el ek, X~ X,_k), where the Xj's do not occur free in any of the
e i 'S .

Note that in a clause, no confusion should arise between 2-bound and logical
variables. The latter are those variables which are not in any 2-scope---occurring free
in the clause. Thus, only logical variables are instantiatable by unification 12.

Given a Le Fun program, a query is a sequence of Le Fun literals. I f only a function
evaluation is desired, a query of the form X = f (e l en) will provide the value of
evaluating the given functional expression as X's binding. For example, consider the
Le Fun program:

map(~,L) = if(L = [],
[],

IF(head(L)) Imap (F, tail(L))]).

Thus, evaluating a map expression in Le Fun is done as:

?- x = map(+(1), [o,I,2]).

x = [1,2,33

74 AIT-KACI AND NASR

It is important to understand how function definitions are transformed and stored,
and how they are actually used by Le Fun operations. Essentially, one may think of
compilation taking place at read time and installing all function definitions in some
(interpreted) function symbol store of definitions. These definitions are obtained from
the bodies of the functions, perhaps compiled into an appropriate functional machine
language (SECD [40], CAM [13], etc.). All functional expressions intervening in some
other definition bodies, or for that matter some Le Fun clauses or goals, are also
compiled as in-line calls (such are clever enough to handle recursion). The functional
abstract machine is used in the operational semantics that follows only hidden in the
unification process. In that way are the functional definitions used by Le Fun.

5.2. Le Fun operations

Function definitions being transformed away into 2-calculus forms, the operational
semantics of Le Fun becomes quite simply identical to Prolog's where unification is
replaced by the algorithm of Section 4.2. We formalize this as a state transformation
process.

A state of Le Fun computation is either ~ (called the failure state) or a quadruple
(G[EIPIS) where G is a sequence of literals called the (goal) resolvent, E is a set of
equations in canonical form, P is a sequence of Le Fun clauses called the program,
and S is a state. The computation rule of Le Fun thus is a state transformation
relation. We shall write $1 ~ $2 the transformation from state $1 to state $2. Given
a clause H:-B, the notation (H:-B) ~ denotes that same clause with all its variables
consistently renamed with fresh variables. Starting with a state of the form (GIO1
P01~), Le Fun proceeds from state to state by repeatedly applying the following
computation rules:

1. (GIE[OIS) ~ S, if G ¢ O;
2. (O[E[PIS) ~ S, if res(E) ¢ O;
3. (L, GIEIH:-B, PIS)

((L, GIEIPIS),
) i f ean(Eu {L = H~}) = ±;

I (B ~, Glean(E u {Z = H ~ })le0l(Z, GIEIPIS)),
[otherwise;

where H ~ :-B ~ = (H:-B) ~.

The first transitions are called backtrack steps, and the third one is called a resolution
step. Recall that can(E) is the canonical form of E computed by the algorithm
described in Section 4.2.

This process may either diverge or terminate with a state of one of the following
forms:

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 75

1. "A', the failure state; or
2. (,OIEIPIS) where res(E) = O. That is, Eis fully solved. This is a (full) success state.

The solution is mgu(E). At this point, the same alternative offered by Protog to try
to find other solution may be induced with a backtrack step.

At the state (OIEIP[S) when res(E) :/: O, one may also choose to stop and display
the partial solution mgu(E) and the residual constraints res(E), or feed the latter to
a special-purpose constraint solver.

6. Implementation of Le Fun

6.1. General principle

The general idea is that residuations can happen at different levels, and that timely and
efficient resolution of such residuations can be accomplished through a careful
run-time accruement of backchaining information built into a generalized resolution/
unification algorithm. Hence, using such run-time information, resolving a residua-
tion should happen automatically when enough information is available for such a
resolution to be meaningful (e.g., a residuated functional expression evaluation
should be resolved as soon as all the free variables in that expression are ground). One
undesired alternative, for obvious reasons, is having to accumulate all residuations in
a central repository and check them there periodically for progress potential. The
difference between these two alternatives is reminiscent of the difference between
interrupt servicing and polling when a system is dealing with an external signal. The
following is a description of the supported residuations and the backchaining in-
formation that is deemed necessary for their economical implementation.

At the resolvent level, and as part of a regular goal resolution, a unification can
become residuated if a unificand is a function application not ready for evaluation.
Therefore, internal representation of function applications must remember the unif-
ications pending on them. Also at the resolvent level, the resolution of ground-decid-
able predicates can be residuated if their operands are either function applications not
ready for evaluation, or uninstantiated variables. Therefore, both function applica-
tions and uninstantiated variables should have the capability of remembering the
residuated ground-decidable predicates pending on them.

Function applications suspend if free variables therein are still uninstantiated.
Therefore, uninstantiated variables should have the capability of remembering the
residuated functional evaluations pending on them. We note that, given a function
application, partial progress may be possible in reducing such expressions even if all
free variables in the expression are not ground. For example, partial computation may
allow earlier failures in some computations such as the E-residuation:

append([O], X) = append([1], Y)

76 AIT-KACI AND NASR

However, the computational overhead needed to support each eager evaluation with
the potential of backtracking in considerably more severe, since in general, trailing of
all partial evaluations must be kept.

The above points lead us to the following observations:

© Computation fragments that may need to be delayed and remembered (residuated)
are (1) functional applications (S-residuations), (2) ground-decidable predicates
(I-residuations), and (3) unification operations (E-residuations.)

© Objects that may need to remember residuated computations are: (1) functional
applications, and (2) uninstantiated variables.

© The backchaining information is always recorded at unification time, or at the time
certain built in predicates are invoked; this is when it is realized whether residuation
will be necessary. The unification algorithm will detail the issues related to the
nature and placement of that information.

© The backchaining information will be extracted and used at unification time.
Failure of released residuated computations simply calls the regular backtracking
algorithm, modulo a more sophisticated trailing of variable instantiations.

The next section gives some details about an internal representation of Le Fun
syntactic objects which we shall use in describing Le Fun's operational semantics.

6.2. Internal representation

Objects can be stored in one of two ways: simple objects are stored directly in data
cells (boxed objects) with both their value and their tag occupying the same cell.
Complex objects, on the other hand, use a two level storage mechanism where the tag
and a reference to the actual complex object occupying one data cell, and the complex
object itself occupying as much space as needed allocated out of a heap-like storage
area.

Simple objects and partial specification of complex objects are shown in the table
in Figure 1.

S),nfactic ObjecI I Value Field

Atomic Object

Tag Field

Variable Reference Reference to another variable Var Ref
Uninstantiated Variable (Ignored) Uninst'd

Atomic value Atomic
Reference to the Construction Construction Constr

Functional Application Reference to the application Appl
Functional Abstraction Reference to the abstraction Abst

Residuation Variable Reference to the Var with Resids Var/Resids

Fig. 1. Internal representation of syntactic objects.

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 77

Principal Functor
Arg 1
Arg 2

Arg n

Fig. 2. Construction representation.

Application Expression
Number of Uninst'd Vars

List of Uninst'd Vars
Reduced Value

List of Residuations

Fig. 3. FunctionaI application representation.

Abstraction Expression
Number of Uninst'd Vars

List of Uninst'd Vars

Fig, 4. Functional abstraction representation.

Value (When inst'd)
List of Residuations

Fig. 5. Residuation variable representation.

The complex objects themselves, occupying space allocated out of the heap-like
storage, are represented as illustrated in Figure 2 (construction), Figure 3 (functional
application), Figure 4 (functional abstraction) and Figure 5 (residuation variable.)

6,3. Dercferencing Le Fun objects

Le Fun unification algorithm will have to recognize, as usual, the basic three data
types--uninstantiated variables, atomic objects and constructions. It must also
handle functional applications, abstractions, and variables with residuations. Tagging
will identify these different structures. Thus, we will assume that every data object in
our system consists of two fields--a tag field, and a data field. The unification
algorithm can then be visualized as a matrix whose rows and columns are the different
types (tag values) of the two unificands. Therefore, the row-column intersections
correspond to the unification case particular to the types of the unificands.

78 AIT-KACI AND NASR

We shall use a seventh data type--variable references or pointers. They materialize
through unifications between uninstantiated variables. They are made transparent to
the unification matrix through the systematic dereferencing of unificands before the
actual unification operation. Therefore, such reference chains are left transparent and
do not figure explicitly in the matrix. If this produces:

• an uninstantiated variable--it is returned.
• an atomic object--i t is returned.
• a construction--it is returned.
• a functional applieation---a check is performed to see if the application is ready for

evaluation. If so, dereferencing produces the result; otherwise, the delayed applica-
tion itself.

• a functional abstraction--it is ascertained that the count of uninstantiated variables
in the expression was initiated, and the abstraction itself is returned. When the
counting of uninstantiated variables starts, incrementing is performed automatic-
ally. This is because all the uninstantiated free variables in the expression mutate
into uninstantiated variables with residuations (pointing to their common parent
expression). These variables are treated specially by the unification algorithm when
they become unificands themselves, including maintaining a consistent count of
uninstantiated variables in their common parent expression.

• an R V--if the variable is unbound, it is returned; otherwise, dereferencing is done
recursively on the binding.

IUnify -~ Uninst'd
Row-Col Variable

~-n[ns~ Case

~ riable 6.4.2
omic Case

6.4.3

Atomic
Object

Case
6.4.4

Const'n
Object

Funct'l
Appl

Funct'l
Abst

Resid'd
Variabk

~ n Case Case Case
i . IObject 6.4.3 6.4.1 6.4.5
A[pFUnct'I Case Case Case Case

pl 6,4.3 6.4.6 6.4.6 6.4,7
F~nct~ Case Case Case Case Case
A~_b.st ~ 6.4.3 6.4.1 6.4.1 6.4.6 6.4.1
[Resid 'd Case Case Case Case Case Case
[Variable 6.4.3 6.4,8 6.4.8 6.4.9 6.4.9 6A. 10

Fig. 6. Unification matrix for Le Fun objects.

6.4. Implementing Le Fun unification

Le Fun's unification algorithm is better expressed in the form of a matrix (see Figure
6) where the rows and columns correspond to the different types of Le Fun terms, and
the row-column intersections specify the specialized treatment of the corresponding
unification case. By symmetry, only half of the matrix is presented.

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 79

The treatment of the different unification cases is summarized in the following
subsections.

6.4.1. Failure. The treatment of failures here is very similar to the treatment of failures
in conventional logic programming systems. This means backtracking to the most
recent choice point where alternatives still exist, and proceeding from there after the
system is restored to its previous state. The difference comes from the fact that in
conventional systems the only thing that can happen to an uninstantiated variable is
becoming instantiated; whereas here, such a variable may mutate into an RV (see
Cases 6.4.6 and 6.4.7.) Then, both types of changes must be remembered for potential
failure, and thus, backtracking. In the latter case, restoring uninstantiated variables
to their original state is assumed for both variables that became instantiated as well
as variables that mutated to RVs.

A noteworthy point is that we could relax some failures of Le Fun unification
should we decide to use narrowing to set a (perhaps higher-order) deductive mode.
That is, we may choose to use first-order equation solving or higher-order unification
to deal with some of the cases involving functional abstractions or applications as a
unificand in the matrix above. All variations of this principle are naturally to be
considered--i.e., declaring some functors to be narrowable---even if only for intell-
igent debugging and trouble-shooting.

6.4.2. Variable versus variable. This is the simplest kind of residuation, and boils down
to dereferencing unificands before the unification operation is attempted--vz.,
making one of the variables point to the other, and tag it as a variable reference. This
case, of course, will always succeed.

6.4.3. Variable versus non-variable. This is the same as the above case, except that it
can be optimized by overwriting the uninstantiated unificand with the non-variable
one itself rather than with a pointer to it. Here, as in 6.4.2, unification always succeeds
--subject to occur-check.

6.4.4. Atom versus atom. This is simply an equality check between the two atomic
unificands.

6.4.5. Construction versus construction. This case consists of a simple equality check
between the functors (including their arity). This is followed, if successful, by the
recursive unification of the unificands' respective arguments.

6.4.6. Application versus atom, construction, or abstraction. This case and Case 6.4.7
are that of the unification between delayed functional applications and other objects.
This is the simpler of two possible cases, where the other unificand is not another
application. It creates two kinds of residuations:

1. One, recorded in the application itself, remembering this present unification that
cannot be completed pending the evaluation of the application unificand; and,

80 AIT-KACI AND NASR

2. another one, obtained by mutation of every uninstantiated variable in the applica-
tion into an RV. Note that "uninstantiated variable," in this context, includes RVs;
in which case the new residuation is simply added to an already existing chain of
older ones.

This unification case succeeds provisionally, and never leads to immediate failure.
Latent failures will be treated when they materialize.

6.4.7. Application versus application. This case is identical to the previous one except
that the same treatment as described then is applied to both (functional application)
unificands.

6.4.8. R V versus atom or construction. When an RV is instantiated, a chain of events
is triggered based on the type of the other unificand. The present case is the simpler
of such cases, and deals with a second unificand which is either an atomic object or
a construction. Then, the residuations pending on this variable are either applications
or ground-decidable predicates. Reference counting reduces the number of RV's by
one. Zero such RV's trigger evaluation, or the obvious decision in the case of a
ground-decidable literal.

6.4.9. R V versus application or abstraction. Instead of simply substrating one as before
from the RV count, we add n - 1 to that number where n is the number associated
with the other unificand.

6.4.10. R V versus R V. The value field of one of the two RVs is used to point to the
other, and its chain of residuations is appended to the other's chain.

Overhead in recording residuations and resolving them is incurred only in the most
general case. In the simple case where nothing is residuated, unification is obviously
as efficient as the conventional one.

7. Relation to other works

Our computation model has two characteristics: first, the integration of (Horn clause
resolution based) logic programming and (2-calculus based) functional programming,
and second the introduction of a powerful implicit asynchronous control strategy into
a practical programming system. In addition, we found residuation to be a good
vehicle for implementing native operating systems capabilities (coroutines, I/O
drivers, schedulers, and general interrupt handling primitives are examples of such
capabilities).

Relatively recent incarnations of Prolog, e.g., MU-Prolog [50] and Prolog-II [t 1],
handle such problems by giving explicit flow information hints to the interpreter or
compiler. In these, a user can delay the evaluation of specific ground-decidable
predicates(e.g.,inequality: ~ in MU-Prolog and d i f / 2 in Prolog-II) until the

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 81

arguments become ground, Thus, as a first approximation, residuation may be simply
described as a generalization on these and the similar, albeit more restricted because
explicit, concepts of read-only variables of Concurrent Prolog [59], or Parlog's mode
declarations [9] and Prolog-II's freeze--all using explicit annotations and/or recta-
predicates. However, the extent to which this generalization has been carried out,
including doing away with user-supplied control annotation delaying goal resolution,
gives Le Fun quite a different taste.

Another strongly related paradigm is the notion of I-structures in ID [51] the MIT
dataflow language. I-Structures are write-once random-access data cells. After an
I-structure is allocated, one may manipulate it (or rather refer to it) before informa-
tion is stored in the cell. If the celt's content is needed prior to its materialization, the
requesting computation is suspended. It is resumed at the time the cell becomes filled.
No overwriting--even consistent--is allowed into I-structures. Their purpose, of
course, is only incidentally connected to ours, and pertains to augmenting a (dataflow)
functional language with arrays.

There are other language proposals based on extensions of the ,~o-calculus which
attempts to capture operational features of Prolog (essentially, unification and back-
tracking). QUTE [58] and FRESH [60] are two such instances. These two languages
are similar to one another in that they are both built upon a pattern-oriented
2-calculus where matching has been replaced by unification. They are similar to ours
in that neither uses higher-order unification. However, they differ substantially from
Le Fun and from the languages reviewed in the survey of Section 2.2 in that they do
not literally integrate predicate logic programming with functional programming.
More precisely, programs in QUTE or FRESH do not have a logical reading as
Prolog programs do. They consist of functional expressions which may alter a global
environment. This is why we did not review them as members of the four proposed
categories of integration since they are not strictly speaking integrating logic and
functional programming. Nevertheless, they stand out among current research as
quite original.

Finally, the operational scheme of Le Fun may be seen through the general
approach of Constraint Logic Programming (CLP) due to Jaffar and Lassez [34].
They develop a semantic, algebraic, and operational scheme extending logic program-
ming as seen in Prolog, where unification on first-order terms is generalized to
constraint solving in arbitrary but solvable domains such as of linear equations,
inequations with real coefficients, boolean formulas, infinite trees, etc. Conventional
first-order term unification thus turns out to be a simple instance of solving syntactic
equational constraints. The general CLP operational scheme proceeds by transform-
ing constraint sets into solved forms (e.g., unification) or canonical forms which are
solvable by special purpose algorithms (e.g., Gaussian elimination, Simplex method,
etc,). It is clear that Le Fun's operational semantics falls into this scheme in that Le
Fun term unification is a particular constraint solving mechanism. Thus, we foresee
that it should inherit the abstract model-theoretic properties developed by Jaffar and
Lassez. That would constitute a formal semantics for Le Fun and such is a topic for
further work.

82 AIT-KACI AND NASR

8. Conclusion

Long live freedom!
Anonymous, Unpublished, undated.

In this article we reviewed a number of important proposals for the integration of
logic and functional programming. We examined the motivation and reason for
desiring such an integration, staying away from the conventional prejudices for or
against either style of programming. We attempted to categorize roughly the main
approaches relatively to our stated desideratum, and highlighted some particular
points of interest. We introduced a new paradigm for integrating resolution-based
and 2-calculus based programming which consists of a delaying mechanism built into
the unification process to account for/?-reduction. We coined the work "residuation'"
to describe this method as it can be formalized as an equation transforming process
allowing equational residues to wait for materialization of information to be solved
further. The usefulness of residuation for handling ground-decidable predicates was
a straightforward generalization. Much more work remains to be done as far as
semantics and extension to a real programming language are concerned. Nevertheless,
we have described an operational semantics and implementation for a prototype
programming language called Le Fun to validate our design concepts.

Appendix: Le Fun as a constraint language

Residuation and the ensuing integration of logic and functional programming can be
characterized in different ways.

One of these views Le Fun as adequately fit for constraint problems. Indeed, those
which can be solved by pre-posting constraints whose evaluation, possibly involving
functional reductions, is delayed until more information subject of the constraints
comes. A large class of symbolic processing problems can be thought of as consisting
of a search through feasible states. Feasibility of such states is done as constraint
checking. Failing the constraints could trigger a return to the search phase followed
again by another constraint checking phase, and so on. Such an approach could be
shown to be in general computationally wasteful. The wasteful computation usually
results from working on generating the rest of the states when one is already doomed
to cause a future constraint check failure.

One immediate improvement is the interweaving of the generation of state instan-
tiations and the checking of constraints. We claim, however, that a more natural and
efficient way for dealing with this problem is to be able to pre-post the constraints,
even though they are not yet decidable, and resolve them as instantiations are
incrementally generated, thus relieving the programmer from the explicit interleaving
of the instantiation and the constraint checking phases.

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 83

A.1. Cryptarithmetic

Our first example is this well-known cryptarithmetic puzzle where the solution
consists of (decimal digits) assignments for the letters S, E, N, D, M, O, R, Y that
would make the following addition operation arithmetically correct:

S E N D +
M O R E

= M O N E Y

A (relatively) declarative specification of this problem is to say that the letters in
question stand for decimal digits such that such incremental (arithmetic) constaints
are obeyed. The constraints here involve relationships between functions involving
the letters in question as well as intermediate variables (carry digits C1, C2, and C3.)

One way that can be be written in Prolog:

solution(S, E, N, D, M, 0, R, Y)

:- % Generating decimal digits:

decimal digits(IS, E, N, D, M, 0, R, Y]),

% Generating binary digits:

zero or one(Cl),

zero or one(C2),

zero or one(C3),

% The arithmetic constaints:

C3 + 2 + M = 0 + 10*M,

C2 + E + 0 = N + I0"C3,

CI + N + R = E + I0"C2,

D + ~. = Y + 10*CI.

The problem with this approach is that as candidate assignments are being
generated (within d e c i m a l d i g i t s / 1) for the letters, partial results may already
be doomed to cause failure but the search goes on to instantiate the rest of the
candidates. The search space tbr the solution of our problem is therefore unnecessari-
ly large, and we would like to have natural ways of trimming it with minimal user
effort. Why not post the constraints up front, assuming the system allows such literal
ordering to produce a successful execution?

The problem of course is that the unification between two functional expressions
(e.g., D + E and Y + 10*CI in this example) is only conceivable in conventional
Prolog if the two expressions can be reduced to canonical forms so that unification
may decide. When delayed computation fragments become executable and result in
a failure, chronological backtracking is used to explore available alternatives. The
point of failure is, of course, the instantiation that triggered the failed residuated
computation. Thus, the new version of the same program as above is:

84 AIT-KACI AND NASR

solution(S,N,N,D,M, 0, R,Y)

:- % The arithmetic constraints:

C3 + S + M = 0 + 10*M,

C2 + E + 0 = N + I0"C3,

CI + N + R = E + I0"C2,

D + E = Y + 10*CI,

% Generating binary digits:

zero or one(el),

zero or one(C2),

zero or one(C3),

% Generating decimal digits:

decimal digits([S, E, N, D, M, 0, R, Y]) .

A.2. Architecture constraints

This example exhibits the capability of delaying inequality checks (and ground-decid-
able predicates in general) until such checks are possible (the necessary variables
become instantiated). Hence, the inequality predicate - is also subject to residuation
when any of its operands still has uninstantiated variables. This is the special case of
residuation that corresponds to Prolog-II's d i f / 2 and to MU-Prolog's ~ . Here
again then, the computation model allows a constraint to be pre-posted and makes
it possible to resolve such constraint checking asynchronously as it becomes possible
to process. The problem in question, taken from [10], can be verbally defined as
follows:

Design architectural units given the following design rules:

1. units consist of two rooms;
2. one room, the front-room, has an exterior door;
3. rooms have an interior door and a window;
4. rooms are connected by the interior door;
5. walls can have only one opening in them (doors or windows);
6. no windows should be on the north side;
7. windows should not be on opposite sides of the unit.

The problem can be expressed as follows. The solution instantiations are direction
specification for the units components:

unit(Exterior Door,

Rooml Door,

Rooml--Window,

Room2 Door,

Room2 Window)

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 85

and

% constraint 5:
=(Exterior_Door, Rooml_Door, Rooml_Window),

% constraint 5:
Room2 Door ~= Room 2 Window,
% constraint 4:
opposite(Rooml Door, Room2 Door),
% constraint 7:
not_opposite(RoomlWindow, Room2 Window),
% constraint 6:
Rooml Window ~= north,
Room2 Window ~= north,
% Candidate assignments:
directions([Exterior_Door,

Rooml Door,
Rooml Window,
Room2 Door,
Room2 Window]).

opposite(east,west).
opposite(west, east).
opposite(north, south).
opposite(south, north).

not-opposite(Dirl,Dir2)
:- opposite(Dirl,Dir3),

Dir2 ~= Dir3.

With a runtime environment that allows the successful execution of such a literal
ordering, the effect of this program statement is to pre-post the design constraints
(which will get residuated) and then the search space is truncated every time a partial
assignment triggers the failure of a residuated constraint check. The search space
truncation corresponds to the useless generation of the assignments complementary
to the partial ones causing the constraint violation. Our contention is that the
efficiency of the asynchronous computation model is superior to a sequential generate
and test model.

Acknowledgments

The authors are indebted to Patrick Lincoln for many pertinent conversations and his
quick mind in general. Much credit is also deserved by the anonymous referee for
her/his sharp observations and for pointing out several technical inconsistencies.
Thanks finally to Jan Zubkoff the associate editor of LISP for her encouragements.

86 AIT-KACI AND NASR

Notes

1. Which may include taste--our taste.
2. The reader solely interested in Le Fun may wish to skip directly to Section 2.3 on a first reading. The

survey is intended for the reader who may desire to put our work in context. For additional details,
all interested reaer is referred to the literature, which is literally bursting with publications on unifying
logic and functional programming. She will find a good sample in [6, t7, 36], as well as in various
proceedings of symposia, conferences, and workshops on functional or logic programming.

3. Narrowing [21, 33, 56] is term-rewriting where matching is replaced by unification, thereby giving
function application the power to synthesize uninstantiated arguments from patterns in the definitions.
Innermost narrowing is to narrowing what applicative (innermost) order of reduction is to normal
(outermost) order of reduction. Thus, some notion of function strictness must be used to ensure good
behavior. As in the case of reduction, it is a more efficient equation-solving method when used on strict
terms, but may diverge on non-strict ones (see [62, 44]).

4. Smolka's logic is restricted to what he calls canonical equational systems in which equations are of the
fo rmf (f i , . . . , t,) where the t~'s are restricted to be constructor terms; Le., contain no defined symbols
--roots to some left-hand sides--such a s f By virtue of being a root of no right-hand side, a symbol
is a 'constructor.'

5. For higher-order varieties, see [24].
6. Unless the set of equations which define them is a complete set of reductions, or can be completed by

the Knuth-Bendix m~thod-which may itself diverge if no finite complete set of reductions exists.
7. Types (whether Church's simple types [8] or polymorphic [48]) are orthogonal here. We shall ignore

them in this presentation, although they are of importance for compilation and computation.
8. If n = 0, the equation is simply deleted.
9. I r E = {s, = t~}~= 1 then E~r~. = {s,a$ = t,a$}~=~.

10. The depth of an equation is the greater of the depths of each of its sides, where depth of a term is defined
as usual.

11. That is, it is most general up to variable renaming since an equation of the form X = Y with 3(~ Y
in step (d) chooses arbitrarily to eliminate X rather than Y.

12. For example, following Landin [40] applicative expressions may be compiled into SECD virtual
machine code, and thus 2-bound variables are translated into displacements indices corresponding to
their binding heights. Other applicative programming techniques, like combinator reduction, would as
well eliminate those variables which are 2-bound.

References

1. Ai't-Kaci, H. and Nasr, R. Residuation: A Paradigm for Integrating Logic and Functional Programming.
MCC Technical Report Number AI-359-86, Microetectronics and Computer Technology Corporation,
Austin, TX (October 1986).

2. Barbuti, R. et aL LEAF: a language which integrates logic, equations, and functions. In DeGroot, D.
and Lindstrom, G., editors, Logic Programming: Functions, Relations, and Equations, Prentice-Hall,
Englewood Cliffs, NJ (1986) 201-238.

3. Barendregt, H.P. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam (I 981)~
4. Bosco, P. G. and Giovanetti, E. A Prolog-Compiled Higher-Order Functional and Logic Programming

Language. Technical Draft, CSELT, Torino, Italy (1986). An abridged version of this paper has
appeared in the proceedings of the 3rd IEEE Symposium on Logic Programming, Salt Lake City, UT
(September 1986).

5. Burge, W. H. Recursive Programming Techniques. Addison-Wesley, Reading, MA (1975).
6. Campbell, J. A. Implementations of Prolog. Ellis Horwood, Ltd., Chichester, UK (1984),
7. Chew, L. P. An improved algorithm for computing with equations. In Proceedings of the 2tst Annual

IEEE Symposium on the Foundations of Computer Science, Syracuse, NY (1980) 108-117.

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 87

8. Church, A. A formulation of the simple theory of types. Journal of Symbolic Logic, 5 (1940) 56-68.
9. Clark, K. L. and Gregory, S. Parlog: A Parallel Logic Programming Language. Research Report

DOC-83/5, Department of Computing, Imperial College, London, UK (May 1983).
10. Coehlo, H., Cotta, J. C., and Pereira, L. M. How to solve it with Prolog. Technical Report, Ministbrio

da Habitag~o e Obras Pfiblicas, Laboratorio de Engenharia Civil, Lisbon, Portugal (1980).
11~ Colmerauer, A. et al. Prolog II: Reference Manual and Theoretical Model Technical Report, Groupe

d'Intelligence Artificielle, Facult6 des Sciences d'Aix-Luminy, Marseille, France (1982).
12. Courcelle. B~ Fundamental properties of infinite trees. Theoretical Computer Science, 25 (1983) 95-169.
13. Cousineau, G., Curien, P. L. and Mauny, M. The categorical abstract machine. In Jouannaud, J.-P.,

editor, Functional Programming Languages and Computer Architecture, LNCS 20I, Springer-Verlag,
Berlin, W. Germany (September 1985) 50-64.

14. Curien, P. L. Categorical Combinators, Sequential Algorithms and Functional Programming. Research
Notes in Theoretical Computer Science, Pitman, London, UK (1986).

15. Damm, W. Languages defned by higher program schemes. In Proceedings of the 4th International
Conference on Automata, Languages, and Programming, LNCS 52, Springer-Verlag, Berlin, W.
Germany (1977).

16. Darlington, J. The unification of functional and logic programming. In DeGroot, D. and Lindstrom,
G., editors, Logic Prograrnming: Functions, Relations, and Equations, Prentice-Hall, Englewood Cliffs,
NJ (1986) 37-72.

17. DeGroot, D. and Lindstrom, G., editors. Logic Programming: Functions, Relations, and Equations.
Prentice-Hall, Englewood Cliffs, NJ (1986).

t8. Dershowitz, N. Applications of the Knuth-Bendix Completion Procedure. Aerospace Report
ATR83(8478)-2, Lab. Operations, The Aerospace Corporation, E1 Segundo, CA (May 1983).

19. Dershowitz, N. Completion and its applications. In Ait-Kaci, H. and Nivat, N., editors, Resolution of
Equations in Algebraic Structures, Academic-Press, Boston, MA (Forthcoming in 1989).

20. Dershowitz, N. and Manna, Z. Proving termination with multiset ordering. Communications of the
ACM, 22, 8 (1979) 465-476.

21. Fay, M. First-order unification in an equational theory. In Proceedings of the 4th Conference on
Automated Deduction, Austin~ TX (1979) 161-167.

22. Fetleisen, M. Transliterating Prolog into Scheme. Technical Report 182, Computer Science Depart-
ment, Indiana University, Bloomington, IN (1985).

23. Fribourg, L. Handling function definition through innermost superposition and rewriting. In Jouan-
naud. J.-P, editor, Proceedings of the 1st International Conference on Rewriting Techniques and
Applications, LNCS 202, Springer-Verlag, Berlin, W. Germany (May 1985) 325-344.

24. Gallier, J. H. n-Rational algebras, part I: basic properties and free algebras. SIAM Journal on Comput-
ing, 13, 4 (November 1984) 750-775.

25. Gallier, J. H. n-Rational algebras, part II: varieties and logic Of inequalities. SIAM Journal on
Computing, 13, 4 (November 1984) 776-794.

26. Gallier, J. H. Logic for Computer Science: Foundations of Theorem-Proving. Harper & Row, New York,
NY (1986) chapter I0, §6: Decision Procedures Based on Congruence Closure, 461-474.

27. Goguen, J. and Meseguer, J. An In#iality Primer. Technical Draft, Computer Science Laboratory, SRI
International, Menlo Prk, CA (March 1983).

28, Goguen, J. and Meseguer, J. Eqlog: equality, types, and generic modules for logic programming. In
DeGroot, D. and Lindstrom, G., editors, Logic Programming: Functions, Relations, and Equations,
Prentice-Hall, Englewood Cliffs, NJ (1986) 295-364.

29. Goldfarb, W. D. The undecidability of the second-order unification problem. Theoretical Computer
Science, 13 (1981) 225-230.

30. Hsiang, J. and Dershowitz, N. Rewrite methods for clausal and nonclausal theorem proving. In
Proceedings of the lOth International Conference on Automata, Languages and Programming, LNCS
154, Springer-Verlag, Berlin, W. Germany (1983) 331-346.

31. Huet, G. Constrained Resolution: A Complete Method for IIigher-Order Logic. PhD thesis, Department
of Computing and Information Sciences, Case Western Reserve University (August 1972).

32. Hughes, J~ Graph Reduction with Super-Combinators. Technical Monograph PRG-28, Programming
Research Group, Oxford University, Oxford, UK (1982).

88 AIT-KACI AND NASR

33. Hullot, L-M. Canonical forms and unification. In Proceedings of the 5th Conference on Automated
Deduction, LNCS 87, Springer-Verlag, Berlin, W. Germany (1980) 318-334.

34. Jaffar, J. and Lassez, J.-L. Constraint logic programming. In Proceedings of the 14th ACM Symposium
on Principles of Programming Languages, Munich, W. Germany (January 1987).

35. Josephson, A. and Dershowitz, N. An implementation of narrowing: the RITE way. In Proceedings of
the 3rd 1EEE Symposium on Logic Programming, Salt Lake City, UT (September I986) 187-199.

36. Jouannaud, J.-P., editor. Proceedings of the 1st International Conference on Rewriting Techniques and
Applications. Volume 202 of LNCS, Springer-Verlag, Berlin, W. Germany (May 1985).

37. Jouannaud, J.-P. and Kirchner, H. Completion of a Set of Rules Modulo a Set of Equations. Rapport
de Recherche 84-R-046, CRIN, Vandceuvre-16s-Nancy, France (1985). A preliminary version of this
paper was presented at the I Ith ACM Symposium on Principles of Programming Languages, in Salt
Lake City, UT (1984).

38. Kirchner, C. Computing unification algorithms. In Proceedings oflEEE Computer Society Symposium
on Logic in Computer Science, Cambridge, MA (June 1986) 206-217.

39. Klop, J. W. Term rewriting systems. Lecture Notes, Seminar on Reduction Machines, Ustica, Italy
(September 1985).

40. Landin, P. J. The mechanical evaluation of expressions. Computer Journal, 6, 4 (1963) 308-320.
41. Lincoln, P. D. DisCoRd." Distributed Combinator Reduction. Bachelor Thesis, Department of EECS,

Massachussets Institute of Technology, Cambridge, MA (May 1986).
42. Mahr, B. and Makowsky, J. A. Characterizing specification languages which admit initial semantics.

Theoretical Computer Science, 31 (1984) 49-60.
43. Martelli, A. and Montanari, U. An efficient unification algorithm. ACM Transactions on Programming

Languages and Systems, 4, 2 (April 1982) 258-282.
44. Martelli, A., Rossi, G. F., and C., Moiso. Lazy unification algorithms for canonical rewrite systems.

In Ai't-Kaci, H. and Nivat, N., editors, Resolution of Equations in Algebraic Structures, Academic-Press,
Boston, MA (Forthcoming in 1989).

45. Mellish, C. and Hardy, S. Integrating Prolog in the PopLog environment. In Campbell, L A., editor,
Implementations of Prolog, Ellis Horwood, Ltd., Chichester, UK (1984) I47-162.

46. Meseguer, J, and Goguen, J. A. Initiality, induction, and computability. In Nivat, M. and Reynolds,
J., editors, Algebraic Method~ in Semantics, Chapter 14, Cambridge University Press, Cambridge, UK
(1985) 459-541.

47. Miller, D' A. and Nadathur, G. Higher-order logic programming. In Shapiro, E., editor, Proceedings
of the 3rd International Conference on Logic Programming, LNCS 225, Springer-Verlag, Berlin, W.
Germany (July 1986) 448-462.

48. Milner, R. A theory of type polymorphism in programming. Journal of Computing Systems and Science,
17, 3, (December 1978) 348-375.

49. Nadathur, G. Higher-Order Logic Programming and Applications. PhD thesis, Department of
Computer and Information Science, University of Pennsylvania, Philadelphia, PA (December 1986).

50. Naish, L. MU-Prolog 3.1db Reference Manual. Computer Science Department, University of Mel-
bourne, Melbourne, Australia (May 1984).

51. Nikhil, R , Pingali, K., and Arvind. ID Nouveau. Computational Structures Group Memo 265,
Massachussets Institute of Technology, Cambridge, MA (July 1986).

52. Peterson, G. and Stickel, M. Complete sets of reductions for some equational theories. Journal of the
ACM, 28 (1983) 233-264.

53. Peyton Jones, S. L. The Implementation of Functional Programming Languages. Prentice-Hall, Eng-
lewood Cliffs, NJ (1987).

54. Ramakrishnan, R. and Silberschatz, A. Annotations for distributed programming in logic. In Proceed-
ings of the 13th ACM Symposium on Principles of Programming Languages, St-Petersburg Beach, FL
(January 1986) 255-262.

55. Reddy, U. On the relationship between logic and functional programming. In DeGroot, D. and
Lindstrom, G., editors, Logic Programming: Functions, Relations, and Equations, Prentice-Hall, Eng-
lewood Cliffs, NJ (1986) 3-36.

INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 89

56. R6ty, P. et al. Narrower: a new algorithm for unification and its application to logic programming. In
Jouannaud, J.-P., editor, Proceedings of the 1st International Conference on Rewriting Techniques and
Applications, Springer-Verlag, Berlin, W. Germany (1985) 141-157.

57. Robinson, J. A. and Greene, K. J. New Generation Knowledge Processing: Final Report on the SUPER
• System. CASE Center Technical Report No. 8707, Syracuse University, Syracuse, NY (May 1987).

58. Sato, M. and Sakurai, T. QUTE: a functional language based on unification. In DeGroot, D. and
Lindstrom, G., editors, Logic Programming: Functions, Relations, and Equations, Prentice-Hall, Eng-
lewood Cliffs, NJ (1986) 131-155.

59. Shapiro, E. A Subset of Concurrent Prolog and its Interpreter. Technical report TR-003, Institute for
5th Generation Computing, Tokyo, Japan (January 1983).

60. Smolka, G. FRESH: a higher-order language with unification and multiple results. In DeGroot, D. and
Lindstrom, G., editors, Logic Programming: [,'unctions, Relations, and Equations, Prentice-Hall, Eng-
lewood Cliffs, NJ (1986) 469-524.

61. Smolka, G. Some thoughts on logic programming. Lecture Notes, Microelectronics and Computer
Technology Corporation, Austin, TX (July 23 1986).

62. Smolka, G, TEL Version 0.9: Report and User Manual. SEKI Report ST-87-11, Universit~it Kaisers-
lautern, Kaiserslautern, W. Germany (February 1988).

63. Turner, D. A. A new implementation technique for applicative languages. Software--Practice and
Experience, 9 (1979) 31-49.

64. Turner. D. A. Recursion equations as a programming language. In Darlington, J., Henderson, P., and
Turner, D. A., editors, Functional Programming and its Applications: An Advanced Course, Cambridge
University Press, Cambridge, UK (1982) 1-29.

65. Warren, D. H. D. Higher-order extensions of Prolog--are they needed? In Michie, D., editor, Machine
Intelligence 10, Edinburgh University Press, Edinburgh, UK (1982) 441-454.

66. Yelick, K. Combining unification algorithms for confined equational theories. In Jouannau,, J.-P.,
editor, Proceedings of the 1st International Conference on Rewriting Techniques and Applications,
Springer-Verlag, Berlin, W. Germany (1985) 365-380.

67. You, J. H. and Subrahmanyam, P. A. Equational logic programming: an extension to equational
programming. In Proceedings of the 13th ACM Symposium on Principles of Programming Languages,
St-Petersburg Beach, FL (January 1986) 209-218.

