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Abstract. The intent of this article is twofold: To survey prominent proposals for the integration of logic 
and functional programming and to present a new paradigm for the same purpose. We categorize current 
research into four types of approaches, depending on the level at which the proposed integration is 
achieved. Unlike most current work, our approach is not based on extending unification to general-purpose 
equation solving. Rather, we propose a computation delaying mechanism called residuation. This allows 
a clear distinction between functional evaluation and logical deduction. The former is based on the 
)t-calculus, and the latter on Horn clause resolution. Residuation is built into the unification operation 
which may then account for r-reduction. In clear contrast with equation-solving approaches, our model 
supports higher-order function evaluation and efficient compilation of both functional and logic program- 
ming expressions, without being plagued by non-deterministic term-rewriting. In addition, residuation 
lends itself naturally to process synchronization and constrained search. We describe an operational 
semantics and an implementation of a prototype language called LeFun--Logic, equations, and Functions. 

I. Introduction 

A surge o f  research act ivi ty  has  been devo ted  la te ly  to " in tegra t ing  logic and  funct ion-  
al p r o g r a m m i n g . "  As usual ,  a rgumen t s  ranging  f rom mat te rs  o f  taste or  p r agma t i c  
performanlce,  to deep theoret ica l  concerns  have been pu t  forth,  some quiet ly,  some 
forcefully.  We,  the au thors ,  do  no t  wish to con t r ibu te  to  the debate .  R a t h e r - t h a n  
tell ing the rest of  the wor ld  how this ought  to be done,  or  even why it ought  to be done  
at  all, we shall  ab ide  by a more  peaceable  m o d e  o f  descr ib ing wha t  we do,  why we do  
it, and  how. By no means ,  however ,  do  we wish to a p p e a r  "ho l ie r  t han  thou!"  Indeed,  
we th ink tha t  some other  p roposa l s  have definite elegance, are  o f  prac t ica l  use, or  even 
achieve high per formance .  Ra ther ,  our  answer  came to us na tu ra l ly  when we t r ied to 
define precisely wha t  we wanted ,  and  real ized tha t  none  o f  the  p roposa l s  k n o w n  to us 
would  answer  all and  only our  needs. Thus,  we shall  a t t emp t  to mot iva te  our  work  
by first laying out  ou r  desiderata; then, reviewing some o f  the p r o m i n e n t  p roposa l s  
k n o w n  to us, po in t ing  ou t  where  each falls shor t  o f  some o f  ou r  wishes ~. 

Here  is the way  we organized  this article. Sect ion 2 in t roduces  our  specific mot iva -  
tion. There,  we first s tate our  wishes, then we survey a sample  o f  a l ternat ive  
endeavors  2. A l o n g  the way,  we shall  po in t  ou t  how our  wishes are  m o r e  o r  less 
satisfied, or  how some ideas will concur  with our  p roposa l .  The  la t te r  is overviewed 

*This article is a revised and extended version of [1]. 
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in Section 2.3. In Section 3 we illustrate some details, operational points of  our idea, 
by means of  Le Fun example programs. Section 4 presents Le Fun's  unification 
algorithm, which accounts for dynamic function evaluation. Section 5 gives a state 
transition semantics for Le Fun. The implementation realizing Le Fun's  modus 
operandi is detailed in Section 6.4. Finally, a discussion relating our work to similar 
approaches closes the main body of  this article. Appendix A gives more examples of  
how Le Fun's  execution models constraint propagation. 

2. Motivation and background 

(...) the link between a 'higher' (in the sense 
of 'more complex') and a 'lower" field results 
neither in a reduction of the first to the sec- 
ond nor in greater heterogeneity of the first, 
but in mutual assimilation such that the sec- 
ond explains the first, but does so by enrich- 
ing itself with properties not previously per- 
ceived (...) 

Jean Piaget, Main Trends in Interdisci- 
plinary Research. 

2.1. Desideratum 

To start with, let us define what we mean by functional programming and logic 
programming. A better qualifier would be "functional and relational" in the following 
sense. 

• By functional, we understand a (1) directional, (2) deterministic, and (3) convergent 
flow of  information. 

• By relational, we understand a (1) multidireetional, (2) non-deterministic, and (3) not 
nec~essarity convergent flow of  information. 

That  is (1) functions expect input and return output, whereas relations do not, (2) 
functions do not fail or backtrack, whereas relations do, and (3) functions must 
terminate on all legal input, whereas relations may enumerate infinitely many alter- 
native instances of  their arguments. 

Now that we have defined our terminology, it seems that functional programming 
is subsumed by relational programming.  In a pragmatic sense, this is untrue since the 
specificity of  functional programming allows the elimination of rather heavy computa- 
tional overhead. Importantly,  we shall view functional programming as computat ion 
in evaluation mode (no information guessing is allowed) and relational programming 
as computat ion in a deduction mode (information guessing is allowed). This is an 
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essential delineation since it explains why functional programming can easily handle 
higher-order objects. Indeed, missing arguments cannot be synthesized in functional 
programming as they can in relational programming by way of unification. Synthesiz- 
ing higher-order objects is, if not impossible, at best computationally very difficult and 
expensive [31]. 

Although it is often the case that application problems can be solved entirely in 
evaluation or deduction mode, these do not constitute all programming applications. 
From our programming experience using a logic or functional programming 
language, we have repeatedly found ourselves in frustrating situations where parts of 
the problem we have at hand were of a functional nature, and others of a relational 
nature. Of course, we could always fit those parts into the language, but at the cost 
of some unnatural and often non-trivial thinking. Thus, having better things to do 
than to argue with the High Priests of each camp, we came to the natural conclusion 
that both modes were appropriate in different situations. Many others seem to have 
as well conceded this, and have thus proposed solutions. Let us review some in light 
of our wishes. 

2.2. A survey 

Roughly, there seem to be four main trends: an embedding approach; a syr, actic 
approach; an algebraic approach; and a higher-order logic approach. 

The embedding approach typically proposes that a particular logic or functional 
language is all that one needs by showing how one can "easily and elegantly" 
implement the other camp's approach without losing access to the native powers of 
the chosen language: The syntactic approach is characterized as accommodating the 
functionality of the other camp through syntactic sugar. The algebraic approach uses 
the notion of term rewriting as the operational semantics for functional program- 
ming. The higher-order logic approach takes the daring stand of immersing computa- 
tion in combinatory logic which has the theoretical power of handling functions and 
relations alike. 

2.2.1. The embedding approach. This is the most immediate approach. It consists of 
implementing X in Y so as to have all the goodies of X without losing Y's. For 
example, Darlington [16] implements sets (logical predicates) as set expressions in a 
KRC manner [64], Mellish and Hardy implement Prolog in POP-2 (PopLog) [45], 
Robinson allows logic quantifiers in Lisp [57], and Felleisen "transliterates" Prolog 
into Scheme [22]. 

This approach does not meet our desideratum in that it does not really integrate 
logic and functional programming, insofar as a BASIC implementation of a Lisp 
interpreter does not integrate BASIC and Lisp. The implementation language is 
simply the metalanguage of the implemented language and obscures the potential for 
native computational optimization of the rendered language. 
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2.2.2. The syntactic approach. Let us take the standard "higher-order" functional 
definition of  map, a function which returns the list off-images of elements of a list. 

m a p ( f , 1 )  = if I = nil 
then nil 
else cons(f(head(1)), m a p ( f ,  t a i l ( 1 ) ) )  

This example uses standard informal syntax of (sugared) 2-calculus [40]. An equa- 
tional syntax which may conveniently give the advantage of being dually interpreted 
as rewriting rules as well as yet another sugaring of the 2-calculus, would be: 

map(F,  [ ] ) = [ ] .  
map(F,  [HIT]) = [ F ( H ) ] m a p ( F , T ) ] .  

Another example of such a "higher-order" definition expresses the fold functional 
which cumulatively performs a given operation on a list of arguments. 

fo!d(Op, ld, []) = Id. 
fold(Op, Id, [HIT]) = Op(H, fold(Op, Id, T)). 

In these examples, we use the now well-known and convenient syntax of Prolog's 
notation for lists using square brackets, and capitalized logical variables. This syntax 
is not hard to understand. However, the reader is likely to fancy more than one 
semantics, even operational ones, which may compute with this functional specifica- 
tion. Thus, besides the 2-calculus, various combinatory logics with various combina- 
tor bases [63, 32], as well as categorical logic [13, 14], and algebraic semantics, whether 
first-order [39], second-order [12], or co-order [15, 24, 25], to name just a few, could 
be used, some being perhaps a bit of an overkill for the purpose of a simple functional 
evaluator. 

One may thus choose to proceed as syntactically as possible, and let such notation 
as above be the tip of a preprocessing iceberg. Thus and typically, the works that we 
classify as using this approach choose some Turing-equivalent (operational) 
semantics, like Natural Deduction (e.g., Prolog [65]), Equational Logic (e.g., TEL 
[62]), or Applicative Programming [4], and give methods to transform statically a 
given syntax of terms intended for one computational semantics into one alternate 
such logical, equational, or functional specification whose realization on the opera- 
tional engine at hand behaves according to the intended semantics--all in a manner 
that could be made invisible to the user. Let us look at a couple of  these proposals 
to illustrate our point. Namely, Warren's [65] and Smolka's [61] desugaring of 
applicative expressions into Prolog and TEL, respectively. 

Warren's proposal suggests using Prolog as the operational target for a sugared 
notation of functional expressions, and Smolka's uses typed equational logic with 
innermost narrowing ~. Both methods center around representation of curryed 
functions--partial applications--in the language of first order terms--i.e., fixed-arity 
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terms of first-order type. The aim is to provide an operationally explicit trick for 
making sense out of syntactic terms which do not respect arity constraints or allow 
functional formal arguments. This is achieved by expressing everything at a meta-level 
with a binary function a p p l y  denoting (curryed) function application. No'assumption 
need thus be made on the arity of function symbols--which become 0-ary (constant) 
symbols in the meta-alphabet, perhaps with the pragmatic exceptions of constructors; 
i .e. ,  symbols that denote data structures. By the same token, this also transforms 
variables previously of higher-order sort into first-order variables. 

Thus, for Warren, an application of a function to n arguments is seen as an 
(n + 1)-ary predicate whose (n + 1)-st argument is to be the result of applying the 
function to the n first arguments. Applicative function composition is unnested into 
a sequence of n subsequences of predicate invocations--one subsequence per function 
argument--followed by one application of the outermost function feeding the n 
results into the ultimate invocation. For example, such an expression a s f ( g ( a ,  b ) , f ( c ) )  

denotes the result of applying a function called f, of arity at least 2, to two arguments, 
which are respectively the result of applying a function g, of arity at least 2, to two 
arguments a and b, and the functionfto one argument c. The leaves a, b and c denote 
indefinite constants. Thus, using its operational semantics with a ternary a p p l y  

predicate such that a p p l y ( X ,  Y , Z )  means Z = X ( Y ) ,  the Prolog way of paraphrasing 
the above denotation would be: 

Conjunct 
apply(g, a, X), 
apply(X, b, Y), 
apply ( f, Y, Z ), 
apply(f, c, U), 
apply(Z, U, V), 

Meaning 
X = g(a) = 2x.g(a,x) 
Y = 2x.g(a,x)(b) = g(a,b) 
Z = f(g(a,b))  = 2xf(g(a,b) ,x)  
U = f ( c )  = 2x. f (e ,  x) 
V = 2x . f  (g(a,b),x)(2xf (c,x)) = f (g(a,b),2xf  (c,x)) 

where the denoted value is referenced by the logical variable V. Note that in order to 
be correctly executable in Prolog, explicit currying of all possible partial applications 
for f and g must somehow be provided. Namely, 

a p p l y ( f , X , f ( X ) ) .  
a p p l y ( f ( X ) , Y , f ( X , Y ) ) .  
a p p l y ( g , X , g ( X ) ) .  
a p p l y ( g ( X ) , Y , g ( X , Y ) ) .  

Warren's proposal amounts to generating explicitly the necessary additional clauses. 
Looking back at the m a p  example, this is desugared into Prolog as: 

apply(map, F, map (F)). 
apply(map(F), [], []). 
apply(map(F), [HIT], [FHIFT]) 
"- apply (F,H, FH), 

apply(map (F), T, FT). 
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and the fold example is desugared as: 

apply(fold, Op, fold(Op) ). 
apply(fold(Op), Id, fold(Op, Id) ). 
apply(fold(Op, Id), [], Id). 
apply(fold(Op, Id), [HIT],Val ) 
: - apply(Op, H, Oph), 

apply(fold(Op, Id),T, Tval), 
apply(Oph, Tval, Val). 

In Smolka's TEL programming language (Typed Equational Logic [62]), i f f  is a 
defined n-ary function, currying is achieved by introducing n new k-ary constructors 
for 0 ~< k ~< n - 1 and new equations for a binary apply combinator of the form: 

apply(fk(X1 . . . . .  X~), [Y1 . . . . .  Yt]) =fk+t(Xl . . . . .  Xk, Y~ . . . . .  Yt) 

for each k and l such 0 ~ k ~<l ~< k + l ~< n, and wherefn stands f o r f  4. At the same 
time, all partial f-expressions (application of n - a r y f t o  less than n arguments) of the 
f o r m f ( f i , . . . ,  4)  are desugared into expressions of the formfk(s~, . . . ,  sk) where the 
si's are the desugared t;'s. 

Again, the trick also takes care of higher-order variables by desugaring all ex- 
pressions of the form F ( t t , . . . ,  4 )  into apply(F,[sl  . . . . .  sk]), thus turning them into 
first-order variables. Even further, 2-expression of the form 2x.t ,  where t contains k 
free variables x l , . . .  ,xk, is desugared into f k (x l  . . . . .  Xk), where f is a new symbol 
defined by the new equation f (x~ . . . .  , xk, x)  = t. 

This syntactic transformation will take the map definition into: 

map(F,  [ ] )  = [ ] .  
m a p ( F , [ H I T ] )  = [ a p p t y ( F , [ H ] ) t m a p ( F , T ) ] .  

apply(map0,[F]) = mapl(F). 
apply(map0,[F,L]) = map(F,L). 
apply(mapl(F), [L]) = map(F,L). 

and the f o l d  definition into: 

fola(Op, Zd, [ ] )  
fomd(Op, Zd, [Hl'rl 

apply(fold0,[Op]) 
appiy(fold0, [Op, ld]) 
apply(fold0, [Op, Id, L]) = 
apply(foldl(0p),[Id]) = 
apply(foldl(0p), [Id, L] = 
apply(fold2(0p, ld),[L])= 

= I d .  

= apply(Op, [F, fold(Op, Id, T) ] ). 

= foldl(Op). 
= fold2(Op, Id). 

fold(Op, Id, L). 
fold2 (Op, Id). 
fold(Op, Id, L) 
fold(Op, Id, L). 
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The syntactic transformation approach does not meet our desideratum either. Both 
Warren's and Smolka's methods are making the assumption that somehow functions 
will not be synthesized. When apply is invoked with its first functional argument 
uninstantiated, many spurious functions are examined as potential candidates. 
However, most such calls do not denote anything (e.g., consider the call 
a p p l y ( F ,  [0, 1, 2] ,  [1, 2, 3] ) in the context of Warren's map definitions). Such 
calls will aimlessly wander through all possible currying of all known functions before 
eventually failing---time and'space consuming for a simple failure. 

Warren's idea looks less prolific in the number of generated definitions. However, 
it is not difficult to see that it will pay some run-time price that Smolka's statically 
explosive method will not. Indeed, Warren's method insists on systematically currying 
all functions. In particular, if a call has all or some of its arguments present, these will 
be sequenced into successive unary abstractions. This, naturally, makes run-time 
function application less efficient since n formal arguments mean n function invoca- 
tions. Whereas, Smolka's method uses memo-lists of arguments already present at 
parse-time, and provides for run-time argument memoizing as well, thus generating 
less run-time calls to the detriment of an explosive number of new definitions, not to 
mention as many new constructor symbols to garbage-collect. 

Of course, one could venture many ways of optimizing the methods, but this would 
strike as odd since one would then be trying to "fix a fix" rather than the original 
problem. 

2.2.3. The algebraic approach. We put in this category works that are based on 
equational logic as part of their operational semantics. Such proposals are due to 
Goguen and Meseguer (EqLog) [28], Hsiang [30], Josephson and Dershowitz (Rite) 
[35], Fribourg (Slog) [23]. The reason why we do not put Smolka's TEL [62] in this 
category is that although he expresses the semantics of his language as equational 
logic, the implementation relies on compiling equations into Horn clauses whose 
execution by Prolog realizes innermost narrowing. Other more or less operational 
approaches (e.g., [2, 55, 67]) have been proposed recently that exploit some of the 
same ideas with roughly the same justifications, some a priori, others perhaps as 
afterthoughts. We shall rapidly gloss over EqLog and Hsiang's approach. 

Goguen and Meseguer have stressed InitiaIity as the essence of model-theoretic 
semantics for programming languages [27, 46]. The idea has great elegance and 
simplicity, and is a model-theoretic property which guarantees that all well-formed 
the syntactic constructs denote a precise abstract object in all models. Thus, using 
first-order terms on a ranked alphabet as syntactic objects for the representation of 
programs (a Herbrand Universe), one can be guaranteed a unique interpretation 
(homomorphism) of programs into their abstract denotations, sets of which elements 
constitute models for well-formed programs. All such program expressions unam- 
biguously denote all and only elements of the model. This is paraphrased by Goguen 
and Meseguer as no junk, no confusion models. The elegance of the theory appears as 
the initiality property is preserved under equational congruences for finitely presented 
equational models. That is, adding (finitely many) equations (any finite binary 



58 AIT-KACI AND NASR 

relation) to the language of term expressions generates a congruence relation where 
one same denotation is now given in the same unambiguous way to (congruence) 
classes of expressions. Hence, semantics of a program expressed as a finite number of 
first-order equations is obtained as a simple algebraic quotient. 

Operationally, this translates as term-rewriting as a computation procedure (term 
evaluation), and equation-solving as deduction (equal denotation for two terms). The 
latter may be given many realizations depending on the various restrictions one may 
put on the syntax of terms. Narrowing [21, 33, 56], congruence closure [7, 26], 
Knuth-Bendix completion [18, 19], and all variations thereof induced by miscella- 
neous E-unification operations [52, 66, 37, 38], are thus all effectively complete 
enumeration procedures of sets of principal solutions of equations. Divergence is, of 
course, possible when no solution exists or the complete set of solutions is unbounded. 

Understanding the concept of initiality, one must naturally ask whether this nice 
property can be taken further into model varieties that are not equational. That is, 
what if program specifications are not longer just equations, but built in richer 
languages like logics and sub-logics of any order. More precisely, the question may 
be cast in so many words as, "'Is there a larger (largest?) class of models than first-order 
equational varieties which can be guaranteed the existence of an initial model?" A very 
beautiful discovery by two model-theorists, Mahr and Makowsky [42], provides an 
answer to this question for first-order varieties 5. Namely, the Mahr-Makowsky 
result states that yet another class of models which is guaranteed the initiality 
property are those models algebraically characterized as being closed under direct 
products. Another name for these structures which is perhaps more familiar to the 
reader is Horn Models. That is, models of Horn Logic. In other words, if in addition 
to equations, Horn clauses were also used to specify programs, a very clear model 
theoretic semantics is obtained for free, together with the natural operational 
semantics of Horn clause resolution interleaved with any complete equation-solving 
in lieu of unification. 

Thus is EqLog justified and defined: exploiting greater power of initial model 
semantics as well as being operationally realized by, say, Prolog and Narrowing. 
Undoubtedly, this has great syntactic and semantic clarity and tidiness. It is however 
strictly first-order-although surely all the syntactic tricks of Smolka's apply. Also, 
non-determinism of narrowing introduces yet another source of pragmatic problems, 
even when completeness of outermost narrowing is used to simplify redex choice at 
unification time. Namely, functions are no-longer determinate 6, with the granted 
relative advantage of being invertible. Although, in our view, if one is interested in 
inverting functions, one should not define them as functions to begin with, but as 
relations--which Prolog technology may "invert" at will. 

Hsiang's approach is also cleverly exploiting an algebraic result of equational logic. 
It may be paraphrased as follows. Since first-order logic can be cast algebraically into 
a complete set of ten reductions--a finite presentation of a boolean ring--and since 
so-called logic programming is defined as some sort of decision procedure in a 
boolean algebra, one can use the Knuth-Bendix method as a decision-procedure. 
Specifically, a (logic) program is now seem as an equational specification enriching the 
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set of complete reductions. Computation is the Knuth-Bendix completion procedure 
altered such that critical-pair computation is biased from the equational query of the 
form q = true or q = false to the added set of rules, from which in turn critical pair 
computation is performed by need toward the complete set of reductions. 

Thus, evaluating a query is finding a sequence of equational lemmas, if one exists, 
and a variable assignment which prove that the logical term q is tautologically 
equivalent to true or false. For example, proving a first-order sentence s is done by 
adding the equation s' = true, where s' is the skolemized version ofs. If no additional 
rules are generated by the completion procedure, then the sentence is proven (since 
s and true are shown to be in the same equational congruence class). If more rules are 
generated, the sentence is false. For the reader with background in Automatic 
Theorem-Proving, this may be reminiscent of a combination of set-@support resolu- 
tion (the ten complete reductions) and linear resolution (resolving from goal to 
assertions). Naturally, the process will diverge in the case where the query is unsolv- 
able. 

Our desideratum is yet again not met by the algebraic approach. Admittedly, the 
idea is a good one, especially since it constitutes a radical departure from resolution- 
like logic programming, and is operationally novel. It allows full first-order logic as 
may be expressed using Hsiang's approach. There are however many hang-ups as far 
as pragmatic exploitation of the method is concerned. The first being that it is not 
clear that this is more efficient that Prol0g technology. The second being that Knuth-  
Bendix completion demands a simplification ordering on terms for rule orientation, 
opening a Pandora's box of many yet unsolved problems, especially when combined 
with E-unification (e.g., termination of AC-rewriting). Finally, this method being 
based on first-order equational logic as Goguen-Meseguer's and Smolka's, the same 
observations apply. At any rate, the method is a very active field of research which 
deserves attention. 

2.2.4. The higher-order logic approach. Naturally, there are also those who do not 
hesitate to make the jump into hyperspace. Indeed, since the 2-calculus is a common 
language to combinatory logic and functional programming, and knowing that the 
key operation in ~o-order logic (higher-order unification) is semi-decidable [31, 29] 
------i.e., not worse than, say, Horn clause resolution--why not just use these tools, 
which are available, to construct a (relatively) complete operational calculus. Such is 
the approach of Nadathur's and Miller's [47, 49], who explore programming language 
design based on higher-order logics. 

Strange as it seems, this approach is not any more complex than first-order 
equation solving methods. In fact, the two methods are operationally homomorphic 
as we shall see. That is, we can transform a higher-order equation into a first-order 
equation modulo a first-order theory. We summarize the trick next. This trick was 
suggested to us by Dale Miller. 

Let us consider the 2-calculus, augmented with logical variables of any finite order 
---i.e., first-order (element) variables, second-order (function, or set, or predicate) 
variables, third-order (functional, or set of sets, or recta-predicate) variables, etc. We 
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have as usual, constants (of any order), functional abstractions, and applications 7. 
Now, higher-order unification is simply solving equations in this language, modulo 

)u-conversion, a binary relation on 2-terms which is the composition of three other 
relations: 

(~) alphabetical renaming--which considers two terms equivalent up to a renaming of 
their 2-bound identifiers. 

(fl) functional application--which relates a 2-term of the form (2x.e)(e') to the term 
e[x ~- e'], i.e., the term e in which the term e" is substituted for all free occurrences 
of x in e. 

(q) extensionality--which asserts that a functional t e rmf is  equivalent to any term of 
the form 2x.f(x), where x does not occur free in f .  This relation expresses that 
functions which are pointwise equal are equal. 

Now, considering the (non 2-bound) variables as constants, we can translate these 
Z-terms into combinations (binary application trees) of combinators--for example, 
using the standard S, K, I basis (although any complete combinator basis would do 
[5, 631). 

Recall that, 

I---- /~X.X 

K = Zx.2y.x 

s = ;~f ,~g.;~x. f (x)(g(x))  

Rewriting this using well known syntactic sugar yields the following equations: 

I ( X )  ~ X 

K(x, y) = x 

S( f ,g ,x)  = f (x)(g(x)) 

Thus, the SKI-calculus has three reduction rules. Of course, this looks almost 
first-order, and invites a confusion. Indeed, it looks as if I is a unary operator, K is 
a binary operator, and S is a ternary operator--except that the third right-hand side 
would be syntactically ill-formed. 

A better trick is to consider the following first-order ranked operator signature 
Z = {@2, so, ko,io}, where subscripts denote arity, @ stands for apply, and s, k, i are 
three distinguished constants; together with the following reduction rules: 

@(i, x )  --+ x 

@(@(k, X), Y) --+ X 
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@(@(@(S, F), G), X) --+ @(@(F, X'), @(G, X)) 

What happens now if one plays the game of narrowing modulo this set of reduc- 
tions? That is, can equations be solved after a syntactic sweetener translated your 
favorite syntax of the 2-calculus into the above first-order combinations? The answer 
is simple: Yes--higher-order unification. 

Of course, with these combinators and rules alone innermost narrowing is not 
possible. However, it is possible with the following set of combinators {S, S', S", K, 
K', I} together with the translation rules: 

kx  -~ k 'x  

Sf-+ S ' f  

S'fg --+ S"fg 

and the reduction rules: 

Ix-+ x 

K'sy--+ x 

S"fgx --+ (fx)(gx) 

And now, consider Y~ = {@2, i0, k0, So, k'~, s], s'; } and the new first-order rewrite 
rules: 

@(i, x )  --, Jr 

@(k, X )  --, k ' (X)  

@(k ' (x ) ,  r )  ~ x 

@(s, F)  --+ s'(F) 

@(s'(F), 6 ) -+ s"(F, G ) 

@(s"(F, 6 ) , X )  -~ @(@(F, X), @(6,X)) 

can be cast immediately in the following (innermost narrowing) Prolog program: 

apply(i, X, X). 
apply(k, X, kl(X) ). 
a p p t y ( k t  (X) , -  ,X) .  
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a p p l y ( s ,  F, s l  ( F ) ) .  
a p p l y ( s l ( F ) ,  a, s2(F,  G) ). 
apply(s2 (F, G), X, Y) 

: - a p p l y ( F ,  X, FX), 
app ly (G,  X, GX), 
a p p l y  (FX, GX, Y) . 

Clearly, any complete combinator basis will do. However, pragmatic trade-offs of 
time versus space may arise, as more combinators mean more equations, which in turn 
mean more nondeterminism. Nevertheless, more combinators, if adequately chosen, 
also mean more compact programs, and thus less narrowing work. 

Yet another game one can play with the above is constructing a "higher-order" 
EqLog where higher-order terms are translated as combinations. Interleaving nar- 
rowing modulo combinator reduction with Prolog hence yields a higher-order Prolog. 

Our desideratum is overmet by the higher-order logic approach. Namely, using 
higher-order unification (i.e., synthesizing program expressions) is going beyond 
simple needs for programming. This is clearly too powerful and expensive a tool. 

2.3. Overview of  our approach 

We now introduce a relational and functional programming language called Le Fun 
where first-order terms are generalized by the inclusion of applicative expressions as 
defined by Landin [40] (atoms, abstractions, and applications) augmented with logical 
variables. The purpose is to allow interpreted functional expressions to participate as 
bona fide arguments in logical expressions. 

A unification algorithm generalized along these lines must consider unificands for 
which success or failure cannot be decided in a local context (e.g., function applica- 
tions may not be ready for reduction while expression components are still uninstan- 
tiated.) We propose to handle such situations by delaying unification until the 
operands are ready. That is, until further variable instantiations make it possible to 
reduce unificands containing applicative expressions. In essence, such a unification 
may be seen as a residual equation which will have to be verified, as opposed to solved, 
in order to confirm eventual success--whence the name residuation. If verified, a 
residuation is simply discarded; if failing, it triggers chronological backtracking at the 
latest instantiation point which allowed its evaluation. 

Although primarily motivated as an experiment in integrating logic programming 
(Horn clause resolution) and functional programming (as in 2-calculus style function- 
al reduction), this residuation principle can also be generalized beyond just unification 
(i.e., syntactic equality) to encompass any syntactical decisions which can be made 
pending further instantiation. In particular, ground-decidable predicates like arith- 
metic inequality, or syntactic inequality (forbidding physical identity) can be implicitly 
handled by residuation. 

A remarkable corollary of this is that such unclean patches as Prolog's is evaluation 
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predicate are no longer needed, yielding a truly more declarative operational 
semantics. In that sense, the programmer can describe her problem as a combination 
of function definitions and Horn clauses where the order in which conjuncts are 
verified for a given query is completely independent of the order in which they are 
specified. This frees the programmer from cumbersome explicit control annotations 
[9, 59, 54]. Indeed, residuation exhibits a flavor of asynchronous computation model 
that may prove amenable to efficient parallel implementation [51, 41]. 

3. Le Fun examples 

Exposing our ideas is better done by illustrating key points of the residuation princi- 
ple, giving very simple examples focusing attention away from details. 

3.1. Unifying reducible expressions 

SLD-resolution on which pure Prolog is based is not a complete deduction system for 
Horn logic because its depth-first control strategy may diverge although finite 
solutions exist. In addition, Prolog implementations are also incomplete because of 
built-in arithmetic. Of course, it is possible to manipulate numbers through a first- 
order axiomatization of arithmetic. However, performance of a "reaMife" program- 
ruing language forbids this. Thus, arithmetic is built into Prolog as a primitive system. 
Of course, this is done at the expense of completeness since numbers are thus not 
synthesized by unification. As a result, a goal literal involving arithmetic variables 
may not be proven by Prolog, even if those variables were to be provided by proving 
a subsequent goal. This is why arithmetic expressions cannot be nested in literals other 
than the is predicate, a special one whose operation will force evaluation of such 
expressions, and whose success depends on its having no uninstantiated variables in 
its second argument. 

We give two simple examples on how this poses no problem to Le Fun. 

3.1.1. Simple case. Consider the set of Horn clauses: 

q(X,Y,Z)  : - p ( X , Y , Z , Z ) ,  p i o k ( X , Y ) .  

p(X,Y,X + Y,X.Y). 
p(X,Y,X + Y, (X*Y)-14). 

p i c k ( 3 , 5 ) .  
p i c k ( 2 , 2 ) .  
p i c k ( 4 , 6 ) .  

and the following query: 
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?- q(A,B, C). 

From the resoivent q(A, B, C), one step of  resolution yields as next goat to establish 
p(A, B, C). Now, trying to prove the goal Using the first of the two p assertions is 
contingent on solving the equation A + B = A • B. Naturally, using Peano's axioms 
to solve this is out of  the question. At this point, Prolog would fail, regardless of  the 
fact that the next goal in the resolvent, pick(A, B) may provide instantiations for its 
variables which may verify that equation. Our solution is to stay open-minded and 
proceed with the computation as in the case of  success, remembering however that 
eventual success of  proving this resolvent must insist that the equation be verified. As 
it turns out in this case, the first choice for pick(A, B) does not verify it, since 
3 + 5 ¢ 3 * 5. However, the next choice instantiates both A and B to 2, and thus 
verifies the equation, confirming that success is at hand. 

To emphasize the fact that such an equation as A + B = A * B is a left over granule 
of computation, we call it a residual equation or equational residuation--E-residuation, 
for short. We also coin the verb "to residuate" to describe the action of  leaving some 
computation for later. We shall soon see that there are other kinds of  residuations. 
Those variables whose instantiation is awaited by some residuations are called resi- 
duation variables (RV). Thus, an E-residuation may be seen as an equational closure 
- - b y  analogy to a lexicat closure--consisting of two functional expressions and a list 
of RV's. 

There is a special type of E-residuation which arises from equations involving an 
uninstantiated variable on one hand, and a not yet reducible function expression on 
the other hand (e.g., X = Y + 1). Clearly, these will never cause failure of  a proof, 
since they are equations in solved form. Nevertheless, they may be reduced further 
pending instantiations of their RV's. Hence, these are called solved residuations or 
S-residuations. Unless explicitly specified otherwise, "E-residuation" will mean 
"equational residuations which are not S-residuations." 

Going back to our example, if one were interested in further solutions to the 
original query, one could force backtracking at this point and thus, computation 
would go back eventually before the point of  residuation. The alternative proof  of  the 
goal p(A,B,C,C)  would then create another residuation; namely, 
A + B = (A * B) - 14. Again, one can check that this equation will be eventually 
verified by A = 4 and B = 6. 

One may observe that a possible realization of  the residuation principle would be 
to accumulate all residual equations along a depth-first walk of the and/or proof  tree 
until a leaf is reached; then, instantiate all E-residuations with the substitution at 
hand; and succeed if and only if they are all verified. Clearly, this would be far more 
expensive than using any relevant instantiations as they materialize. This is very 
reminiscent of  the process of asynchronous backpatching used in one-pass compilers 
to resolve forward references. 

3.1.2. Trickier case. Since instantiations of variables may be non-ground (i.e., may 
contain variables), residuations mutate. To see this, consider the following example: 
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q ( Z )  : -  p ( X , Y , Z ) ,  X : V - W, Y : V + W, p i c k ( V , W ) .  

p (A, B, A,B) .  

p i c k ( 9 , 3 ) .  

together with the query: 

? -  q ( A n s ) .  

The goal literal p(X, Y, Ans) creates the S-residuation Ans= X ,  ]1. This S-residua- 
tion has RV's X and Y. Next, the literal X = V - W instantiates X and creates a new 
S-residuation. But, since X is an RV to some residuation, rather than proceeding as 
is, it makes better sense to substitute X into that residuation and eliminate the new 
S-residuation. This leaves us with the mutated residuation Ans = ( V -  W)*  Y. This 
mutation process has thus altered the RV set of  the first residuation from {X, Y} to 
{v,w,Y}. 

As computation proceeds, another S-residuation instantiates Y, another RV, and 
thus triggers another mutation of the original residuation into Ans = ( V -  W ) ,  
( V +  W), leaving it with the new RV set {V, W}. 

Finally, as pick(9, 3) instantiates V to 9 and W to 3, the residuation is left with an 
empty RV set, triggering evaluation, and releasing the residuation, and yielding final 
solution Ans = 72. 

3.2. Residuating ground-decidable predicates 

Equations are not the only computations which may be residuated. A goal literal 
whose decision is entailed by grounding its arguments would gain to be potentially 
suspended~ expecting its arguments to become ground. More precisely, and n-ary 
predicate symbol p is said to be ground-decidable if it is immediately possible to decide, 
given any ground terms ~1 . . . . .  l n ,  whether the literal p(tl . . . . .  tn) holds true or not. 
Examples of  such predicates are the so-called "built-in" predicates of  Prolog such as 
¢ (h v a t2 succeeds if and only if h and t2 do not unify) and arithmetic comparisons 
( < ,  ~<, >~ >~ ). Thus~ such predicates residuate in Ee Fun. These are called I-residua- 
tions. 

Consider, for example, 

q ( X , Y , Z )  " -  p ( X , Y , Z ) ,  X < Y, Y < Z, p i c k ( X , Y ) .  

p (X, Y, X,Y).  

p ± c k ( 3 , 9 ) .  
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with the query, 

?- q(A, B, c) .  

Understanding this example is left as exercise. 

3.3. Higher-order expressions 

The last example illustrates how higher-order functional expressions and automatic 
currying are handled implicitly. Consider, 

s q ( X )  : X*X. 

t w i c e ( F , X )  : F ( F ( X ) ) .  

validop(twice). 

p(1) .  

pick(lambda(X,X)). 

q(Val) :- G = F(X), Val : G(1), valid_op(F), 

pick(X), p(sq(Val)). 

with the query, 

?- q(Ans). 

The first goal literal G = F(X) creates an S-residuation with the RV set [F, X}. 
Note that the "higher-order" variable F poses no problem since no attempt is made 
to solve. Proceeding, a new S-residuation is obtained as Ans = F(X)(1). One step 
further, F is instantiated to the twice function. Thus, this mutates the previous 
S-residuation to Ans= twice(J()(l). Next, X becomes the identity function, thus 
releasing the residuation and instantiating Ans to 1. Finally, the equation sq(l) = 1 
is immediately verified, yielding success. 

4. Interpreted unification 

In this section we present a basic formal syntax of  terms which are a blend of 
2-calculus terms and first-order constructor terms. We also define substitutions for 
these terms. Then, we describe a non-deterministic unification algorithm for these 
terms which accounts for/~-reduction. This algorithm is presented as a set of  solution- 
preserving transformations on a set of  equations h la Martell i-Montanari  [43]. 



INTEGRATING LOGIC AND FUNCTIONAL PROGRAMMING 67 

4.1. Terms and substitutions 

Let {2, },~0 be an indexed family of  mutually disjoint sets of  constructor symbols of  
arity n. Let ~; = w,~0Z,, be the set of  all constructors. Let V be a countably infinite 
set of  variables. By convention, variables will be capitalized not to confuse them with 
constructor constants in Y~0- 

Let T be the set of  terms defined as the smallest set such that: 

• if Y e  V then X ~ T ;  
• if a ~ 2 0 then a ~ 7"; 
• if c~X~ and t~eT, (1 ~< i~< n) then c ( t ~ , . . . , t ~ ) e T ;  
• i f X ~  V and te  T t h e n  2X. t~T;  
• if t~ e T and t2e Y" then f i ( t2)eT.  

We shall denote by t[t'] the term t with a distinguished occurrence of  subterm t'. 
Free and bound occurrences of  variables in terms are defined exactly as usual as in the 
2-calculus. We shall call var(t) the set of  all variables (free or bound) in a term t. The 
expression t[X ~ t'] stands for the term resulting from simultaneously substituting all 
free occurrences of  the variable X in t by t'. 

There are three basic reduction relations defined on terms: a, fi, and t/. They are 
defined thus: 

• ~-reduction: 2Y. t  ~- ~ 2 Y . t [ X ~  Y], if Y does not occur free in t; 
• fi-reduction: (2X.t)(t ')  >- ~ t [ X ~  t']; 
• q-reduction: 2Y. t (X)  ;~ ,t, if Y does not occur free in t. 

Combined reduction relations (e.g., aft, fitl) denote the union of  the basic reductions 
composing them (e.g., t~ ~ ~t2 iff tl >- ~t2 or t 1 ;~ f12). 

We shall use the greek letter ~ as a generic parameter  standing for any (basic or 
combined) reduction relation. The following relations are derived from any reduction. 

• ~-conversion: t[tl] ~ J[t2] if tl >- d2; 
• symmetric l-conversion: t1 ~-~ ~t2 iff t 3 ~ ~t2 or t2 ~ ct~ ; 
• reflexive transitive l-conversion: t~----* ~t2;. 
• i-equivalence: tL ~ ~t2 iff tl ~ , ~t2, where ~ ~ ~ is the reflexive and transitive closure 

of  *---~ ~_. 

Given a term, there are in general many ways in which one can apply a reduction. 
A term which cannot be (G-)reduced anymore is said to be in (~-)nor/nalform. As in 
the pure (untyped) 2-calculus, there may be infinite sequences of  reductions. However,  
there is no ambiguity among terminating reductions thanks to the following very 
important  and well-known result (See [3]): 

Theorem 1 (Church-Rosser Property) I f  a term t has a fl-normal form it is unique up 
to c~ 7 conversion. 
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Given  a term t, we shall denote  by t + ¢ its f l -normal  form,  if it exists. We shall write 
t ,~ ~ = i if  it has no f l -normal  fo rm (i.e., if all fl-reductions f rom t do not  terminate).  

A substitution a is a funct ion f rom Vto  ~ such that  the set {Xs  VIX ¢ a ( X )  } is finite. 
This  set is called the domain of  a and denoted by dora(a). The  set {teTtt = a(X),  
Xedom( t )}  is called the range of  a and denoted by ran(a).  Such a substi tut ion is also 
writ ten as a set such as a = {ti/xi}n=l where dom(a) = {X~}7=~ and a(Xi) = t~ for  i = 1 
to n. A subst i tut ion a is in (~-)normat  fo rm iff all the terms in ran(a)  are in (~-)normal 
form. We shall write a ~ ~0 whenever  a ( X )  ~ ~O(X) for  all X e  V. 

Given a subst i tut ion a and a variable X, the subst i tut ion ax is defined as: 

x if y =  x; 

ax(Y)  = a (Y)  otherwise.  

A substi tut ion a is uniquely extended to a funct ion ~ f rom ~ to ~ as follows: 

• 5 ( x )  = a ( x ) ,  if x e  v; 
• 5 (a)  = a, i f  a e Z0; 
• 5 ( e ( t l , . . .  , t , ) )  = e(5(tl) . . . .  ,5(t,)), if e e Z ,  t i e Y ;  (1 ~< i ~< n); 
• 5(2X.t) = 2Y.ay(t) ,  where X e  V, Ye  V - var(ran(a)),  and t e T ;  
• 5(q(t2)) = 5(tl)(5(t2)), if  tl e T and tzET.  

Since they coincide on V, and for  no ta t ion  convenience,  we deliberately confuse a 
subst i tut ion o- and its extension 5. Also, ra ther  than  writing a(t), we shall write to-. 
Finally, unless otherwise specified, we shall assume in the sequel that  substi tut ions are 
in f l -normal  form, and  we shall omi t  the implicit subscripts "f l"  in " n o r m a l  f o r m "  and 
t +, and "~q"  in ~ .  

Compos i t ion  is defined as usual up  to fl-reduction. Given two substi tut ions 
a = {ti/X~}7=, and  0 = {s)/Yj}~'=l, the compos i t ion  a0 is the subst i tut ion which yields 
the same result on all terms as first applying a then applying 0 on the result. One 
computes  such a compos i t ion  as the set: 

aO = ({tO +/XI t / X e  a} - {X/X]Xe  dom(a)}) ~ (0 - {s/YI Y e  dora(a)}). 

Fo r  example,  if a = {F(X)/Y,  V(a)/U} and 0 = {a/Y ,2X.2Y.Y/F,2X.U/V} ,  then 
aO = {~Y.Y/Y,)~X.2Y.Y/F,)~X.U/V}. 

Note  that  this compos i t ion  modu lo  fl-reduction is part ial ly defined as some reduc- 
t ions m a y  not  terminate ,  in which case we write aO = _l_. (Take, for  example,  
a = {F(F) /Y}  and 0 = {2X.X(X)/F}.)  However ,  provided that  all fl-reductions ter- 
minate ,  it is clear tha t  if  both  a and 0 are in no rma l  fo rm then so is aO. 

Compos i t ion  defines a preorder  (i.e., a reflexive and transit ive relation) on sub- 
stitutions. A subst i tut ion a is more general than  a subst i tut ion 0 iff there exists a 
subst i tut ion Q such tha t  0 ~ a~. 
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4.2. Unification algorithm 

An equation is a pair  o f  terms, written s = t. A substi tut ion a is a solution (or a unifier) 
of  a set o f  equat ions {s~ = t,}7=~ iffs~a $ ~ t~a $ for all i = 1 . . . . .  n. (That  is, if all pairs 
o f  terms are equal up to ~/~/-conversion.) 

Unless otherwise specified, we shall always assume that  all terms in a set o f  
equat ions are in normal  form. 

Fol lowing [43], we define two t ransformat ions  on sets o f  equations---constructor 
decomposition and variable elimination. They both  preserve solutions o f  sets o f  
equations. Two sets o f  equat ions are equivalent iff they both  admit  all and only the 
same solutions. 

Constructor decomposition 

I f  a set E o f  equat ions contains an equat ion o f  the form c(s~ . . . .  ,s , )  = c(fi . . . .  , tn), 
where c E ~,~, (n >~ 0), then the set 

E ' =  E -  {e (s l  . . . . .  s , )  = e(t, , . . . , t ,)} (s,  = 

is equivalent to E 8. 

Theorem 2 Let E be a set of  equations containing an equation of  the form c ( s l , . . . ,  
s,) = d ( t l , . . . ,  tin). I f  c ~- d or n ~ m then E has no solution. Otherwise, the set E'  
obtained from E by constructor decomposition using this equation is equivalent to E. 

Proof: I f  c ¢ d or  n :A m, then it is clear that  no substitution can make the two sides 
identical. If, on  the other  hand  c = d and n = m, then it is also clear that  a 
substitution will be a solution o f  E iff it is a solution o f  E ' .  • 

Variable elimination 

I f  a set E o f  equat ions contains an equat ion o f  the form X = t where t 4: X, then the 
set 

E '  = ( E -  { X =  t})a.~ • { X =  t} 

where cr = { t /X} ,  is equivalent to E, provided all reductions terminate 9. 

Theorem 3 Let E be a set of equations containing an equation of the form X = t where 
t ~ X. If¢ is of  the form c(tl . . . . .  tn), where cE E~, and i f X  occurs free in t then E has 
no solution. Otherwise, provided that all reductions terminate, the set E" obtained from 
E by variable elimination using this equation is equivalent to E. 

Proof:  I f  X occurs free in t = c(tl,. •. ,  t,), then X cannot  be made  identical to t as 



70 AIT-KACI AND NASR 

it is its strict subterm. I f  X does not occur free in t, since by construction X -- 
t e E c~ E ' ,  any solution of E or E '  must make in particular X and t identical. Now 
consider s = t e S distinct f rom X = t. Let s '  = t' be the corresponding equation in 
E ' .  Now, if tr makes s and t identical, it must also make s '  and t' identical since they 
may only differ from s and t by the presence of X versus t, which are made identical 
by a. The same holds conversely, if o" make s '  and t' identical. • 

In addition to the two transformations above, the following holds: 

Lemma 1 I f  a set o f  equations E contains an equation o f  the f o r m  2X.s = c(tl . . . . .  t,) 
where c e Z , ,  (n >I 0), then E has no solution that does not involve at least one q-reduc- 
tion. 

Proof: Since 2-abstraction and constructor terms are syntactically distinct objects 
unless related by the rule of  q-reduction, this is clearly true. Hence, unless such an 
q-reduction is performed, no substitution can make them identical. For example 
the equation 2X. Y ( X )  = a where a e Z0, has the solution { a / Y  }, but it necessitates 
q-reduction. • 

Finally, since we need to stop short of  synthesizing functional abstractions as done 
by higher-order unification [31], we shall deliberately ignore solutions which involve 
solving one or more equations of  the form 2X.s = )~Y.t, as well as ignoring q-reduction 
steps. This is the only source of  incompleteness of  the equation simplification 
algorithm presented next. 

A Non-deterministic algorithm 

A set of  equations E is partitioned into two subsets: its solved part  and its unsolved 
part. The solved part  is its maximal subset of  equations of  the form Jr" = t such that 
X occurs free nowhere in the full set of  equations only as the left hand side of  this 
equation alone. The unsolved part  is the complement of  the solved part. A set of  
equations is said to be fu l ly  solved iff its unsolved part  is empty. 

The following describes a normalization procedure for a given set E of  equations. 
Repeatedly choose non-deterministicatly and perform one of  the following trans- 
formations. I f  no transformation applies, stop with success. 

(a) Select any equation of the form t = X where t is not a variable, and rewrite it as 
X = t .  

(b) Select any equation of  the form X = X and erase it. 
(c) Select any equation of  the form c ( s ~ , . . . , s , ) =  d(tl . . . . .  t~) where c e Z ,  and 

d e  Zm, (n, m /> 0); if c ¢ d or n ¢ m, stop with failure; otherwise, if n >/1 replace 
it with n equations si = ti, (i = 1 . . . . .  n). 

(d) Select any equation of the form X = t where X is a variable which occurs free 
somewhere else in the set of  equations and such that t ¢ J(. I f  t is of  the form 
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c ( f i , . . . ,  tn, where c ~ Y~,, and if X occurs free in t, then stop with failure; otherwise, 
let o" = {t /X} and replace every other equation l = r by l~r+ = ro-+; 

(e) Select any equation of the form ,~X.s = c( t~, . . . ,  t,) where c ~ 1~,, (n >~ 0), and stop 
with failure; 

(f) Select any equation of the form 2X.s = ,~Y.t, and stop with failure. 

The set of  equations which emerges as the outcome of this procedure, if any does, 
is said to be in canonical form. We denote by can(E) the set resulting upon termination 
of the algorithm starting with a set of  equations E. If  it terminates with failure, we 
write can(E) = L. Given E in canonical form, its solved part is called its most general 
unifier denoted by mgu(E) and its unsolved part is called its residue denoted by res(E). 
Elements in res(E) are called residual equations or. residuations. 

Theorem 4 Given a set E of equations, provided that all reductions terminate, the 
Joregoing non-deterministic algorithm is such that: (1) i f  E has no unifer then it 
terminates with failure; (2) otherwise it terminates with a canonical set of  equations 
can(E) such that mgu(ean(E)) is the most general solution of E which does not require 
solving an), equation of  the form 2X.s = 2Y.t or performing some q-reduction. 
Moreover, no variable in dom(mgu(can(E))) occurs free in res(E). 

Proofi Steps (a) and (b) trivially preserve all solutions without failure. Steps (c) and 
(d) are respectively constructor decomposition and variable elimination which 
preserve all solutions or fail as no unifiers exists, by Theorems 2 and 3. Step (e) fails 
in the only other case where no unifier exists for E, by Lemma 1. Step (f) discards 
solutions involving function synthesis, and in particular fails in all cases where such 
synthesis would fail. Hence, in all cases where unifiers do not exist for E, provided 
all reductions terminate, the procedure halts with failure. 
To establish that, otherwise, the procedure terminates, we make two observations. 
First, steps (a), (b), and (d) cannot be repeated more times than there are free 
variables in E. Moreover the equation involved in each of  these steps is either 
eliminated or made ineligible for any other step (a), (b), or (c). Second, constructor 
decomposition replaces one equation by several, each of  strictly shallower depth ~°. 
Thus, a simple multiset ordering argument [20] is enough to conclude that since 
depth of  terms is well-founded, so is the constructor decomposition procedure. 
Therefore, provided that all reductions terminate, the algorithm always terminates. 

It is clear, by step (f), that mgu(ean(E)) never requires solving any equation of  the 
form 2X.s = 2Y.t. That it is a most general such unifier of  E is also clear since, 
besides step (f), transformations in all steps preserves all and only solutions to E 
and thus all ensuing variable assignments are necessary conditions for all solutions 
o f E  1~ . Finally, by variable elimination in step (d), no variable in dom(mgu(can(E))) 
may occur free in res(E). II 
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Example 

Consider the set of equations 

{ f  (X(Y)(e(a,  V)), h(X, a), 2U.U) = f (c(Z, b), h(2F.2X.F(F(X)), a), Y)} 

A sequence of transformations from the unification algorithm applied to this set is: 

(c) {X(Y)(c(a, V)) = c(Z, b), h(X, a) = h(2F.2X.F(F(X)), a), 2U. U = Y } 

(a) {X(Y)(c(a, V)) = e(Z, b), h(X, a) = h(2F.2X.F(F(X)), a), Y = 2 U. U } 

(d) {X(2U.U)(c(a, V)) = c(Z, b), h(X, a) = h(2F.2X.F(F(X)), a), Y = 2U. U} 

(c) {X(2U.U)(c(a, V)) = e(Z, b), X = 2F.2X.F(F(X)),  a = a, Y = 2U.U} 

(c) { X(2 U. U)(c (a, V)) = c (Z, b), X = 2F.2X.F(F(X)), Y = 2 U. U } 

(d) {e(a, V) = c ( Z , b ) , X  = 2F.)~X.F(F(X)), r = 2 u . u }  

(d) {a = Z, V =  b , X =  2F.2X.F(F(X)),  r = 2 u . u }  

(a) {Z = a, V =  b , X  = 2F.2X.F(F(X)), Y =  2U.U} 

The equation solving procedure described in this section is the unification algorithm 
on which Le Fun's operational semantics rests. Short of synthesizing functions or 
recognizing extensionally equivalent functions--neither being really needed in a 
first-order logic language--Le Fun combines both 2-calculus and predicate logic 
convenience. 

5. Le Fun operational semantics 

5.1. Le Fun syntax 

We present here a minimal syntax for Le Fun. The idea is not to give an exhaustive 
description of a "real-life" syntax with all conveniences and sugaring to accommodate 
aesthetics, but rather to define just enough to focus the reader's attention on the 
specific originality of Le Fun's syntax--namely, a generalization of applicative ex- 
pressionsand first-order terms. Thus, the reader is assumed to be familiar with 
Prolog's syntax as well as with basic sugaring of the 2-calculus. Therefore, many 
unspecified details (e.g., pattern-directed conditionals for functions, handling of 
functional recursion, etc.) are left to the reader's taste after a reading of [40, 5, 53]. 

Le Fun's terms are a combination of conventional first-order terms and applicative 
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expressions. More precisely, a Le Fun term is one of the following: 

1. Variables--represented as capitalized identifiers; 
2. Identifiers--represented starting with a lower case letter; 
3. Abstractions--of the form 2X1... Xn .e, where Xg, i = 1 . . . . .  n are variables, and e is 

a Le Fun term; 
4. Applications--of the form e(el . . . . .  en), where e is a Le Fun term, and the ei's are 

Le Fun terms. 

All classical conventions related to left-associativity, infix notation, and currying of  
applications are assumed. Those special applications of  the form c(el . . . .  , e,), where 
c is an identifier known to be a constructor symbol, and the ei's are Le Fun terms are 
called constructions. 

A L e  Fun program consists of  a sequence of  equations and clauses. An equation is 
of the f o r m f  = e where f i s  an identifier called an interpreted symbol, and e is a Le Fun 
term. In the case where e is an abstraction of  the form 2 ~  . . . . .  2X,.e', we may also 
writef(X~ . . . . .  X,,) = e'. A clause is defined exactly as in Prolog, with the difference 
that Le Fun terms are expected where first-order terms are in Prolog--i .e. ,  as predi- 
cate arguments. Such literals which constitute Le Fun clauses will be called Le Fun 
literals. 

The lexical distinction between constructor and interpreted symbols is simply that 
a constructor is any identifier which does not appear  in a left-hand side of  an equation. 
For those, fixed arity is assumed. Hence, any construction with root constructor of  
arity n must have exactly n arguments. I f  it has more, the term is ill-formed. I f  it has 
less, then the term is not a construction, but an abstraction. Indeed, if c is an n-ary 
constructor, the term c(e~ . . . .  ,ek) for k < n is in reality the term 
2X~ . . . . .  X,_k.c(el . . . . .  ek, X~ . . . . .  X,_k), where the Xj's do not occur free in any of the 
e i 'S .  

Note that in a clause, no confusion should arise between 2-bound and logical 
variables. The latter are those variables which are not in any 2-scope---occurring free 
in the clause. Thus, only logical variables are instantiatable by unification 12. 

Given a Le Fun program, a query is a sequence of  Le Fun literals. I f  only a function 
evaluation is desired, a query of the form X = f ( e l  . . . . .  en) will provide the value of 
evaluating the given functional expression as X's  binding. For  example, consider the 
Le Fun program: 

map(~,L) = if(L = [], 
[], 

IF(head(L) ) Imap (F, tail(L) ) ] ). 

Thus, evaluating a map expression in Le Fun is done as: 

?- x = map(+(1), [o,I,2]). 

x = [1,2,33 
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It is important to understand how function definitions are transformed and stored, 
and how they are actually used by Le Fun operations. Essentially, one may think of 
compilation taking place at read time and installing all function definitions in some 
(interpreted) function symbol store of definitions. These definitions are obtained from 
the bodies of the functions, perhaps compiled into an appropriate functional machine 
language (SECD [40], CAM [13], etc.). All functional expressions intervening in some 
other definition bodies, or for that matter some Le Fun clauses or goals, are also 
compiled as in-line calls (such are clever enough to handle recursion). The functional 
abstract machine is used in the operational semantics that follows only hidden in the 
unification process. In that way are the functional definitions used by Le Fun. 

5.2. Le Fun operations 

Function definitions being transformed away into 2-calculus forms, the operational 
semantics of Le Fun becomes quite simply identical to Prolog's where unification is 
replaced by the algorithm of Section 4.2. We formalize this as a state transformation 
process. 

A state of Le Fun computation is either ~ (called the failure state) or a quadruple 
(G[EIPIS) where G is a sequence of literals called the (goal) resolvent, E is a set of 
equations in canonical form, P is a sequence of Le Fun clauses called the program, 
and S is a state. The computation rule of Le Fun thus is a state transformation 
relation. We shall write $1 ~ $2 the transformation from state $1 to state $2. Given 
a clause H:-B, the notation (H:-B) ~ denotes that same clause with all its variables 
consistently renamed with fresh variables. Starting with a state of the form (GIO1 
P01~), Le Fun proceeds from state to state by repeatedly applying the following 
computation rules: 

1. (GIE[OIS) ~ S, if G ¢ O; 
2. (O[E[PIS) ~ S, if res(E) ¢ O; 
3. (L, GIEIH:-B, PIS) 

( (L,  GIEIPIS), 
) i f  ean(Eu {L = H~}) = ±; 

I ( B  ~, Glean(E u {Z = H ~ })le0l(Z, GIEIPIS )), 
[otherwise; 

where H ~ :-B ~ = (H:-B) ~. 

The first transitions are called backtrack steps, and the third one is called a resolution 
step. Recall that can(E) is the canonical form of E computed by the algorithm 
described in Section 4.2. 

This process may either diverge or terminate with a state of one of the following 
forms: 
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1. "A', the failure state; or 
2. (,OIEIPIS) where res(E) = O. That is, Eis fully solved. This is a (full) success state. 

The solution is mgu(E). At this point, the same alternative offered by Protog to try 
to find other solution may be induced with a backtrack step. 

At the state (OIEIP[S) when res(E) :/: O, one may also choose to stop and display 
the partial solution mgu(E) and the residual constraints res(E), or feed the latter to 
a special-purpose constraint solver. 

6. Implementation of Le Fun 

6.1. General principle 

The general idea is that residuations can happen at different levels, and that timely and 
efficient resolution of such residuations can be accomplished through a careful 
run-time accruement of backchaining information built into a generalized resolution/ 
unification algorithm. Hence, using such run-time information, resolving a residua- 
tion should happen automatically when enough information is available for such a 
resolution to be meaningful (e.g., a residuated functional expression evaluation 
should be resolved as soon as all the free variables in that expression are ground). One 
undesired alternative, for obvious reasons, is having to accumulate all residuations in 
a central repository and check them there periodically for progress potential. The 
difference between these two alternatives is reminiscent of the difference between 
interrupt servicing and polling when a system is dealing with an external signal. The 
following is a description of  the supported residuations and the backchaining in- 
formation that is deemed necessary for their economical implementation. 

At the resolvent level, and as part of a regular goal resolution, a unification can 
become residuated if a unificand is a function application not ready for evaluation. 
Therefore, internal representation of function applications must remember the unif- 
ications pending on them. Also at the resolvent level, the resolution of ground-decid- 
able predicates can be residuated if their operands are either function applications not 
ready for evaluation, or uninstantiated variables. Therefore, both function applica- 
tions and uninstantiated variables should have the capability of remembering the 
residuated ground-decidable predicates pending on them. 

Function applications suspend if free variables therein are still uninstantiated. 
Therefore, uninstantiated variables should have the capability of remembering the 
residuated functional evaluations pending on them. We note that, given a function 
application, partial progress may be possible in reducing such expressions even if all 
free variables in the expression are not ground. For example, partial computation may 
allow earlier failures in some computations such as the E-residuation: 

append([O], X) = append([1], Y) 
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However, the computational overhead needed to support each eager evaluation with 
the potential of backtracking in considerably more severe, since in general, trailing of 
all partial evaluations must be kept. 

The above points lead us to the following observations: 

© Computation fragments that may need to be delayed and remembered (residuated) 
are (1) functional applications (S-residuations), (2) ground-decidable predicates 
(I-residuations), and (3) unification operations (E-residuations.) 

© Objects that may need to remember residuated computations are: (1) functional 
applications, and (2) uninstantiated variables. 

© The backchaining information is always recorded at unification time, or at the time 
certain built in predicates are invoked; this is when it is realized whether residuation 
will be necessary. The unification algorithm will detail the issues related to the 
nature and placement of that information. 

© The backchaining information will be extracted and used at unification time. 
Failure of released residuated computations simply calls the regular backtracking 
algorithm, modulo a more sophisticated trailing of variable instantiations. 

The next section gives some details about an internal representation of Le Fun 
syntactic objects which we shall use in describing Le Fun's operational semantics. 

6.2. Internal representation 

Objects can be stored in one of two ways: simple objects are stored directly in data 
cells (boxed objects) with both their value and their tag occupying the same cell. 
Complex objects, on the other hand, use a two level storage mechanism where the tag 
and a reference to the actual complex object occupying one data cell, and the complex 
object itself occupying as much space as needed allocated out of a heap-like storage 
area. 

Simple objects and partial specification of complex objects are shown in the table 
in Figure 1. 

S),nfactic ObjecI I Value Field 

Atomic Object 

Tag Field 

Variable Reference Reference to another variable Var Ref 
Uninstantiated Variable (Ignored) Uninst'd 

Atomic value Atomic 
Reference to the Construction Construction Constr 

Functional Application Reference to the application Appl 
Functional Abstraction Reference to the abstraction Abst 

Residuation Variable Reference to the Var with Resids Var/Resids 

Fig. 1. Internal representation of syntactic objects. 
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Principal Functor 
Arg 1 
Arg 2 

Arg n 

Fig. 2. Construction representation. 

Application Expression 
Number of Uninst'd Vars 

List of Uninst'd Vars 
Reduced Value 

List of Residuations 

Fig. 3. FunctionaI application representation. 

Abstraction Expression 
Number of Uninst'd Vars 

List of Uninst'd Vars 

Fig, 4. Functional abstraction representation. 

Value (When inst'd) 
List of Residuations 

Fig. 5. Residuation variable representation. 

The complex objects themselves, occupying space allocated out of  the heap-like 
storage, are represented as illustrated in Figure 2 (construction), Figure 3 (functional 
application), Figure 4 (functional abstraction) and Figure 5 (residuation variable.) 

6,3. Dercferencing Le  Fun objects 

Le Fun unification algorithm will have to recognize, as usual, the basic three data 
types--uninstantiated variables, atomic objects and constructions. It must also 
handle functional applications, abstractions, and variables with residuations. Tagging 
will identify these different structures. Thus, we will assume that every data object in 
our system consists of  two fields--a tag field, and a data field. The unification 
algorithm can then be visualized as a matrix whose rows and columns are the different 
types (tag values) of  the two unificands. Therefore, the row-column intersections 
correspond to the unification case particular to the types of  the unificands. 
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We shall use a seventh data type--variable references or pointers. They materialize 
through unifications between uninstantiated variables. They are made transparent to 
the unification matrix through the systematic dereferencing of unificands before the 
actual unification operation. Therefore, such reference chains are left transparent and 
do not figure explicitly in the matrix. If this produces: 

• an uninstantiated variable--it is returned. 
• an atomic object--i t  is returned. 
• a construction--it is returned. 
• a functional applieation---a check is performed to see if the application is ready for 

evaluation. If so, dereferencing produces the result; otherwise, the delayed applica- 
tion itself. 

• a functional abstraction--it  is ascertained that the count of  uninstantiated variables 
in the expression was initiated, and the abstraction itself is returned. When the 
counting of  uninstantiated variables starts, incrementing is performed automatic- 
ally. This is because all the uninstantiated free variables in the expression mutate 
into uninstantiated variables with residuations (pointing to their common parent 
expression). These variables are treated specially by the unification algorithm when 
they become unificands themselves, including maintaining a consistent count of 
uninstantiated variables in their common parent expression. 

• an R V--if the variable is unbound, it is returned; otherwise, dereferencing is done 
recursively on the binding. 

IUnify -~ Uninst'd 
Row-Col Variable 

~-n[ns~ Case 

~ riable 6.4.2 
omic Case 

6.4.3 

Atomic 
Object 

Case 
6.4.4 

Const'n 
Object 

Funct'l 
Appl 

Funct'l 
Abst 

Resid'd 
Variabk 

~ n  Case Case Case 
i . IObject 6.4.3 6.4.1 6.4.5 
A[pFUnct'I Case Case Case Case 

pl 6,4.3 6.4.6 6.4.6 6.4,7 
F~nct~ Case Case Case Case Case 
A~_b.st ~ 6.4.3 6.4.1 6.4.1 6.4.6 6.4.1 
[ Resid 'd Case Case Case Case Case Case 
[Variable 6.4.3 6.4,8 6.4.8 6.4.9 6.4.9 6A. 10 

Fig. 6. Unification matrix for Le Fun objects. 

6.4. Implementing Le  Fun unification 

Le Fun's unification algorithm is better expressed in the form of a matrix (see Figure 
6) where the rows and columns correspond to the different types of  Le Fun terms, and 
the row-column intersections specify the specialized treatment of  the corresponding 
unification case. By symmetry, only half of  the matrix is presented. 
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The treatment of the different unification cases is summarized in the following 
subsections. 

6.4.1. Failure. The treatment of  failures here is very similar to the treatment of  failures 
in conventional logic programming systems. This means backtracking to the most 
recent choice point where alternatives still exist, and proceeding from there after the 
system is restored to its previous state. The difference comes from the fact that in 
conventional systems the only thing that can happen to an uninstantiated variable is 
becoming instantiated; whereas here, such a variable may mutate into an RV (see 
Cases 6.4.6 and 6.4.7.) Then, both types of  changes must be remembered for potential 
failure, and thus, backtracking. In the latter case, restoring uninstantiated variables 
to their original state is assumed for both variables that became instantiated as well 
as variables that mutated to RVs. 

A noteworthy point is that we could relax some failures of  Le Fun unification 
should we decide to use narrowing to set a (perhaps higher-order) deductive mode. 
That is, we may choose to use first-order equation solving or higher-order unification 
to deal with some of  the cases involving functional abstractions or applications as a 
unificand in the matrix above. All variations of  this principle are naturally to be 
considered--i.e., declaring some functors to be narrowable---even if only for intell- 
igent debugging and trouble-shooting. 

6.4.2. Variable versus variable. This is the simplest kind of residuation, and boils down 
to dereferencing unificands before the unification operation is attempted--vz.,  
making one of  the variables point to the other, and tag it as a variable reference. This 
case, of  course, will always succeed. 

6.4.3. Variable versus non-variable. This is the same as the above case, except that it 
can be optimized by overwriting the uninstantiated unificand with the non-variable 
one itself rather than with a pointer to it. Here, as in 6.4.2, unification always succeeds 
--subject  to occur-check. 

6.4.4. Atom versus atom.  This is simply an equality check between the two atomic 
unificands. 

6.4.5. Construction versus construction. This case consists of  a simple equality check 
between the functors (including their arity). This is followed, if successful, by the 
recursive unification of  the unificands' respective arguments. 

6.4.6. Application versus atom,  construction, or abstraction. This case and Case 6.4.7 
are that of the unification between delayed functional applications and other objects. 
This is the simpler of two possible cases, where the other unificand is not another 
application. It creates two kinds of residuations: 

1. One, recorded in the application itself, remembering this present unification that 
cannot be completed pending the evaluation of  the application unificand; and, 
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2. another one, obtained by mutation of every uninstantiated variable in the applica- 
tion into an RV. Note that "uninstantiated variable," in this context, includes RVs; 
in which case the new residuation is simply added to an already existing chain of 
older ones. 

This unification case succeeds provisionally, and never leads to immediate failure. 
Latent failures will be treated when they materialize. 

6.4.7. Application versus application. This case is identical to the previous one except 
that the same treatment as described then is applied to both (functional application) 
unificands. 

6.4.8. R V versus atom or construction. When an RV is instantiated, a chain of events 
is triggered based on the type of  the other unificand. The present case is the simpler 
of such cases, and deals with a second unificand which is either an atomic object or 
a construction. Then, the residuations pending on this variable are either applications 
or ground-decidable predicates. Reference counting reduces the number of RV's by 
one. Zero such RV's trigger evaluation, or the obvious decision in the case of a 
ground-decidable literal. 

6.4.9. R V versus application or abstraction. Instead of simply substrating one as before 
from the RV count, we add n - 1 to that number where n is the number associated 
with the other unificand. 

6.4.10. R V versus R V. The value field of one of  the two RVs is used to point to the 
other, and its chain of residuations is appended to the other's chain. 

Overhead in recording residuations and resolving them is incurred only in the most 
general case. In the simple case where nothing is residuated, unification is obviously 
as efficient as the conventional one. 

7. Relation to other works 

Our computation model has two characteristics: first, the integration of (Horn clause 
resolution based) logic programming and (2-calculus based) functional programming, 
and second the introduction of a powerful implicit asynchronous control strategy into 
a practical programming system. In addition, we found residuation to be a good 
vehicle for implementing native operating systems capabilities (coroutines, I/O 
drivers, schedulers, and general interrupt handling primitives are examples of  such 
capabilities). 

Relatively recent incarnations of Prolog, e.g., MU-Prolog [50] and Prolog-II [t 1], 
handle such problems by giving explicit flow information hints to the interpreter or 
compiler. In these, a user can delay the evaluation of specific ground-decidable 
predicates(e.g.,inequality: ~ in MU-Prolog and d i f / 2  in Prolog-II) until the 
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arguments become ground, Thus, as a first approximation, residuation may be simply 
described as a generalization on these and the similar, albeit more restricted because 
explicit, concepts of read-only variables of Concurrent Prolog [59], or Parlog's mode 
declarations [9] and Prolog-II's freeze--all using explicit annotations and/or recta- 
predicates. However, the extent to which this generalization has been carried out, 
including doing away with user-supplied control annotation delaying goal resolution, 
gives Le Fun quite a different taste. 

Another strongly related paradigm is the notion of I-structures in ID [51] the MIT 
dataflow language. I-Structures are write-once random-access data cells. After an 
I-structure is allocated, one may manipulate it (or rather refer to it) before informa- 
tion is stored in the cell. If the celt's content is needed prior to its materialization, the 
requesting computation is suspended. It is resumed at the time the cell becomes filled. 
No overwriting--even consistent--is allowed into I-structures. Their purpose, of 
course, is only incidentally connected to ours, and pertains to augmenting a (dataflow) 
functional language with arrays. 

There are other language proposals based on extensions of the ,~o-calculus which 
attempts to capture operational features of Prolog (essentially, unification and back- 
tracking). QUTE [58] and FRESH [60] are two such instances. These two languages 
are similar to one another in that they are both built upon a pattern-oriented 
2-calculus where matching has been replaced by unification. They are similar to ours 
in that neither uses higher-order unification. However, they differ substantially from 
Le Fun and from the languages reviewed in the survey of Section 2.2 in that they do 
not literally integrate predicate logic programming with functional programming. 
More precisely, programs in QUTE or FRESH do not have a logical reading as 
Prolog programs do. They consist of functional expressions which may alter a global 
environment. This is why we did not review them as members of the four proposed 
categories of integration since they are not strictly speaking integrating logic and 
functional programming. Nevertheless, they stand out among current research as 
quite original. 

Finally, the operational scheme of Le Fun may be seen through the general 
approach of Constraint Logic Programming (CLP) due to Jaffar and Lassez [34]. 
They develop a semantic, algebraic, and operational scheme extending logic program- 
ming as seen in Prolog, where unification on first-order terms is generalized to 
constraint solving in arbitrary but solvable domains such as of linear equations, 
inequations with real coefficients, boolean formulas, infinite trees, etc. Conventional 
first-order term unification thus turns out to be a simple instance of solving syntactic 
equational constraints. The general CLP operational scheme proceeds by transform- 
ing constraint sets into solved forms (e.g., unification) or canonical forms which are 
solvable by special purpose algorithms (e.g., Gaussian elimination, Simplex method, 
etc,). It is clear that Le Fun's operational semantics falls into this scheme in that Le 
Fun term unification is a particular constraint solving mechanism. Thus, we foresee 
that it should inherit the abstract model-theoretic properties developed by Jaffar and 
Lassez. That would constitute a formal semantics for Le Fun and such is a topic for 
further work. 
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8. Conclusion 

Long live freedom! 
Anonymous, Unpublished, undated. 

In this article we reviewed a number of important proposals for the integration of 
logic and functional programming. We examined the motivation and reason for 
desiring such an integration, staying away from the conventional prejudices for or 
against either style of programming. We attempted to categorize roughly the main 
approaches relatively to our stated desideratum, and highlighted some particular 
points of interest. We introduced a new paradigm for integrating resolution-based 
and 2-calculus based programming which consists of a delaying mechanism built into 
the unification process to account for/?-reduction. We coined the work "residuation'" 
to describe this method as it can be formalized as an equation transforming process 
allowing equational residues to wait for materialization of information to be solved 
further. The usefulness of residuation for handling ground-decidable predicates was 
a straightforward generalization. Much more work remains to be done as far as 
semantics and extension to a real programming language are concerned. Nevertheless, 
we have described an operational semantics and implementation for a prototype 
programming language called Le Fun to validate our design concepts. 

Appendix: Le Fun as a constraint language 

Residuation and the ensuing integration of logic and functional programming can be 
characterized in different ways. 

One of these views Le Fun as adequately fit for constraint problems. Indeed, those 
which can be solved by pre-posting constraints whose evaluation, possibly involving 
functional reductions, is delayed until more information subject of the constraints 
comes. A large class of symbolic processing problems can be thought of as consisting 
of a search through feasible states. Feasibility of such states is done as constraint 
checking. Failing the constraints could trigger a return to the search phase followed 
again by another constraint checking phase, and so on. Such an approach could be 
shown to be in general computationally wasteful. The wasteful computation usually 
results from working on generating the rest of the states when one is already doomed 
to cause a future constraint check failure. 

One immediate improvement is the interweaving of the generation of state instan- 
tiations and the checking of constraints. We claim, however, that a more natural and 
efficient way for dealing with this problem is to be able to pre-post the constraints, 
even though they are not yet decidable, and resolve them as instantiations are 
incrementally generated, thus relieving the programmer from the explicit interleaving 
of the instantiation and the constraint checking phases. 
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A.1. Cryptarithmetic 

Our first example is this well-known cryptarithmetic puzzle where the solution 
consists of  (decimal digits) assignments for the letters S, E, N, D, M, O, R, Y that 
would make the following addition operation arithmetically correct: 

S E N D  + 
M O R E  

= M O N E Y  

A (relatively) declarative specification of this problem is to say that the letters in 
question stand for decimal digits such that such incremental (arithmetic) constaints 
are obeyed. The constraints here involve relationships between functions involving 
the letters in question as well as intermediate variables (carry digits C1, C2, and C3.) 

One way that can be be written in Prolog: 

solution(S, E, N, D, M, 0, R, Y) 

:- % Generating decimal digits: 

decimal digits(IS, E, N, D, M, 0, R, Y]), 

% Generating binary digits: 

zero or one(Cl), 

zero or one(C2), 

zero or one(C3), 

% The arithmetic constaints: 

C3 + 2 + M = 0 + 10*M, 

C2 + E + 0 = N + I0"C3, 

CI + N + R = E + I0"C2, 

D + ~. = Y + 10*CI. 

The problem with this approach is that as candidate assignments are being 
generated (within d e c  i m a l  d i g i  t s / 1 )  for the letters, partial results may already 
be doomed to cause failure but the search goes on to instantiate the rest of  the 
candidates. The search space tbr the solution of our problem is therefore unnecessari- 
ly large, and we would like to have natural ways of  trimming it with minimal user 
effort. Why not post the constraints up front, assuming the system allows such literal 
ordering to produce a successful execution? 

The problem of course is that the unification between two functional expressions 
(e.g., D + E and Y +  10*CI in this example) is only conceivable in conventional 
Prolog if the two expressions can be reduced to canonical forms so that unification 
may decide. When delayed computation fragments become executable and result in 
a failure, chronological backtracking is used to explore available alternatives. The 
point of failure is, of  course, the instantiation that triggered the failed residuated 
computation. Thus, the new version of the same program as above is: 
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solution(S,N,N,D,M, 0, R,Y) 

:- % The arithmetic constraints: 

C3 + S + M = 0 + 10*M, 

C2 + E + 0 = N + I0"C3, 

CI + N + R = E + I0"C2, 

D + E = Y + 10*CI, 

% Generating binary digits: 

zero or one(el), 

zero or one(C2), 

zero or one(C3), 

% Generating decimal digits: 

decimal digits([S, E, N, D, M, 0, R, Y ] ) .  

A.2. Architecture constraints 

This example exhibits the capability of delaying inequality checks (and ground-decid- 
able predicates in general) until such checks are possible (the necessary variables 
become instantiated). Hence, the inequality predicate - is also subject to residuation 
when any of its operands still has uninstantiated variables. This is the special case of 
residuation that corresponds to Prolog-II's d i f / 2  and to MU-Prolog's ~ .  Here 
again then, the computation model allows a constraint to be pre-posted and makes 
it possible to resolve such constraint checking asynchronously as it becomes possible 
to process. The problem in question, taken from [10], can be verbally defined as 
follows: 

Design architectural units given the following design rules: 

1. units consist of two rooms; 
2. one room, the front-room, has an exterior door; 
3. rooms have an interior door and a window; 
4. rooms are connected by the interior door; 
5. walls can have only one opening in them (doors or windows); 
6. no windows should be on the north side; 
7. windows should not be on opposite sides of the unit. 

The problem can be expressed as follows. The solution instantiations are direction 
specification for the units components: 

unit(Exterior Door, 

Rooml Door, 

Rooml--Window, 

Room2 Door, 

Room2 Window) 
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and 

% constraint 5: 
=(Exterior_Door, Rooml_Door, Rooml_Window), 

% constraint 5: 
Room2 Door ~= Room 2 Window, 
% constraint 4: 
opposite(Rooml Door, Room2 Door), 
% constraint 7: 
not_opposite(RoomlWindow, Room2 Window), 
% constraint 6: 
Rooml Window ~= north, 
Room2 Window ~= north, 
% Candidate assignments: 
directions([Exterior_Door, 

Rooml Door, 
Rooml Window, 
Room2 Door, 
Room2 Window]). 

opposite(east,west). 
opposite(west, east). 
opposite(north, south). 
opposite(south, north). 

not-opposite(Dirl,Dir2) 
:- opposite(Dirl,Dir3), 

Dir2 ~= Dir3. 

With a runtime environment that allows the successful execution of such a literal 
ordering, the effect of this program statement is to pre-post the design constraints 
(which will get residuated) and then the search space is truncated every time a partial 
assignment triggers the failure of a residuated constraint check. The search space 
truncation corresponds to the useless generation of the assignments complementary 
to the partial ones causing the constraint violation. Our contention is that the 
efficiency of the asynchronous computation model is superior to a sequential generate 
and test model. 
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Notes 

1. Which may include taste--our taste. 
2. The reader solely interested in Le Fun may wish to skip directly to Section 2.3 on a first reading. The 

survey is intended for the reader who may desire to put our work in context. For additional details, 
all interested reaer is referred to the literature, which is literally bursting with publications on unifying 
logic and functional programming. She will find a good sample in [6, t7, 36], as well as in various 
proceedings of symposia, conferences, and workshops on functional or logic programming. 

3. Narrowing [21, 33, 56] is term-rewriting where matching is replaced by unification, thereby giving 
function application the power to synthesize uninstantiated arguments from patterns in the definitions. 
Innermost narrowing is to narrowing what applicative (innermost) order of reduction is to normal 
(outermost) order of reduction. Thus, some notion of function strictness must be used to ensure good 
behavior. As in the case of reduction, it is a more efficient equation-solving method when used on strict 
terms, but may diverge on non-strict ones (see [62, 44]). 

4. Smolka's logic is restricted to what he calls canonical equational systems in which equations are of the 
fo rmf ( f i , . . . ,  t,) where the t~'s are restricted to be constructor terms; Le., contain no defined symbols 
--roots  to some left-hand sides--such a s f  By virtue of being a root of no right-hand side, a symbol 
is a 'constructor.' 

5. For higher-order varieties, see [24]. 
6. Unless the set of equations which define them is a complete set of reductions, or can be completed by 

the Knuth-Bendix m~thod-which may itself diverge if no finite complete set of reductions exists. 
7. Types (whether Church's simple types [8] or polymorphic [48]) are orthogonal here. We shall ignore 

them in this presentation, although they are of importance for compilation and computation. 
8. If n = 0, the equation is simply deleted. 
9. I r E =  {s, = t~}~= 1 then E~r~. = {s,a$ = t,a$}~=~. 

10. The depth of an equation is the greater of the depths of each of its sides, where depth of a term is defined 
as usual. 

11. That is, it is most general up to variable renaming since an equation of the form X = Y with 3( ~ Y 
in step (d) chooses arbitrarily to eliminate X rather than Y. 

12. For example, following Landin [40] applicative expressions may be compiled into SECD virtual 
machine code, and thus 2-bound variables are translated into displacements indices corresponding to 
their binding heights. Other applicative programming techniques, like combinator reduction, would as 
well eliminate those variables which are 2-bound. 
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