
Query-Based Outlier Detection in Heterogeneous
Information Networks

Jonathan Kuck⇤†, Honglei Zhuang⇤†, Xifeng Yan‡, Hasan Cam§, and Jiawei Han†

†Department of Computer Science, University of Illinois at Urbana-Champaign
‡Computer Science Department, University of California at Santa Barbara

§US Army Research Lab
{jkuck, hzhuang3, hanj}@illinois.edu, xyan@cs.ucsb.edu, hasan.cam.civ@mail.mil

ABSTRACT
Outlier or anomaly detection in large data sets is a funda-
mental task in data science, with broad applications. How-
ever, in real data sets with high-dimensional space, most
outliers are hidden in certain dimensional combinations and
are relative to a user’s search space and interest. It is often
more e↵ective to give power to users and allow them to spec-
ify outlier queries flexibly, and the system will then process
such mining queries e�ciently. In this study, we introduce
the concept of query-based outlier in heterogeneous informa-
tion networks, design a query language to facilitate users to
specify such queries flexibly, define a good outlier measure
in heterogeneous networks, and study how to process out-
lier queries e�ciently in large data sets. Our experiments on
real data sets show that following such a methodology, in-
teresting outliers can be defined and uncovered flexibly and
e↵ectively in large heterogeneous networks.

1. INTRODUCTION
Heterogeneous networks are the networks composed of

multi-typed, interconnected vertices and links. Since the
real world information entities are interconnected, form-
ing numerous, gigantic networks, heterogeneous information
networks are ubiquitous and form the basic semantic struc-
ture of interconnected data. Thus, detecting anomalies or
finding outliers in such networks becomes an important task
in network analysis. Although outlier detection has been
studied extensively in data mining and various application
fields [5, 14], outlier detection in heterogeneous information
networks poses several unique challenges:

1. Unlike many outlier analysis methods that work on ho-
mogeneous datasets (e.g., find anomalous communica-
tions in a communication network), this new endeavor
needs fundamental changes on the definition and detec-
tion of outliers since it involves heterogeneously typed
vertices and links.

⇤The first two authors made equal contributions.

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

2. In a gigantic network, and particularly in a heteroge-
neous network, it is unrealistic to discover all outliers
using “global” techniques. The variety of vertex types,
edge types, and paths connecting particular vertices
creates many potential viewpoints from which outliers
may be classified. These views are di�cult to compare
and possibly conflicting.

3. Data analysts (as users) need to obtain results
promptly to react to outliers or further elaborate their
queries. This creates a big challenge to e�ciently pro-
cess outlier queries in heterogeneous information net-
works.

Based on the above observations, we propose a new out-
lier detection task, called query-based outlier detection in
heterogeneous information networks, by facilitating users to
compose various kinds of outlier queries flexibly in heteroge-
neous networks via a novel query language; defining a new
outlier measure, called NetOut, to measure the outlierness
in such heterogeneous networks; and developing an e�cient
network detection algorithm for this task. The following is
an example that illustrates our ideas.

Motivating example. The DBLP network is a network
generated from the computer science bibliographic publica-
tion database1 that consists of a set of vertex types: paper
(P), venue (V), author (A), and term (T). A research pub-
lication entry essentially generates a set of links of the types
P � V , P � A, and P � T , each connecting in the network
a paper with its publication venue, set of authors and set of
terms, respectively.

It is unrealistic and meaningless to find outliers with re-
spect to all types of the vertices in the entire heterogeneous
network. However, it is more interesting to give users free-
dom to specify what they want. For example, a user can
confine the outliers to be among the coauthors of Christos
Faloutsos (i.e., all the authors connected with Christos via
at least one joint paper).

Even for this author set, it is still unclear what aspect
the outliers should be judged by: should the outliers be
judged based on their publication venues or their collabo-
rators? The former may lead to finding those who pub-
lish multiple papers in rather di↵erent venues than the ma-
jority of Christos’ coauthors; whereas the latter may find
those who have rather di↵erent collaboration behavior than
the majority of his coauthors. Di↵erent judgment criteria
lead to rather di↵erent results, which makes it essential to

1http://www.informatik.uni-trier.de/~ley/db

ask users to specify the criteria explicitly. Furthermore, a
user may like to find outliers among Christos’ coauthors,
not compared within this coauthor set itself but compared
with another explicitly specified set, such as prolific EDBT
authors (e.g., those who have published at least 10 papers
in EDBT).

From this example, one can see that it is necessary to pro-
vide an outlier query language with which a user can specify
the candidate set (e.g., Christos’ coauthors), the aspect (e.g.,
publishing venues) by which the outliers will be judged, and
sometimes the reference set (e.g., prolific EDBT authors).
With such primitives, a user can flexibly and unambiguously
specify the outliers to be mined in a heterogeneous network.

Besides providing flexible ways for users to interact with
the system to specify outlier queries in networks, another
important issue is how to define the outlier measures for
heterogeneous networks. Taking the query, “finding outlying
co-authors of Christos in terms of their publishing venues”, it
is important to work out a good outlier measure in heteroge-
neous networks so that one can readily identify the outliers
among Christos’ co-authors who published multiple papers
at rather di↵erent venues than that by the majority coau-
thors of Christos. Such intuition may help us work out a new
definition of outlier measure in heterogeneous networks.

In this study, we work on this interesting problem and
have made the following contributions.

1. We introduce the concept of query-based outlier in het-
erogeneous information networks, formalize di↵erent
components for an outlier query in such networks, and
develop a user-friendly, meta-path based outlier query
language that allows users to interact with the outlier
detection system using their intuition;

2. We introduce a new outlier measure, NetOut, which
defines query-based outlierness in heterogeneous infor-
mation networks, with respect to the queries specified
by users;

3. We develop an e�cient computation method to find
query-based outliers in heterogeneous information net-
works and analyze our performance improvement in
the e�ciency study.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 introduces the basic
concepts. Section 4 introduces the formal definition of out-
lier query, and designs a query language as an interface for
users to specify outlier queries. Section 5 develops a new
outlier measure, NetOut, and shows its e↵ectiveness. Sec-
tion 6 outlines the implementation of the proposed outlier
detection system as well as several query optimization tech-
niques. The performance study of the comparative methods,
as well as the e�ciency study are reported in Section 7. We
present an overall discussion in Section 8 and provide con-
cluding remarks in Section 9.

2. RELATED WORK
Outlier detection. The field of outlier detection has been
explored for years. A good overview of outlier detection
techniques can be found in surveys [5, 14].

Our work is most related to the thread of research on net-
worked data outlier detection. There are some early explo-
rations on network outlier detection on bipartite graphs [23].

But most existing studies are confined to homogeneous net-
works. For example, Gao et al. [6] studied contextual out-
liers in (homogeneous) networks, i.e. outliers deviating from
their closely connected peers; Akoglu et al. [1] proposed
OddBall, which takes several network structural properties
as features to identify outliers in weighted graphs; Gupta et
al. [8] studied outliers in terms of their abnormal dynamics
among communities; Perozzi et al. [19] and Li et al. [18] ex-
plored outlier detection in attributed graphs. Zong et al. [30]
studied how to detect abnormal network events and their
possible sources. However, these methods are not applicable
to heterogeneous information networks. For heterogeneous
networks, Gupta et al. [7] proposed to measure outlierness
based on community distribution of each vertex in the net-
work; Gupta et al. [9] also studied outlier detection based
on assumption of association-based cliques in networks.

Although a great variety of research has been done on out-
lier detection given a data set, few of them really consider
doing outlier detection in a query-based fashion. Gupta et
al. [11] proposed using a template subgraph as a query for
finding outlier subgraphs, but the definition of a query in
this work is not general enough to be extended to most com-
mon use cases. E�cient mining of top-k outliers in large
databases has been studied in early research. For exam-
ple, Ramaswamy et al. [20] proposed a partition-based algo-
rithm to mine top-k outliers in very large databases, using a
distance-based outlier detection algorithm [17]; Jin et al. [15]
presented an algorithm based on“micro-clusters”to find top-
k outliers using the local outlier factor (LOF) measure [4].
Nevertheless, they only optimize for a certain type of outlier
definition on the entire data set. Schubert et al. [22] pro-
posed a generalized point of view for local outlier detection,
but it does not explicitly consider the query-based scenario.
In this work we generalize the outlier detection framework
and give users flexibility to specify their own definition of
an outlier.

Query languages for heterogeneous networks. Man-
aging data organized in heterogeneous information networks
is a challenging problem. Compared to a traditional rela-
tional database, data is organized in an arbitrary and poten-
tially more complicated graphical structure. There are sev-
eral di↵erent threads of research on developing graph query
languages and optimizing queries. A comparison of di↵erent
graph database models can be found in [2, 3]. Research re-
lated to the semantic web usually organizes information into
machine-readable web information represented in a language
called Resource Description Framework (RDF) [12]. Opti-
mization of the RDF query language SPARQL is studied
in [21]. Cypher2 is another query language utilized by open-
source graph database Neo4j; while GraphQL [13] is another
query language which supports querying by graph structure.
For graph query optimization, Yan et al. [26, 27] and Zhao et
al. [29] proposed indexing strategies to e�ciently process
graph queries. As knowledge graphs have attracted more
studies in recent years, there is also some recent research on
querying schema-less graphs. Kasneci et al. [16] studies key-
word search on knowledge graphs; Yang et al. [28] propose
an SQL framework where users do not need to specify the
querying graph schema/structure precisely. Gupta et al. [10]
proposed a method to e�ciently find the top-k most inter-

2http://docs.neo4j.org/chunked/stable/
cypher-introduction.html

Paper
Author

Term

Venue

(a) Schema

Authors Papers Venues

ICDE

KDD

Ava

Liam

Zoe
KDDKDD

(b) Instantiated network

Figure 1: Bibliographic network schema and instantiated
network.

esting subgraphs in a heterogeneous network. However, as
far as we know, none of the current graph query languages
explicitly support queries for outlier detection in graphs.

3. PRELIMINARIES
Real-world informational or abstract entities are often in-

terconnected, forming multiple gigantic networks. When
such networks can be structured around a small number of
entity/link types, many interesting properties can be ex-
plored systematically. Here we introduce a few related con-
cepts.

Definition 1 (Heterogeneous information net-
work). A heterogeneous information network [25] is an in-
formation network with multiple types of vertices. Without
loss of generality, it can be defined as a directed network
G = (V, E ;�, T) where V is the set of vertices, and E is
the set of edges. There is a vertex type mapping function
� : V ! T where T is the set of types, i.e., each vertex
v 2 V belongs to a particular type T 2 T . For undirected
cases, an undirected edge can be viewed as two symmetric
directed edges. When there exists only one vertex type, the
network reduces to a homogeneous information network.

A bibliographic network, such as DBLP, is a heteroge-
neous information network where there are four types of
vertices: paper (P), venue (V), author (A), and term (T),
and an edge type represents a type of link between two ver-
tex types (e.g., P�V represents that paper P was published
in venue V).

To formalize the relationships between two vertices in a
heterogeneous network, meta-paths [24] have been used to
represent semantic links at the schema level.

Definition 2 (Meta-path). In a heterogeneous net-
work G, a meta-path is an ordered sequence of vertex types,
denoted as P = (T0 � T1 � . . .� Tl), or P = (T0T1 . . . Tl),
where Tx 2 T .

In a bibliographic network, Pca = (APA) is a meta-path,
representing the coauthorship between two authors.

We also introduce two basic operators for meta-paths.

Definition 3 (Reversal of a meta-path). A meta-
path P = (T0T1 . . . Tl) can be reversed, where the reversed
path is denoted as P�1 = (TlTl�1 . . . T0).

As an example, if P = (APV), then its reversal P�1 =
(V PA).

Definition 4 (Concatenation of meta-paths).
Given two meta-paths P1 = (T1,0 . . . T1,l) and P2 =
(T2,0 . . . T2,l0). If T1,l = T2,0, then P1 can be concate-
nated by P2, where the concatenated meta-path is denoted
as (P1P2) = (T1,0 . . . T1,lT2,1 . . . T2,l0).

For example, if we have two meta-paths P1 = (APV)
and P2 = (V PT), P1 can be concatenated by P2, and the
concatenated meta-path (P1P2) = (APV PT).

Meta-paths provide the schema to instantiate actual paths
in a heterogeneous network.

Definition 5 (Meta-path instantiation). We say
an instantiation of P is a path in G, denoted as p =
(v0v1 . . . vl), satisfying �(vx) = Tx, 8x = 0, 1, . . . , l. A meta-
path can be instantiated by di↵erent paths. We represent the
set of all path instances of meta-path P between vertices vi
and vj by ⇡

P

(vi, vj).

As an example, for authors Ava and Liam in Figure 1(b),
the number of instantiations of meta-path Pca = (APA)
connecting them represents the number of papers they have
coauthored, denoted as |⇡

Pca(Ava, Liam)| = 1. Similarly,
for authors Liam and Zoe, the number of instantiations of
meta-path Pca connecting them is |⇡

Pca(Liam, Zoe)| = 2.
Based on the definition of a meta-path, we can define the

“neighbors” of a vertex in a heterogeneous network. Dif-
ferent from traditional homogeneous networks, immediate
neighbors of a certain vertex could be of di↵erent types and
therefore have di↵erent semantics. Also, vertices that are
multiple hops away from the given vertex can be meaning-
ful “neighbors”. For the sake of generality, we define the
neighborhood of a vertex with respect to a given meta-path.
Formally,

Definition 6 (Neighborhood). In a heterogeneous
network G, we define the neighborhood of a certain ver-
tex vi with regard to a given meta-path P as N

P

(vi) =
{vj |⇡P

(vi, vj) 6= ;}.
For example, the set of coauthors of author Zoe in Figure

1(b) can be represented by N
Pca(Zoe) = {Ava, Liam}.

Every vertex vj , in the neighborhood of vertex vi, is con-
nected to vi by at least one instantiation of the specified
meta-path. However, multiple instantiations may exist. To
better characterize the neighborhood of a vertex, we fur-
ther define a vector representation of the neighborhood as a
“neighbor vector”.

Definition 7 (Neighbor vector). We define a func-

tion �
P

: V 7! N|V | as the neighbor vector function. With
regard to a given meta-path P, it returns the neighbor vector
given a certain vertex as input, where the j-th dimension is
the count of paths instantiated by P between vi and vj . More
precisely,

�
P

(vi) =
h
|⇡

P

(vi, v1)|, . . . , |⇡P

(vi, vn)|
i

For example, given meta-path Pca, Zoe’s neighbor vector
contains the count of papers co-authored with each of her co-
authors, �

Pca(Zoe) = [Ava : 1,Liam : 2,Zoe : 5]. Alterna-
tively, Zoe’s neighbor vector given meta-path Pv = (APV)
is the count of papers that she has published in each venue,
�
Pv (Zoe) = [ICDE : 2,KDD : 3].

4. OUTLIER QUERIES
In this section, we formalize the definition of a query in

the context of outlier detection in heterogeneous informa-
tion networks. We also design a query language for users to
specify queries.

4.1 General Formalization
Generally, a declarative query for outliers consists of two

parts, a candidate set containing all the candidates that are
potentially meaningful outliers, and a reference set providing
a reference for outliers to be compared. In most outlier
detection frameworks, the candidate set and the reference
set are both assumed to be the entire data set. In our query-
based outlier detection framework, users are provided with
the flexibility to specify the candidate and reference sets of
their interest, which enables our framework to be applicable
to a broader range of scenarios.

Another important part of a user query is how the vertices
should be compared. In a heterogeneous network, vertices
can be compared in many di↵erent ways. For example, a
pair of authors in a bibliographic information network can
be compared based on how much their coauthors overlap, or
how many common conferences they attend. Users should
be given the flexibility to determine how they would like to
compare two vertices.

There are two alternative ways to formulate the compar-
ison method in a query. One is to directly ask the user to
define a comparison function  : Sc ⇥ Sr 7! R to compare
vertices in the candidate and reference sets; another is to ask
the user to declare how a vertex should be characterized, and
leave the implementation of the comparison method to the
system. In most cases users are clear about the semantics
of the desired outliers (e.g. comparing two authors based on
their coauthors), but do not necessarily understand how to
formulate a comparison function accordingly (e.g. comparing
two authors by the number of their common coauthors), so
we adopt the second query formulation where users specify
how to characterize vertices using a meta-path based lan-
guage.

Based on the principles above, we assemble a query for
outlier detection with the following modules: the candidate
set, the reference set, feature meta-path(s) to specify how
a vertex is characterized in the context of outlier detection,
and an optional vector used to weight feature meta-paths.
To be precise,

Definition 8 (General outlier query). An outlier
query in a heterogeneous network G is denoted by Q =
(Sc, Sr,P,w), where Sc ⇢ V is the candidate set of vertices,
from which the outliers will be chosen; Sr ⇢ V is the refer-
ence set of vertices, serving as the reference of normal ver-
tices; P = (P1, . . . ,Pm) is a collection of feature meta-paths,
describing the user’s intuition of which aspects should char-
acterize candidate vertices; w 2 Rm is a weighting vector for
feature meta-paths, and by default is an all-one vector if not
specified by users. The outlier detection algorithm should re-
turn outliers as a subset of the candidate set, i.e. ⌦ ⇢ Sc,
that are significantly di↵erent from vertices in Sr, in terms
of the given meta-paths and weighting vector.

As an example, if we want to find outliers among Chris-
tos Faloutsos’ coauthors, then Sc should be defined as all of
Christos’ coauthors. In the most intuitive scenario the refer-
ence set Sr will be the same as Sc. A more complicated query

could consist of finding outliers among Christos Faloutsos’
coauthors who are unusual with respect to all computer sci-
ence authors. In this case Sc should still be all of Christos’
coauthors, but Sr should be all authors in computer science.

We also need to explicitly state how we are going to de-
fine outliers. For example, if we want to find outliers among
Christos’ coauthors who publish papers in substantially dif-
ferent venues, then it would be appropriate to define a sin-
gle feature meta-path (APV) to extract all the publishing
venues of each author.

Notice that although not explicitly pointed out in the def-
inition, in this paper, we are assuming that all the vertices
in Sc

S
Sr are of the same type, which is a more intuitive

scenario. Also, we require all the meta-paths P1, . . . ,Pm

has their first element in the same vertex type as vertices in
Sc and Sr, otherwise we cannot extract meaningful features
from the given feature meta-paths.

To bring this general framework to real-world use cases
in heterogeneous information networks, we need a powerful
query language for users to specify the query.

4.2 Outlier Query Language
In this subsection, we present an outlier query language.

It is capable of e↵ectively supporting most outlier queries in
a heterogeneous information network. Outlier detection is
not part of the basic functionality supported by traditional
SQL languages and relational databases. Due to the com-
plexity of heterogeneous information networks, writing in
SQL to specify an outlier detection query can be extremely
awkward. Therefore, we define a query language for our
outlier detection problem. Notice that although our query
language is designed specifically for outlier detection queries
in heterogeneous information networks, with minor modifi-
cation it can also be applied to other types of data sets such
as relational databases.

General Formulation. The general structure of a state-
ment for an outlier query is:

FIND OUTLIERS FROM ... //Candidate set
COMPARED TO ... //Reference set
JUDGED BY ... //Feature meta-paths
TOP ...; //Number of outliers to return

In the FROM or COMPARED TO clauses, users can specify a
set of vertices. For the FROM clause, users specify the candi-
date set Sc, namely the set of vertices from which outliers
are selected. The COMPARED TO clause is used to specify the
reference set Sr, namely the set of vertices used as a refer-
ence. Notice that the COMPARED TO clause is optional. If it
is not specified, the reference set Sr will be the same as the
candidate set Sc.

In the JUDGED BY clause, users are required to give a single
feature meta-path P or a collection of feature meta-paths P.
The weights of di↵erent feature meta-paths may optionally
be provided. Vertices in Sr and Sc are compared based
on the feature meta-paths and their weights. The top-k
outliers, where k is specified in the TOP clause, are returned
as results.

In the next part of this subsection, we introduce how to
actually specify a set of vertices, and how to specify a collec-
tions of (weighted) feature meta-paths. Then we give several
examples.

Specifying candidate/reference set. In the simplest
case, users can refer to a certain vertex by its type and name:

venue{"EDBT"}

which returns all the venue-typed vertices with exactly the
name “EDBT”.

In many cases, users are interested in outliers in a certain
local area in the network. Therefore, we allow the user to
specify the neighborhood of a certain vertex, with regard to
the definition in Section 3. Recall that to define a neigh-
borhood requires a specific vertex vi and meta-path P. We
use the dot operator to concatenate di↵erent types and rep-
resent a meta-path, where the first element is a specified
vertex. As an example:

venue{"EDBT"}.paper.author

returns the neighborhood of venue-typed vertex EDBT with
respect to meta-path (V PA). More formally it returns
N

P

(vi), where vi is the vertex that represents the venue
EDBT and P = (V PA). Semantically, it is the set of all the
authors with papers published in the venue EDBT.

We also allow users to specify additional conditions in a
WHERE clause, to further restrict the vertices selected in the
candidate or reference set. For example, the set of authors
who have published in the conference EDBT and who have
published more than 10 papers can be specified as:

venue{"EDBT"}.paper.author AS A
WHERE COUNT(A.paper) > 10

Multiple SQL-style operations can be applied to extract
each vertex set. For instance, a user can generate the union
of multiple sets using the UNION operator:

venue{"EDBT"}.paper.author
UNION
venue{"ICDE"}.paper.author

which will return the set of authors who have published in
EDBT or ICDE.

Alternatively, a user can generate the intersection of sev-
eral sets using the INTERSECT operator:

venue{"EDBT"}.paper.author
INTERSECT
venue{"ICDE"}.paper.author

which will return the set of authors who have published in
both EDBT and ICDE.

Specifying feature meta-paths. A meta-path in our
query language can simply be represented as an ordered list
of types separated by dots. For example, in a bibliographic
network, we can specify the feature meta-path (APV) to
compare authors with respect to their publishing venues as:

author.paper.venue

in the JUDGED BY clause.
If there are multiple aspects, namely multiple feature

meta-paths, that a user would like to use when classify-
ing outliers, we separate di↵erent meta-paths by commas
“,”. For example, a user may judge outlier authors based
on both their publishing venues and their coauthors. Meta-
paths (APV) and (APA) are given as feature meta-paths
and we write in the JUDGED BY clause:

author.paper.venue, author.paper.author

We have shown that our query language can support the
specification of a collection of feature meta-paths P. When
users want to define di↵erent weights for di↵erent meta-
paths, we also allow users to specify the weights in this
query language, by writing the weight after a colon following
the corresponding meta-path. As an example, suppose the
user wants to judge outliers based on both their publishing
venues and their coauthors, weighting the venues with twice
the importance of coauthors. We can write in the JUDGED BY
clause

author.paper.venue: 2.0, author.paper.author

where as author.paper.author is explicitly assigned a
weight, it is by default weighted as 1.

Notice, we require that all specified feature meta-paths
have the same type in their first element as vertices in Sc

and Sr.

4.3 Example queries
Example 1. To find the top-10 outliers among Chris-
tos’ coauthors in terms of venues they publish (i.e., find 10
authors in Christos’ coauthor who publish in the weirdest
venues), we write the query:

FIND OUTLIERS
FROM author{"Christos Faloutsos"}.paper.author
JUDGED BY author.paper.venue
TOP 10;

Since no reference set is specified, the outliers are determined
by comparing with others in the candidate set A.

Example 2. Alternatively, a user might want to find
outliers in Christos’ coauthors who are significantly di↵erent
from the authors in the KDD community, in terms of the
venues they publish in and their coauthors. We can write
this query as:

FIND OUTLIERS
FROM
author{"Christos Faloutsos"}.paper.author

COMPARED TO
venue{"KDD"}.paper.author

JUDGED BY
author.paper.venue,
author.paper.author

TOP 10;

Example 3. To find the top-50 outliers among SIGMOD
authors, who have published at least 5 papers, with respect
to their coauthors (weight 1) and the vocabulary used in
their paper titles (weight 3), we write the query:

FIND OUTLIERS
FROM venue{"SIGMOD"}.paper.author AS A

WHERE COUNT(A.paper) >= 5
JUDGED BY

author.paper.author,
author.paper.term : 3.0

TOP 50;

5. NETWORK-BASED OUTLIER MEA-
SURE: NETOUT

There have been many outlierness measures for numerical
and categorical data. However, defining a good outlierness
measure for use in heterogeneous information networks is
still a challenging problem. The major challenge is the am-
biguity of outlier semantics, as there are multiple types of
paths connecting vertices.

Basic principle. In this section we define the properties
of an outlier in a heterogeneous information network given a
specific query. We address the problem for the query of find-
ing outlier vertices among a set of candidate vertices with
respect to a set of reference vertices, when judged by a spe-
cific feature meta-path. The feature meta-path and sets of
candidate and reference vertices are given in the query for-
mulation. The definition should be intuitive while utilizing
the rich information provided by the network.

In general, an outlier among a group is an object that dif-
fers substantially from the rest of the group. In the context
of finding outliers in a network, we look for vertices that are
least connected to the group, but it is also important to con-
sider each vertex’s maximum potential for connectivity when
comparing its group connectivity with that of other vertices.
In the context of our specific problem, we follow the basic
principle that outlying vertices should be most structurally
disconnected from the reference set, with respect to their
expected potential for connectivity.

5.1 Normalized Connectivity
We begin by presenting a measure to express the connec-

tivity between two individual vertices with respect to their
potential connectivity. Later we will apply it between indi-
vidual candidate vertices and all vertices in the reference set
to determine an outlier score for each candidate vertex.

In our query language we allow the user to specify a col-
lection of feature meta-paths P. In this section we only
consider queries where P consists of a single feature meta-
path P. Finding outliers given a collection of weighted fea-
ture meta-paths can be done in a number of ways. The
connectivity between vertices can be redefined, or indepen-
dent outlier scores can be computed considering each feature
meta-path independently and then averaged. We leave the
problem of determining the best method to a future study.

The meta-path P can be viewed by the user as specifying
a traditional feature type which will be used to judge the
outlierness of each candidate vertex. We are interested in
finding outliers that are most structurally disconnected, so
we construct the symmetric meta-path linking the candidate
type to itself, Psym = (PP�1).

We can now define the connectivity  between two ver-
tices, va and vb, as the number of path instantiations of
Psym between the two vertices, (va, vb) = |⇡

Psym(va, vb)|.
The visibility of vertex va is the connectivity between va and
itself, (va, va), which is a measure of a vertex’s potential
connectivity with other vertices. We define the normalized
connectivity between vertices va and vb as the ratio of their
connectivity to va’s visibility:

Definition 9 (Normalized Connectivity). Given
heterogeneous network G containing two vertices va and vb
of type T 2 T and symmetric meta-path Psym = (PP�1) =
(T . . . T), the normalized connectivity between va and vb is

Authors Papers Venues

1

2

3

Jim

Mary

Figure 2: Path instantiations of the meta-path (APV PA)
connecting authors Jim and Mary

defined as ̃(va, vb) =
(va,vb)
(va,va)

=
|⇡Psym (va,vb)|

|⇡Psym (va,va)|

Note that ̃(va, vb) 6= ̃(vb, va) when (va, va) 6= (vb, vb).
Normalized connectivity can be interpreted in terms of a
random walk beginning at va along meta-path Psym. The

probability of ending at vb is
|⇡Psym (va,vb)|

||�Psym (vi)||1
, where � is the

neigbor vector function defined in Section 3. The proba-

bility of returning to va is
|⇡Psym (va,va)|

||�Psym (vi)||1
. The probability

of ending at vb divided by the probability of returning to
va is then |⇡P (va,vb)|

|⇡P (va,va)|
, which is the normalized connectivity

̃(va, vb). This fits with our intuition well. The probabil-
ity of returning to va acts as a normalization constant such
that the normalized connectivity between va and itself will
always be 1. When va is more connected to vb than itself,
̃(va, vb) > 1. When va is less connected to vb than it-
self, ̃(va, vb) < 1. Comparing ̃(va, vc) with ̃(vb, vc) shows
whether it is more likely to arrive at vc in a random walk be-
ginning at va or vb (normalized by the likelihood of returning
to the original vertex).

Example 4. We use a concrete example (Cf. Figure 2) to
illustrate the behavior of normalized connectivity. We ex-
amine two authors Jim and Mary in a bibliographic network
G given feature meta-path P = (APV).

The connectivity (path count) between Jim and Mary is
2⇥4+1⇥2+3⇥6 = 28. The normalized connectivities in this
example are ̃(Jim,Mary) = 0.5 and ̃(Mary, Jim) = 2.
This reflects that Jim’s connectivity with Mary is half his
connectivity with himself, while Mary’s connectivity with
Jim is twice that with herself.

5.2 Outlier Measure: NetOut
To measure a certain vertex vi’s outlierness with regard to

a given reference set Sr we sum the normalized connectivity
between vi and all vertices in Sr. This gives vi’s connectivity
to the reference set as a whole, normalized by its potential
connectivity. The lower this normalized group connectivity,
the more likely that vi is an outlier. We define the outlierness
measure NetOut as:

Definition 10 (Outlierness in Heterogeneous
Networks: NetOut). In a heterogeneous network G,
given a query Q, for any vi 2 Sc, the outlierness can be
measured by

⌦NetOut(vi;Q) =
X

vj2Sr

̃(vi, vj)

where smaller ⌦ values correspond to greater likelihood of
being an outlier. We refer to ⌦NetOut(vi;Q) as simply
⌦(vi;Q) outside this section when there is no potential am-
biguity.

Rather than summing vi’s normalized connectivity with
every vertex in the reference set, we could find the mini-
mum or maximum normalized connectivity between vi and
any vertex in the reference set. In many cases finding the
minimum normalized connectivity is not meaningful because
many vertices in the candidate set are completely discon-
nected from at least one vertex in the reference set. To
evaluate the usefulness of finding the maximum normalized
connectivity consider two vertices vi and vj . Vertex vi is
moderately connected to one vertex in the reference set but
completely disconnected from every other context vertex.
Vertex vj is weakly connected to every vertex in the refer-
ence set. In most cases it is hard to justify that vj should
be a stronger outlier than vi.

Summing the normalized connectivities has the additional
advantage of computational e�ciency. Computing NetOut
for every vertex in the candidate set can be reduced to an
O(|Sr|+ |Sc|) operation. In comparison, using the minimum
or maximum normalized connectivity instead would always
require O(|Sr|⇥ |Sc|) time.

Next we justify our use of normalized connectivity when
defining NetOut by comparing with the similarity measures
PathSim and cosine similarity.

PathSim. Superficially it may appear that a similarity
measure could be used instead of normalized connectivity in
our outlier detection problem. The normalized connectivity
between two vertices is not a true similarity measure because
it lacks symmetry. In this section we introduce the similarity
measure PathSim for comparison, to justify the need for
normalized connectivity.

In a previous study of similarity search in heterogenous
information networks [24], PathSim was introduced as an
interesting measure to define network-based structural sim-
ilarity. The PathSim measure between two vertices vi and
vj following a meta-path P in a heterogeneous information
network is defined as,

PathSim
Psym(vi, vj) =

|⇡
Psym(vi, vj)|�|⇡

Psym(vi, vi)|+ |⇡
Psym(vj , vj)|

�
/2

For comparison purposes we define:

⌦PathSim(vi;Q) =
X

vj2Sr

PathSim
Psym(vi, vj)

PathSim
Psym(vi, vj) is defined by the connectivity be-

tween vi and vj divided by the average of vi and vj ’s visibil-
ity. Based on this formula, PathSim assigns high similarity
values to the vertices that are strongly connected (i.e., there
are many paths between vi and vj following the meta-path)

but having low average visibility (i.e., there are not many
other paths from vi or vj reaching vi or vj itself).

PathSim has demonstrated its promise at similarity search
in heterogeneous information networks. Comparing to Sim-
Rank or Personalized PageRank, PathSim assigns lower sim-
ilarity to vertices whose connectivity is high but whose vis-
ibilities di↵er.

Cosine Similarity. We define a comparable version of
NetOut using the cosine similarity instead of normalized
connectivity:

⌦CosSim(vi;Q) =
X

vj2Sr

�
P

(vi) · �P

(vj)
||�

P

(vi)||2 ⇥ ||�
P

(vj)||2

Where �
P

(vi) is the neighbor vector function defined in
Section 3.

NetOut Example. We consider a toy example to demon-
strate NetOut’s properties. Table 1 shows the publication
records of candidate authors. In this example we consider a
query giving the reference set composed of 100 authors with
publication records identical to Sarah’s and feature meta-
path P = (APV). Table 2 shows NetOut scores for each
candidate author. We compare with outlier scores computed
using PathSim and the cosine similarity in place of normal-
ized connectivity in the NetOut formula.

Sarah is clearly not an outlier, with ⌦(Sarah;Q) = 100
(normalized connectivity with identical vertices of 1 multi-
plied by the size of the reference set). Rob has an unusual
publication record and a low NetOut score, signifying he is
a potential outlier. Lucy’s publication di↵ers from authors
in the reference set, but is more similar than Robs, giving
her a higher NetOut score than Rob.

Next we compare NetOut scores with outlier scores com-
puted using PathSim and the cosine similarity in place of
normalized connectivity. PathSim is computed using the
meta-path (APV PA). The cosine similarity is computed
using each author’s neighbor vector (defined in Section 3).
All three measures find the same outlier ordering for Sarah,
Rob, and Lucy.

Joe has published only two papers in the venue SIG-
GRAPH. While SIGGRAPH is an unusual venue, Joe’s pub-
lication record is currently unstable and likely to change over
the course of his life. It is possible that his first publications
are simply noise. NetOut does not classify Joe as an out-
lier. While his connectivity with authors in the reference
set is low, this is expected because of his low visibility. In
a random walk beginning at Joe following the meta-path
(APV PA), the probability of reaching an author in the ref-
erence set is the same as the probability of returning to Joe.
However, the PathSim and cosine similarity versions both
classify Joe as an outlier with very low scores.

Emma is clearly a very unusual author, and this is appar-
ent in her NetOut score. She has only published in the un-
usual venue SIGGRAPH and she has published more papers
than the authors in the reference set, so we can assume her
publication record is stable at this point. Her outlier score
computed using PathSim is actually higher than Joe’s, be-
cause her visibility is more similar to the visibility of authors
in the reference set. Emma’s outlier score computed using
the cosine similarity is the same as Joe’s. Both have neigh-
bor vectors with the same direction, so their cosine similarity
with other authors is identical. NetOut computed using nor-

Table 1: Publication records of candidate and reference ver-
tices. The reference set contains 100 authors with identical
publication records, given by the reference author.

VLDB KDD STOC SIGGRAPH

Reference Author 10 10 1 1

Sarah 10 10 1 1
Rob 0 1 20 20
Lucy 0 5 10 10
Joe 0 0 0 2

Emma 0 0 0 30

Table 2: NetOut outlier scores of select candidate vertices
given a query whose feature meta-path is P = (APV) and
reference set is given in Table 1, compared with scores com-
puted using PathSim and the cosine similarity in place of
normalized connectivity.

⌦NetOut ⌦PathSim ⌦CosSim

Sarah 100 100 100
Rob 6.24 9.97 12.43
Lucy 31.11 32.79 32.83
Joe 50 1.94 7.04

Emma 3.33 5.44 7.04

malized connectivity finds outliers without bias towards any
particular visibility, while PathSim and the cosine similarity
are biased towards authors with low visibility.

NetOut Experimental Comparison. To further ex-
plain our use of normalized connectivity, rather than a sym-
metric similarity measure such as PathSim or CosSim, we
employ a concrete example on DBLP data set to compare
the results returned by di↵erent methods.

We construct a query, to find top-5 outliers among all the
coauthors of Christos Faloutsos, in terms of their publish-
ing venues. The context and candidate sets are specified as
Faloutsos’ co-authors and the feature meta-path is given by
P = (APV).

The comparison results are shown in Table 3. The top
outliers found by NetOut defined using normalized connec-
tivity are active in fields besides data mining, which is Chris-
tos’ primary focus, and have a wide range of visibilities.
Adam Wright has published roughly 30 papers, while Katia
P. Sycara has published roughly 300 papers. In contrast, all
the top-5 outliers found by PathSim or CosSim are authors
who have published less than 2 papers, which makes them
uninteresting as outliers. This further demonstrates the in-
herent bias towards candidate vertices with low visibility
when using PathSim or the cosine similarity.

6. IMPLEMENTATION
In this section we briefly introduce some technical details

regarding the implementation of our query-based outlier de-
tection system. We first introduce a basic baseline imple-
mentation and then optimizations to improve the e�ciency
of query execution.

6.1 Baseline
There are two basic steps to execute an outlier query: re-

trieve the candidate and reference sets Sc and Sr and calcu-
late the outlierness of each vertex in the reference set based

on the given feature meta-paths.
For retrieval of Sc and Sr, the basic operations are find-

ing a vertex vi given its name and type and then traversing
the network from vi while counting the instantiations of the
given meta-path. The first operation can be naively imple-
mented by a hash table, or a trie, which is relatively e�cient.
The second basic operation, materializing a meta-path P,
has time complexity exponential to the length of P.

A näıve way to calculate the outlierness measure would be
to first calculate the normalized connectivity ̃(·, ·) between
each vertex in the candidate set Sc and each vertex in the
references set Sr, then sum up all the ̃(vi, ·) for each ver-
tex in Sc to obtain the outlierness. However, this has time
complexity of O(|Sr|⇥ |Sc|).

Recall the definition of connectivity, (·, ·):

(vi, vj) = |⇡
Psym(vi, vj)|

= �
P

(vi) · �P

(vj)

The calculation of NetOut can be re-written as:

⌦(vi;Q) =
X

vj2Sr

̃(vi, vj)

=
X

vj2Sr

(vi, vj)
(vi, vi)

=
X

vj2Sr

�
P

(vi) · �P

(vj)
�
P

(vi) · �P

(vi)

=
1

||�
P

(vi)||22

0

@�
P

(vi) ·
0

@
X

vj2Sr

�
P

(vj)

1

A

1

A(1)

Notice that the term
P

vj2Sr
�
P

(vj) remains the same

for all vi 2 Sc. Therefore we can first calculate it, then
calculate the outlierness value NetOut for all vertices vi 2
Sc. Therefore, the time complexity of calculating NetOut
for every candidate vertex is only O(|Sr|+ |Sc|).

However, even if the calculation of NetOut is e�cient, it
is still relatively slow compared to actually obtaining the
neighbor vector �

P

(vi) for a given vi and meta-path P.
Materializing this neighbor vector requires traversal of the
heterogeneous network, which can be time-consuming when
the specified meta-path is long or the degree of the ver-
tex of interest is high. Therefore we aim to optimize the
query processing time by reducing the materialization time
of meta-paths.

6.2 Optimization
Pre-materialization. To accelerate the materialization
of meta-paths, we can pre-compute the materialization of
length-2 meta-paths. Depending on the pattern of user
queries we may compute all length-2 paths or only a subset.
To be more precise, for each vertex vi 2 V , and all possible
P such that |P| = 2, we can calculate and store the vector
�P (vi).

In the execution of a query, it may be necessary to
calculate �P (vi) for an arbitrary meta-path P. We can
always decompose P into several length-2 meta-paths as

Table 3: Comparing di↵erent outlierness measure, with query Sc = Sr =author(“Christos Faloutsos”).paper.author and feature
meta-path P = (APV) Outliers found by normalized connectivity are interesting outliers, while outliers found by PathSim or
CosSim are authors with very few papers, which are not interesting.

Method ⌦NetOut ⌦PathSim ⌦CosSim

Ranking Name ⌦-value Name ⌦-value Name ⌦-value
1 Adam Wright 2.54 Wenyao Ho 1.07 John Chien-Han Tseng 0.0022
2 Philip Koopman 2.55 Fernanda Balem 1.12 Fernanda Balem 0.0038
3 Nicholas D. Sidiropoulos 3.29 Rebecca B. Buchheit 1.31 Guoqiang Shan 0.0046
4 Katia P. Sycara 3.64 John Chien-Han Tseng 1.41 Wenyao Ho 0.0066
5 David S. Doermann 3.65 Chi-Dong Chen 1.47 Chi-Dong Chen 0.0077

P = (P1 · · · Pk), where |P1| = · · · = |Pk�1| = 2. If the
original meta-path P is even-length, then |Pk| = 2.

Notice that for any P = (P1P2), we have

�P (vi) =
X

vj

|⇡
P1(vi, vj)|�P2(vj)

= [�
P2(v1), . . . ,�P2(vn)]�P1(vi)

which implies that by decomposing an arbitrary meta-path
P into several length-2 meta-paths, we can calculate �

P

(vi)
by multiplication of indexed vectors. Even if the original
meta-path is odd-length, we only need to traverse the net-
work for a single hop. Retrieving an index can be of O(1) by
storing the vectors in a hash table and the time complexity
of multiplication is a↵ordable when the vectors are sparse.

By e�ciently retrieving �
P

(vi), multiple steps in the query
processing benefit, including the retrieval of candidate set
Sc and reference set Sr, and the calculation of connectivity
functions.

Selective pre-materialization. The aforementioned in-
dexing strategy pre-calculates the indexed vectors for all ver-
tices with regard to all length-2 meta-paths. This exhaustive
indexing strategy guarantees e�ciency improvement, but
can also result in a large index table. To achieve reason-
able e�ciency while conserving memory, we may only want
to construct length-2 meta-paths starting from a certain set
of vertices.

To this end, a strategy is to count the frequency with
which di↵erent vertices appear in queries. The query set
used for selecting vertices for building indices is referred to
as“initialization query set”for SPM. The initialization query
set can be existing query logs, or else synthetic queries when
query logs are not available. A certain absolute or relative
threshold is set, and length-2 meta-paths are only computed
beginning at vertices that appear in queries with frequency
above the set threshold.

7. EXPERIMENTAL RESULTS
In this section we evaluate experimental performance.

7.1 Experiment Setup
Data set. We employ a bibliographic data set from
ArnetMiner3 to construct a heterogeneous information net-
work. The data set consists of 2, 244, 018 publications and
1, 274, 360 authors in the field of computer science. The

3http://arnetminer.org/AMinerNetwork

Table 4: Query templates used to construct query sets for
e�ciency experiments. 10,000 random authors are selected
and substituted where indicated by “·” in each query tem-
plate.
Number Query Templates

Q1

FIND OUTLIERS FROM author{·}.paper.author
JUDGED BY author.paper.venue
TOP 10;

Q2

FIND OUTLIERS IN author{·}.paper.venue
JUDGED BY venue.paper.term
TOP 10;

Q3

FIND OUTLIERS IN author{·}.paper.term
JUDGED BY term.paper.venue
TOP 10;

heterogeneous network contains 4 types of vertices: paper,
venue, author and term. Possible type of edges include
paper-author (written-by), paper-venue (published in) and
paper-term (title contains).

Query sets. In order to check the e�ciency perfor-
mance of our algorithm, we randomly select 10,000 author-
typed vertices from the heterogeneous information networks.
Three di↵erent types of queries are shown in Table 4, which
are referred to as “query templates”. For each template, we
substitute the randomly selected vertices into the position
indicated by the dot “·”, to generate 10,000 queries. We re-
fer to each set of queries as Qi. These randomly generated
query sets are used in e�ciency studies.

Comparison methods. In e�ciency studies, we compare
the following implementations.

• Baseline. The baseline implementation without pre-
materialization (Cf. Equation (1)).

• Pre-Materialization (PM). All length-2 meta-path in-
stantiations are pre-computed and stored.

• Selective Pre-Materialization (SPM). A subset of all
length-2 meta-path instantiations are pre-computed
and stored, for selected vertices that frequently appear
in Sc given a set of specified queries, where the relative
frequency threshold is set to 0.01.

We use the set of all possible queries for the given query
template as the initialization query set in SPM.

7.2 Case Study
We examine the e↵ectiveness of our proposed outlierness

measure by checking the experimental results of several typ-
ical queries. The results are summarized in Table 5.

In our first two experiments we use Christos Faloutsos’
coauthors as the candidate and reference sets. We use
author.paper.venue in the first experiment as the single
feature meta-path and author.paper.author in the second.

The first query we try is to find outliers with regard to
their publishing venues. The returned top-10 outliers of
Christos’ coauthors are actually quite deviated from his re-
search field (with one exception), which is data mining. For
example, Adam Wright works on biomedical informatics;
Philip Koopman is in the area of embedded systems. In-
terestingly, Nicholas D. Sidiropoulos publishes most of his
work in the community of signal processing. However, one of
his research interests is tensor analytics and mining, which
is closely related to Christos Faloutsos’ research interests.
As we are judging outliers based on publishing communi-
ties, Nicholas D. Sidiropoulos is still listed as one of the
top outliers. Although most of the aforementioned outliers
are relatively established authors in their own fields, John
Chien-Han Tseng is a student who has published only one
paper in the venue KDIR (a very rare venue for authors in
the reference set to publish in). Tseng’s appearance demon-
strates that our method does not discriminate against can-
didate outliers based on their visibility.

In the second query, we still search for outliers among
Christos’ coauthors, but judged by their coauthors. The re-
sults are substantially di↵erent from the first query, with
only one overlapping author (Katia P. Sycara). This is
evidence that in a heterogeneous information network out-
liers can be reasonably defined in multiple ways, resulting in
totally di↵erent outcomes. Without user-specified queries,
mining outliers can be an ill-defined problem leading to se-
mantic ambiguity. The top outliers are still mainly in fields
other than data mining, with an interesting exception: Ee-
Peng Lim is a researcher who also focuses on social network
analysis and mining 4, with a significant number of papers
published in data mining venues. Lim is still listed as an out-
lier among Christos’ coauthors, as his collaborator network
does not overlap much with Christos’ collaborators. This
is a typical example of the importance of providing a spe-
cific outlier definition. Outliers under one definition could
be totally normal given another definition.

In the third query, we attempt to find outliers among
KDD authors, with respect to their publishing venues. The
top outlier turns out to be “NULL” which represents miss-
ing data. Other top outliers are also interesting: Wolfgang
Glänzel is a professor of economics and business, with the
majority of his papers published in economic related venues;
Paul M. Thompson has published most papers in medical or
neuroscience venues.

7.3 Efficiency Studies
We also examine the e�ciency performance of our di↵er-

ent query optimization strategies. In this experiment, we
process the query sets generated from the query template
in Table 4 and measure the system performance by query
processing time.

4https://sites.google.com/site/aseplim/

Table 5: Case study of NetOut results on several queries.
Sc = Sr = author(“Christos Faloutsos”).paper.author

P = author.paper.venue

Ranking Name ⌦-value
1 Adam Wright 2.54
2 Philip Koopman 2.55
3 Nicholas D. Sidiropoulos 3.29
4 Katia P. Sycara 3.64
5 David S. Doermann 3.65
6 Asim Smailagic 3.69
7 John Chien-Han Tseng 4.00
8 Daniel P. Siewiorek 4.22
9 Jessica K. Hodgins 4.52
10 Dimitris N. Metaxas 4.57

Sc = Sr = author(“Christos Faloutsos”).paper.author
P = author.paper.author

Ranking Name ⌦-value
1 Dimitris N. Metaxas 1.06
2 Bin Zhang 1.06
3 Hui Zhang 1.07
4 Lionel M. Ni 1.07
5 Bin Liu 1.08
6 Joel H. Saltz 1.08
7 Yang Wang 1.08
8 Hao Wang 1.08
9 Ee-Peng Lim 1.12
10 Katia P. Sycara 1.13

Sc = Sr = venue(“KDD”).paper.author
P = author.paper.venue

1 NULL 1.27
2 Wolfgang Glänzel 4.99
3 Paul M. Thompson 6.46
4 Yehuda Lindell 9.21
5 Kwan-Liu Ma 12.2
6 Dhabaleswar K. Panda 13.23
7 Christos Davatzikos 13.95
8 Andrzej Skowron 14.62
9 Anil K. Jain 15.75
10 Fillia Makedon 15.95

Improved e�ciency with pre-materialization. In
Figure 3 we compare the performance of the baseline imple-
mentation, the implementation with all length-2 meta-paths
pre-materialized (PM), and the selective pre-materialized
version with relative frequency threshold 0.01 (SPM). With
pre-materialization the e�ciency can always be improved
significantly, 5-100 times faster than the baseline implemen-
tation. This verifies the e↵ectiveness of the indexing strat-
egy. The performance of SPM is generally worse than the
fully materialized version PM, but is more than 10 times
faster than the baseline in query set Q3.

In-depth e�ciency analysis of SPM. For the SPM
strategy, we conduct a study to look into the processing
time spent on di↵erent parts. As shown in Figure 4, For
almost all query sets, most of the processing time is spent
on materializing feature meta-paths of vertices without pre-
materialization. Loading pre-stored instantiations of feature
meta-paths for vertices with materialization is the least time

Q1 Q2 Q3100
101
102
103
104
105
106
107

Query set

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

Baseline
PM
SPM

Figure 3: Comparing total execution time for 10,000 ran-
domly generated queries between the baseline implementa-
tion and the implementation with pre-materialization.

0 1 2 3
x 105

Q1

Q2

Q3

Q
ue

ry
 s

et

Processing Time (ms)

Not indexed vectors
Indexed vectors
Outlierness calculation

Figure 4: In-depth analysis of query processing time us-
ing selective pre-materialization strategies with the relative
frequency threshold set to 0.01. “Not indexed vectors” in-
dicates processing time spent on meta-path materialization
from vertices without pre-materialization; “Indexed vectors”
indicates time spent looking up pre-materialized meta-paths
from materialized vertices; “Outlierness calculation” indi-
cates calculation time of NetOut.

consuming part, while calculating NetOut can be slower.
Calculating inner products between vectors is potentially
more expensive than retrieving vectors from indices.

Threshold studies for SPM. We check the performance
of SPM strategies with di↵erent relative frequency thresh-
old. We construct indices with the relative frequency thresh-
old set at 0.001, 0.01, 0.05, and 0.1 respectively, and com-
pare both the processing time and index size, as shown in
Figure 5. Not surprisingly, the index size decreases as the
threshold rises, while the average query processing time also
increases. A relatively optimal threshold is likely to be found
between 0.01 and 0.05, considering both factors.

10−3 10−2 10−1101

102

103

Relative Frequency Threshold

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(a) Average execution time
vs. relative frequency
threshold

10−3 10−2 10−1106

107

108

Relative Frequency Threshold

In
de

x
Si

ze
 (b

yt
es

)

(b) Index size vs. relative
frequency threshold

Figure 5: Comparison of e�ciency performance with
di↵erent relative frequency threshold in selective pre-
materialization indexing strategy.

8. DISCUSSION
Alternative query language design. There are other
ways to define the query language with more generality. It
is possible to allow users to specify functions that are not
meta-path based for measuring the similarity between two
vertices, or to allow users to define their own outlierness
measure, etc.. However, maximizing the generality will re-
quire users to have more expertise knowledge, which violates
our principle to provide users with a more declarative lan-
guage. In comparison, our language design is simple and
satisfies most needs for data analysis.

Outlierness measure. The outlierness measure NetOut
we defined in this paper is easy to compute compared
to many state of the art outlier detection algorithms. It
is still possible to substitute other outlier detection algo-
rithms based on our query-based outlier detection frame-
work, as long as they support the input specified by our
queries. However, most of them are not e�cient enough to
be suited for users’ exploratory query behavior. Our exper-
iments comparing with other outlier detection algorithms
(e.g. LOF [4]) suggest that they cannont produce better re-
sults than NetOut.

Extensions. Although we frame our query-based out-
lier detection study in a closed-schema heterogeneous in-
formation network data set, our framework can easily be
extended to a broader range of data sets. For example,
our query language can be applied to open-schema networks
such as a knowledge graph, and the baseline implementa-
tion of NetOut should also be applicable. It is also possible
to apply our query-based outlier detection idea on tradi-
tional relational databases, with a structure similar to our
defined outlier query language, but changing the meta-path-
based language into SQL. It would be interesting to develop
a query-based outlier detection system for di↵erent types of
data sets, based on our defined framework and query lan-
guage, while exploring the implementation challenges.

There are additional directions to further facilitate users’
exploratory interaction with the system. For example, in-
stead of returning the top-k outliers after the user specifies
the query, it might be helpful to visualize outliers to provide
more insight. Alternatively, the system could find the ap-
proximate top-k outliers, with confidences, while the query
is being processed so that users can determine whether to
continue processing the query. The system might even be
able to suggest how the users can modify their queries to get
more interesting, or more unusual, outliers.

9. CONCLUSION
In this paper, we propose a query-based outlier detec-

tion framework. We design a query language for outlier de-
tection in heterogeneous information networks, which gives
users flexibility to mine various types of outliers based on
their intuition. We also propose NetOut, a novel meta-path
based outlierness measure for mining outliers in heteroge-
neous networks, and show its e↵ectiveness compared to other
outlierness measures. We finally present implementation de-
tails, where we utilize pre-materialization and selective pre-
materialization to optimize query processing time. Experi-
mental results show that our proposed query-based outlier
detection framework can e�ciently return meaningful results
for a range of queries.

Acknowledgements. Research was sponsored in part by the Army

Research Lab. under Cooperative Agreement No. W911NF-09-2-0053

(NSCTA) and W911NF-11-2-0086, the Army Research O�ce under

Cooperative Agreement No. W911NF-13-1-0193, National Science

Foundation IIS-1017362, IIS-1320617, and IIS-1354329, HDTRA1-10-

1-0120, NIH Big Data to Knowledge (BD2K) (U54), and MIAS, a

DHS-IDS Center for Multimodal Information Access and Synthesis

at UIUC.

10. REFERENCES
[1] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball:

Spotting anomalies in weighted graphs. In PAKDD,
pages 410–421. Springer, 2010.

[2] R. Angles. A comparison of current graph database
models. In ICDE Workshops, pages 171–177. IEEE,
2012.

[3] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Computing Surveys (CSUR), 40(1):1,
2008.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. Lof: identifying density-based local outliers.
In SIGMOD, pages 93–104. ACM, 2000.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys,
41(3):15:1–15:58, 2009.

[6] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and
J. Han. On community outliers and their e�cient
detection in information networks. In KDD, pages
813–822. ACM, 2010.

[7] M. Gupta, J. Gao, and J. Han. Community
distribution outlier detection in heterogeneous
information networks. In ECML/PKDD, pages
557–573. Springer, 2013.

[8] M. Gupta, J. Gao, Y. Sun, and J. Han. Integrating
community matching and outlier detection for mining
evolutionary community outliers. In KDD, pages
859–867. ACM, 2012.

[9] M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han. On
detecting association-based clique outliers in
heterogeneous information networks. In ASONAM,
pages 108–115. IEEE, 2013.

[10] M. Gupta, J. Gao, X. Yan, H. Cam, and J. Han.
Top-k interesting subgraph discovery in information
networks. In ICDE, pages 820–831. IEEE, 2014.

[11] M. Gupta, A. Mallya, S. Roy, J. H. Cho, and J. Han.
Local learning for mining outlier subgraphs from
network datasets. In SDM, 2014.

[12] C. Gutierrez, C. Hurtado, and A. O. Mendelzon.
Foundations of semantic web databases. In PODS,
pages 95–106. ACM, 2004.

[13] H. He and A. K. Singh. Graphs-at-a-time: query
language and access methods for graph databases. In
SIGMOD, pages 405–418. ACM, 2008.

[14] V. J. Hodge and J. Austin. A survey of outlier
detection methodologies. Artificial Intelligence Review,
22(2):85–126, 2004.

[15] W. Jin, A. K. Tung, and J. Han. Mining top-n local
outliers in large databases. In KDD, pages 293–298.
ACM, 2001.

[16] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath,
and G. Weikum. Naga: Searching and ranking
knowledge. In ICDE, pages 953–962. IEEE, 2008.

[17] E. M. Knox and R. T. Ng. Algorithms for mining
distancebased outliers in large datasets. In VLDB,
pages 392–403, 1998.

[18] N. Li, H. Sun, K. Chipman, J. George, and X. Yan. A
probabilistic approach to uncovering attributed graph
anomalies. In SDM, 2014.

[19] B. Perozzi, L. Akoglu, P. Iglesias Sánchez, and
E. Müller. Focused clustering and outlier detection in
large attributed graphs. In KDD, pages 1346–1355.
ACM, 2014.

[20] S. Ramaswamy, R. Rastogi, and K. Shim. E�cient
algorithms for mining outliers from large data sets. In
SIGMOD, volume 29, pages 427–438. ACM, 2000.

[21] M. Schmidt, M. Meier, and G. Lausen. Foundations of
sparql query optimization. In ICDT, pages 4–33.
ACM, 2010.

[22] E. Schubert, A. Zimek, and H.-P. Kriegel. Local
outlier detection reconsidered: a generalized view on
locality with applications to spatial, video, and
network outlier detection. Data Mining and
Knowledge Discovery, 28(1):190–237, 2014.

[23] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos.
Neighborhood formation and anomaly detection in
bipartite graphs. In ICDM, pages 418–425, 2005.

[24] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu.
Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. Proceedings of
the VLDB Endowment, 4(11), 2011.

[25] Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and
X. Yu. Integrating meta-path selection with
user-guided object clustering in heterogeneous
information networks. In KDD, pages 1348–1356.
ACM, 2012.

[26] X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In SIGMOD, pages
335–346. ACM, 2004.

[27] X. Yan, P. S. Yu, and J. Han. Substructure similarity
search in graph databases. In SIGMOD, 2005.

[28] S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and
structureless graph querying. Proceedings of the VLDB
Endowment, 7(7), 2014.

[29] P. Zhao and J. Han. On graph query optimization in
large networks. Proceedings of the VLDB Endowment,
3(1-2):340–351, 2010.

[30] B. Zong, Y. Wu, J. Song, A. K. Singh, H. Cam,
J. Han, and X. Yan. Towards scalable critical alert
mining. In KDD, pages 1057–1066. ACM, 2014.

