
Hardware-based performance monitoring withVTune Performance Analyzer
under Linux

Hassan Shojania
shojania@ieee.org

Abstract
All new modern processors have hardware support for

monitoring processor performance. In this project, we
try to explore use ofVTune Performance Analyzerfor
hardware-based performance monitoring of a Linux clus-
ter of Pentium 4 Xeon processors.

1 Introduction
Performance measurement of any high-performance

cluster system is very critical for development and de-
ployment of efficient applications for such system. All
new modern processors have special hardware to monitor
processor performance. This hardware-based performance
measurement has many advantageous over traditional in-
trusive methods of performance measurements based on
adding code for probing execution time of portion of a
program. For example, data collected by this hardware
provides performance information on applications, the op-
erating system, and the processor. These data can guide
performance improvement efforts by helping programmers
tuning the algorithms used, and the code sequences that
implement those algorithms [1].

In this project, we intend to exploreVTune Performance
Analyzerset from Intel for performance measurement of
standard MPI/OpenMP-based benchmarks under our clus-
ter of Dell PowerEdge 2650/6650 (2/4 way SMP systems
with Xeon processors) running Linux. As the first step to-
wardsVTune, we are targeting mainly the proper system
setup/configuration with limited trials of few benchmarks.
This should provide enough background for more in depth
analysis of other benchmarks.

This report is organized as follows: First we overview
the basics of performance monitoring hardware in Section
2. Features of Pentium 4 performance monitoring hard-
ware is overviewed in Section 3. In Section 4 we describe
performance data collection in VTune with the help of con-
cepts presented in Sections 2 and 3. Section 5 explains dif-
ferent deployment choices of VTune and installation steps.
Section 6 provides some sample test results. In Section 7
we present our conclusions.

Section 2 and 3 have heavily used [1] and [2]. These

are excellent sources for more information about perfor-
mance monitoring hardware and features of Pentium 4 in
this area. Of course, [3] provides raw register-level infor-
mation for programming Pentium 4 performance monitor-
ing hardware.

2 Basics of performance monitoring hard-
ware

There can be different approaches for collecting proces-
sor performance data.

1. Modifying the application to add instrumentation
code for collecting various data like instruction trace
and memory reference data. This requires either re-
building it from source code or modifying its exe-
cutable version; both not favorable usually (especially
for operating system code). Also, these approaches
can disturb the applications behavior, bringing ques-
tions about validity of the collected data.

2. Another way to collect processor performance data is
by using a simulator to model the processor as it ex-
ecutes the application. This simulation approach can
yield a detailed data on processor blocks like pipeline
stalls, branch prediction, cache performance, and so
on. However, processor manufacturers do not usu-
ally provide simulators for advanced processor de-
signs and third parties don’t know enough about the
hardware detail to build such a simulator.

3. Using performance-monitoring hardware has several
distinct advantages over previous approaches. Hav-
ing the processor itself actually collect performance
data as it executes an application have several bene-
fits. First, the application and operating system re-
main largely unmodified. Second, the accuracy of the
collected event counts is much higher compared to us-
ing loose simulators which are not capable of simu-
lating exact hardware behavior. Third, performance-
monitoring hardware collects data on the fly as the
application executes, avoiding the slow simulation-
based approaches. Fourth, this approach can collect



data for both the application and the operating system.
These advantages often make hardware performance
monitoring the preferred, and sometimes only choice
for collecting processor performance data.

Performance-monitoring hardware typically has two
components: performance event detectors and event coun-
ters. Users can configure performance event detectors to
detect anyone of several performance events (for example,
cache misses or branch mispredictions). Often, event de-
tectors have an event mask field that allows further qualifi-
cation of the event. For example, based on processors priv-
ilege mode (user/supervisor) to separate events generated
by application from operating system code, or for filtering
accesses to the L2 cache based on cache line’s specific state
(i.e. modified, shared, exclusive, or invalid).

Further configuration is usually possible through en-
abling event counters only under certain edge and threshold
conditions. The edge detection feature is most often used
for events that detect the presence or absence of certain
conditions every cycle, like a pipeline stall. The thresh-
old feature lets the event counter compare the value it re-
ports each cycle to a threshold value and then increment
the counter. The threshold feature is only useful for per-
formance events that report values greater than one in each
cycle, for example for an ”Instructions Completed” event,
number of cycles when three or more instructions were
completed (in one cycle) can be counted by using a thresh-
old of two.

2.1 Performance event monitoring
Performance events can be grouped into five cat-

egories: program characterization, memory accesses,
pipeline stalls, branch prediction, and resource utilization.
Program characterization events show largely processor-
independent attributes of a program like number and type
of instructions (for example, loads, stores, floating point,
branches, and so on) completed by the program. Mem-
ory access events aid performance analysis of the proces-
sor’s memory hierarchy, like references and misses to vari-
ous caches and transactions on the processor memory bus.
Pipeline stall event information helps users analyze how
well the program’s instructions flow through the pipeline.
Branch prediction events show performance of branch pre-
diction hardware. Resource utilization events can monitor
the usage of certain resources like number of cycles spent
using a floating-point divider.

2.2 Performance Profiles
Though hardware performance counters reveal many in-

formation about the software, but this information is very
low level and mainly expose global state of the proces-
sor not a particular application behavior. And as long as
the source of monitored behavior is not detected, the user

can not improve the hardware/software performance. Two
common approaches are:

Time-based Sampling (TBS)approach tries to capture
the percentage of time an application spends in its dif-
ferent sections through exposing the most frequently
executed portions of the code. It is usually imple-
mented through interrupting an application’s execu-
tion at regular time intervals and recording the pro-
gram counter. At the end of the application, a his-
togram will show the number of samples collected for
each section of code.

Event-based Sampling(EBS)produces a histogram of
performance event counts based on code location.
Now the application is interrupted after a specific
number of performance events (a counter reaching
some threshold) rather than at regular time intervals
in TBS. Similar to a time-based profile indication of
most frequently executed code locations, an event-
based profile indicates the most frequently executed
code locations that cause a particular performance
event. This requires performance-monitoring hard-
ware support for generating performance monitor in-
terrupt when a performance event counter overflows.
Then the Interrupt Service Routine (ISR) handler cap-
tures sample data from the program (e.g. program
counter) and re-enables the interrupt for another in-
terrupt.

2.3 Limitations
Mainstream processors suffer from a common set of

problems:

Too few counters. Limited number of counters restricts
monitoring multiple events concurrently.

Speculative counts.Some processors can’t distinguish
between performance events for instructions that do
not complete (speculative execution) from the one
who really complete. This is important because per-
formance events are still generated (like cache misses)
even for speculatively executed instructions that never
retire.

Sampling delay. The sampling of program counter when
a hardware event counter overflows (commonly used
with EBS) can not identify the exact instruction that
caused the overflow. This degree of accuracy is not
required all the time (e.g. the associated module or
thread is of more interest) but there are cases when an
event frequency needs to be related to particular type
of instruction. The program counter is sampled by a
performance monitor interrupt (PMI) after overflow
of an event counter. However, the current instruction

2



Figure 1:The general structure of the Pentium 4 event counnters and detectors)(from [2])

is usually not the instruction causing the overflow as
processors pipeline cause an arbitrary delay between
counter overflow and signaling of an interrupt.

Lack of data-address profiling. Usually there is no sup-
port for collecting profiles ofdata addressesgener-
ated by CPU when a memory hierarchy performance
event happens.

3 Pentium 4 Performance-monitoring Fea-
tures

Intel Pentium 4 has tried to overcome the limitations
described in the previous section.
3.1 Increased event counters

Pentium 4 supports 48 event detectors and 18 event
counters, allowing concurrent collection of a larger set of
data (see Figure 1). To decrease the amount of signal rout-
ing among event detectors and save with silicon area re-
quired to associate each event detector to its own counter,
several blocks of counters were dispersed across the chip to
besharedby geographically close event detectors as Figure
1 shows. The event detectors select an event and mask it
based on privilege mode or thread ID. Event counters sup-
port threshold comparison and edge detection (introduced
in section 2). These are configured through event select
control register (ESCRs) and counter configuration control
registers (CCCRs). Figure A and B shows the format of
these registers. For detailed description of them refer to
Chapter 15 and Appendix A of [3]. Figures 2 and 3 show
the general structure of event counters and detectors.

Figure 2: Counter configuration control register (CCCR)(from
[2])

As the result, the 18 performance counters are grouped
into nine pairs of counters. Each performance counter is
associated with a fixed (CCCR) register (18 in total) to
set up counter for a specific method or style of counting.
Each one of 45 events can be monitored by associating the
proper ESCR (45 in total) to a performance counter to keep
track of the event count. Note that since only 18 counters
are available and each hardware block is associated with
some fixed set of performance counters, a total of 18 events
with maximum of 4 or 6 events from each block (depend-

3



ing on the block) can be monitored at any time.

Figure 3:Event select control register (ESCR)(from [2])

Performance counters can be accessed through RDPMC
(Read Performance Monitoring Counters) instruction. Ex-
ecution of this instruction is restricted to supervisor mode
only unless PCE (Performance-Monitoring Counter En-
able) bit of CR4 (a control register) is enabled by a priv-
ileged code. CCCR and ESCR registers are accessed
through RDMSR (Read from Model Specific Register) and
WRMSR (Write to Model Specific Register) which both
are restricted to code running in supervisor mode. As the
result, all performance measurement tools (e.g. VTune,
PerfCtr) have a driver portion running in kernel mode to
program these restricted registers. For more information
about these registers see section 15.9 of [3].
3.2 Instruction tagging

Pentium 4’s instruction tagging mechanism allows dis-
tinguishing speculative from nonspeculative performance
events. This is done through tagging theµops when they
cause performance events. These tags are kept tillµops are
retired where they contribute to the proper event counter.
Three provided tagging mechanism are:

Front-end tagging for events in early stages of the
pipeline due to instruction fetch, instruction type and
µop delivery from trace cache.

Execution tagging for some class ofµops when they
write their results back to register file.

Replay tagging for µops that are replayed because of con-
ditions like cache misses, branch mispredictions, de-
pendence violations and resource conflicts. See sec-
tion 15.9.7 of [3] for more information.

3.3 Precise event-based sampling (PEBS)
Beside supporting imprecise event-based sampling

(IEBS), Pentium 4 has added support for precise event-
based sampling (PEBS) to allow identifying the exact in-
struction causing a performance event and also generat-

ing data address profiles. It uses a microassist (a mecha-
nism typically used for handling infrequent and problem-
atic conditions) to change next executedµop to a microas-
sist service routine for capturing sample data. The use of
microassist and its service routine rather than relying on
interrupts (which are delayed because of pipeline depth),
avoids the inaccuracy caused by traditional IEBS.

Since no longer an ISR executed at event overflows, mi-
croassist copies the sample data to a buffer (already pro-
grammed) in memory. A high watermark is kept by mi-
croassist to monitor buffer consumption after adding every
new sample. If it is reached, then an ISR is generated to
empty PEBS buffer. This helps to improve the overhead
of event-based sampling as ISR is generated far less often
than previous case when an ISR was fired for every single
overflow of event counter.

3.4 Thread based qualification

Further, event detection can be qualified against the
thread ID of the CPU thread executing the current code
when simultaneous multithreading (SMT) is active. This
can also be mixed with privilege mode. For example appli-
cation level events on thread 0 or operating system events
on thread 1. Note that here the thread ID means CPU
thread number (e.g. zero or one on currently available two-
level hyperthreaded Pentium 4s) not thread ID associate by
operating system to each task’s execution thread.

3.5 Current limitations

One of the main existing limitations is lack of support
for ”attributing event counts to specific task in execution”.
This is because of theglobal nature of hardware perfor-
mance countersas they count events for all tasks in exe-
cution (time shared) on the processor. So currently there is
no alternative except changing operating system to provide
a local view of performance counters for each application
(or its threads). This is not easy to implement. For ex-
ample, PerfCtr ([4]) is providing such a task-based local
view (only process level but not thread-based) of perfor-
mance counters under Linux by hooking into kernel sched-
uler. But this is not implemented under Windows (e.g. by
Intel VTune) as hooking into kernel schedular is not trivial
in Windows.

The other problem ismicroarchitecture dependence
of performance monitoring hardware. The definition of
events, supported capabilities and software interface for
programming the counters are all microarchitecure depen-
dent. This makes it difficult to develop and maintain soft-
ware tools to expose hardware performance monitor fea-
tures across different microarchitectures. A few who have
this support are: Intel VTune ([5]), University of Tennessee
PAPI ([6]) and PerfCtr ([4]).

4



4 VTune Performance Analyzers
VTune Performance Analyzers software set developed

by Intel collects and displays software performance data to
help with identifying and locating performance bottlenecks
in codes. Here are a brief overview of its features:

Supported processors:Intel Pentium 4, Intel Xeon, Intel
Itanium and Itanium 2 processors, Mobile Intel Pen-
tium III Processor M, Intel Pentium M Processor, In-
tel PXA255 processor and Intel PXA262 processor.

Supported operating systems:Both Windows and Linux
are supported. The latest retail versions are: VTune
Performance Analyzer 7.0 (for Windows) and VTune
Performance Analyzer 1.1 for Linux.

Beta versions of next revisions currently available are:
VTune Performance Analyzer 7.1 (for Windows) and
VTune Performance Analyzer 2.0 for Linux. They are
expected to be released early in 2004.

Low overhead profiling: VTune uses low intrusion
system-wide sampling methods to provide most
accurate representation of application’s performance.

Source-level Tuning Advice: It employs Intel Tuning As-
sistant to examine application interaction with the sys-
tem and provides both coding pitfall and processor-
specific advice to help streamlining the code.

Multi-Threading/Multi-Processor Support: It allows
viewing sampling data or call graph data for large
numbers of threads simultaneously or isolating spe-
cific threads or processors (including Hyperthreaded
processors).

Collecting Performance Data from Remote Systems:
It allows configuration, start and stop of a remote
computer’s profiling data collection session from a
host computer. Host computer must be a Windows
system while the target system can be either Linux or
Windows.

Scripting Capability: It allows writing scripts that auto-
matically run VTune analyzer call graph or sampling
activities.

Pack and Go Feature: It provides the ability to pack the
project (including all collected data) from a Windows
or Linux system and unpack it to a Windows system
to allow graphical viewing of the Windows/Linux per-
formance data.

VTune support three main performance collection
mechanisms through itsdata collectors:

4.1 Sampling Collector
This method uses non-intrusive, instruction-address

sampling collector to collect, analyze, and display system-
wide software performance data. It can identify the crit-
ical processes, threads, modules, functions, and lines of
code running on the system by analyzing the collected data.
During sampling, the analyzer monitors all the software
executing on system including the operating system, JIT-
compiled Java* applications, .NET* applications, 16-bit
applications, 32-bit applications, and device drivers. The
VTune Analyzer analyzes the code associated with the col-
lected samples and displays the hotspots or bottlenecks in
the Hotspot view. User can drill down from the hotspots to
the source or assembly code. Since the VTune Analyzer’s
sampling is non-intrusive and does not modify binary files,
application performance is not impacted that much. There
are two types of sampling mechanisms can be chosen from
to collect data:

Time-based sampling (TBS)collects samples of active
instruction addresses at regular time-based intervals
(1ms. by default).

Event-based sampling (EBS)collects samples of active
instruction addresses after a specified number of pro-
cessor events.

Both were already reviewed in Section 2 earlier. When
a Sampling Activity is started, the VTune Analyzer starts
collecting samples by interrupting the processor at the
specified sampling interval (TBS case) or specified num-
ber of detected hardware events (EBS case) and collects
samples of instruction addresses. For every interrupt one
sample is recorded, storing the execution context of the
software (module, process, thread) currently executing on
system.

4.2 Call Graph Collector
This method collects information about the program

flow of an application, that is, how many times a func-
tion calls some other function and the amount of time each
function spent by executing its code and/or calling other
functions. A function can be a caller or/and a callee. In
many cases, the caller may call the callee from several
places (sites), so call graph also provides call information
per site. It is possible to drill down from the function sum-
mary, graph, and the call list to the source and see call
graph data summary by function.

Contrary to the Sampling collector, Call Graph collec-
tor uses instrumentation to modify the program so that dy-
namic information is recorded during program execution.
Data collection routines invoked at specific points in the
execution of the target program record run-time informa-
tion. These routines provide information about time spent

5



in each function, and the call sequence that leads to a spe-
cific function. This process does not change the function-
ality of the program. However, it slows performance down.
By default, the VTune instruments all application func-
tions and system-level exports. The VTune analyzer keeps
track of the exit and entry points, records the number of
times each function was called, establishes a relationship
between the caller (parent) and callee (child) function, and
stores this data.

4.3 Counter Monitor Collector (only on Win-
dows)

This method is to identify system level performance
issues. Counter monitor selectively polls system per-
formance counters, which are grouped categorically into
performance objects. These counters aresystemper-
formance counter exposed by the operating system and
mainly doesn’t related to a hardware performance counter.
Some examples are: Non-paged pool allocations, Context-
switches of a thread/sec and File data operations/sec. The
data collected through this feature can be correlated with
data collected by other collectors, such as sampling. Each
sample is made by atrigger (e.g. at predetermined inter-
vals according). Also, VTune can provide aruntime view
of system performance counters by generating a graph that
shows the counter changes as they happen.

4.4 Extending the features of VTune
VTune has a Software Development Kit (SDK) to as-

sist developers in writing DLLs (for Windows) that extend
the functionality of the VTune analyzer. This can be in
a form of new performance counters in hardware devices,
device drivers, or software applications that can be tracked
in VTune. Also, the trigger model in the VTune enables de-
velopers to develop their own triggering mechanism for the
Counter Monitor collector to collect performance counter
data. This is done by calling some APIs in the application
to notify VTune about the trigger.

In both Linux and Windows, the developer can target
specific sections in the application for sampling by insert-
ing calls to the VTPauseSampling() and VTResumeSam-
pling() APIs in his code. To do that, the application must
be likned with libVtuneApi.so (for Linux) or vtuneapi.lib
(for Windows).

5 VTune setup for our Cluster
As mentioned earlier in this report, our main goal was

to explore VTune’s capabilities for performance measure-
ment of MPI and OpenMP applications under our cluster
of Dell PowerEdge 2650s/6650s running Linux. Also we
wanted to be able to categorize performance data based on
executing threads to analyze OpenMP applications in par-
ticular as this was not possible with our previous tool (Per-
fCtr).

5.1 Standalone setup
We first deployedVTune Performance Analyzer 2.0

Beta for Linux. This tool was installed on a standalone
Linux system (i.e. no need to acontrolling system) in
the default path of/opt/intel/vtune. The installed com-
ponents consists of a driver portion installed in[VTune-
path]/analyzer/vtunedrv-[version info].oand an applica-
tion portion installed in[VTune-path]/shared/bin/vtl. As
Section 3 already pointed, programming of hardware per-
formance counters in Pentium 4 must be done in super-
visor mode (e.g. by a kernel-mode driver). This is done
by driver portion of VTune but since RedHat 9.0 is not
a supported platform for VTune, the driver binary for
this platform is not coming with the original installation.
So a new driver must be built from the provided source
code ([VTune-path]/analyzer/drivers/src). Since the driver
depends on system kernel code, theexact source code
of Linux kernel running in the system must be avail-
able. The path to kernel source code can be config-
ured through[VTune-path]/analyzer/drivers/src/configure
script. The built driver will have a name like vtunedrv-
[version info].o in our casevtunedrv-2.4.22smp.oshow-
ing the kernel version and whether the kernel is uniproces-
sor (up) or multiprocessor (smp). Then the driver must
be loaded by[VTune-path]/analyzer/drivers/src/insmod-
vtunescript. The driver must be reloaded after each reboot
manually unless automatic load of driver was setup at in-
stallation of VTune.

Now by running the application portion[VTune-
path]/shared/bin/vtl, different monitoring schemes can be
configured through command line parameters or script.

A few notes:

• Installation must be done by theroot user.

• The license file must be copied to the proper Intel li-
cense path (by default/opt/intel/licenses; can override
it by INTEL LICENSE FILE environment variable).

• Installation process also installsEntireX DCOM
for Linux in /opt/sag so DCOM service must be
running before launchingvtl(DCOM will launch
/opt/sag/exx/v611/bin/ntdapparently).

• vtl depends on some libraries in/opt/sag/exx/v611/lib,
so make sure this path is added to your
LD LIBRARYPATH environment variable or in-
cluded in /etc/ld.so.conf. This was not done
automatically by installation package.

• Make sure proper users are added to thevtuneuser
group when installation asks about it. Otherwise,
users might have problem runningvtl.

6



5.2 Remote data collection
Though running the standalone version of VTune An-

alyzer works well, configuring and setup of data collec-
tion and also analysis of collected data are not very easy
through command line setup or writing scripts. Pentium 4
has many events and configuration mask that a GUI based
interface will speed up the collection setup. So we also ex-
plored using a remote data collection setup with the help of
a Windows system runningVTune Performance Analyzer
7.1 Beta (for Windows)as the controlling node. Through
the GUI of Windows-based VTune the Linux node can be
easily controlled and collected performance data is dis-
played in easily understandable charts and graphs. Also,
the data can be exported to a .csv (comma separated val-
ues) file and later converted to anExcelspreadsheet.

We briefly overview the installation process here as it
is more complicated than standalone case. After download
of the package and unpacking it (on the Windows system),
an HTML page titledVTune(TM) Performance Analyzer
Installation CDshows up. Follow the following steps:

• Select”Install Now” for the first itemVTune Perfor-
mance Analyzer 7.1 Beta. It’ll start the installation
process and requires a reboot. This installs VTune
for Windows which can be used both for analyzing
Windows based applications or controlling other Win-
dows or Linux systems.

• Go to the third item calledVTune Performance Ana-
lyzer 7.1 Beta Remote Agents for Linux. Follow in-
structions provided inInstallation Instructionslink
(to copy the Remote Agenttar file to the target Linux
system, unpack it and start installation by running./in-
stall.shscript). The installation on Linux system is
very similar to theStandalone casedescribed in previ-
ous section. So be careful about DCOM, library path
and users being added to thevtunegroup.

For starting a performance analysis do this:

• Make sure you have your target application prepared
on the Linux system.

• Start theLinux Remote Agentby running [VTune-
Path]/shared/bin/vtserver. You should see something
like the output in Appendix 1. Remote agent is now
ready for accepting connections.

• Launch VTune on the Windows system. Se-
lect New Project, then Sampling Wizardor Call
Graph Wizard. On the next page, leaveWin-
dows*/Windows*CE/Linux profilingon and go to the
next page.

• You’re in step 1 of 3 of the wizard now. Click on
the Remotebutton. Type your target IP address in
Machine Namebox. Note if your machine is be-
hind a firewall, enter the gateway IP address here and
map port 50000 of your gateway to your target. You
might need to do other system admin configuration
to expose your target system to the Windows system
based on your network configuration. The default port
50000 used by VTune can be overriden. See [7] for
more info.

• SelectLinux* from OS Typebox. Then selectIA-
32 architecturefrom Architecture Typebox and press
OK.

• You’re back to step 1 of 3. Now fill in the
Application box with information about your tar-
get application on the Linux system. Note
that all path information should be entered as
you use it directly from your Linux system
like /usr/local/mpich-1.2.5/chp4intel/bin/mpirunfor
Application to launch box, -np 4 -machinefile
my machines4 cg.A.4for Command line arguments
and /home/elec873g2/NPB2.4/NPB2.4-MPI/binfor
Working directory. Go to the next page.

• You’re in step 2 of 3 of the wizard now. Your tar-
get application should show up inModules of Inter-
estbox; /usr/local/mpich-1.2.5/chp4intel/bin/mpirun
here in our example. Go to the next page.

• You’re in step 3 of 3 of the wizard now. Configure
it based on your need; for example turn offStop col-
lection condition of 20 seconds or increase it. Press
Finish.

• Now the VTune on Windows system will contactvt-
serveron the Linux system to start data collection.
You should be able to see the incoming connection re-
quest onLinux Remote Agentand if there is any error
generated at application startup. Note that theRemote
Agentwill execute multiple runs of the target applica-
tion to calibrate its sampling configuration depending
on the number of events being captured. When data
collection is completed, VTune on Windows system
will show histogram of captured events.

For more information about setting up remote connec-
tion seeFrequently Asked Questions About Sampling on
Linux* in [7]. Also for getting more familiar with VTune
concepts and data collectors, SeeGetting Started Tutorials
from Helpmenu in VTune Windows.

The properties of thedata collection projectcan be
changed by right clickingActivity ... from Tuning browser
window. This can be either correction or addition to the list

7



of modules under profile (and its command line parame-
ters) or change of data collector(s) properties. For example
click on Configure... button besideData Collectorsbox.
Then add/change the monitored events throughEventsand
Event Ratiostabs.

6 Test results
Though our goal was not to analyze result of perfor-

mance data collected through VTune, we here provide the
result of some limited test cases without trying to analyze
them.

The test system was a Dell PowerEdge 2650s with
dual Intel Xeon 2.0 GHz Hyperthreaded Processors with
533MHz front-side bus. CG and BT from NAS Parallel
Benchmark (NPB) 2.4 were selected. CG was tried with
two cases of 2 and 4 process and BT tested with a 4 pro-
cess case all from class A.

Surprisingly we noticed thatvtserverreports only 2 pro-
cessors instead of expected 4 processors (because of hy-
perthreaded processors). Apparently hyperthreading was
disabled in the system BIOS.

Figures 4 and 5 In Appendix 2 show result for CG class
A running with 2 and 4 processes ona single system(to be
able to monitor it).

The monitored events were:

• Instructions Retired

• µops Retired

• 2nd Level Cache Load Misses Retired

• Misspredicted Branches Retired

• Clockticks

• Streaming SIMD Extensions Input Assist

Inside each picture we copy/pasted the same histogram
but with performance data broken for each processor (dif-
ferent color in each bar shows share of a processor). An
interesting point is that no SSE instructions detected when
running CG with 4 process but a few (5) were detected in
2 process case.

Figure 6 in Appendix 2 shows the same performance
events monitored for BT class A running with 4 processes.

We figured out thatThread viewdoesn’t work in moni-
toring Linux applications while the same feature works for
Windows-based application (thread view associates col-
lected event samples to individual threads inside a pro-
cess). Apparently this feature is not supported for Linux
(we haven’t received a definitive answer from Intel about
this yet). This makes VTune not very favorable for de-
tailed performance measurement of OpenMP applications
(one of our goals) at this point. But it is expected to have
this feature for future releases of VTune.

7 Conclusion
ThoughVTune Performance Analyzerdoesn’t provide

thread-based view for monitoring of hardware perfor-
mance events under Linux, it has a quite rich environ-
ment for performance monitoring of Intel-based proces-
sors. All hardware performance events are exposed by
VTune and their event mask and threshold-level can be eas-
ily programmed. Virtually all low-level performance mon-
itoring register programming can be done through VTune.
Controlling the Linux remote agent by a Windows system
makes configuration of a performance profile much easier
through VTune’s user-friendly GUI.

On the other hand, the Linux-based variation of VTune
is lagging behind its Windows counterpart in some areas;
for example not supporting Thread View, Counter Moni-
tor collector, no GUI and less degree of extensibility. It
apparently doesn’t hook to system scheduler to provide
task-based local-view of performance counters (its weak-
ness compared to PerfCtr). But after all, its ease of use
makes it very attractive compared to other performance
measurement tools under Linux. We didn’t have the chance
to explore much with in-depth analysis of an application to
trace its behavior and potential bottlenecks through hard-
ware performance counters. This should be the next step
in following this project.

References
[1] B. Sprunt,The basics of performance-monitoring hardware,

IEEE Micro, Volume: 22 Issue: 4 , July-Aug. 2002 Page(s):
64-71.

[2] B. Sprunt, Pentium 4 performance-monitoring features,
IEEE Micro, Volume: 22 Issue: 4 , July-Aug. 2002 Page(s):
72-82.

[3] Intel, IA-32 Intel Architecture Software Developers Manual
Volume 3: System Programming Guide.

[4] Mikael Pettersson’s perfctr, a Linux x86
Performance-Monitoring Counters Driver,
http://user.it.uu.se/ mikpe/linux/perfctr/.

[5] Intel VTune Performance Analyzers Website,
http://www.intel.com/software/products/vtune/.

[6] PAPI: Performance Application Programming Interface,
http://icl.cs.utk.edu/papi/.

[7] Intel, Help for Intel VTune Performance Analyzer, On
VTune 7.1 Beta for Windows and VTune 2.0 Beta for Linux.

8



8 Appendix 1: vtserveroutput after successful start on Linux system waiting for connection
from Windows system

Setting up ISM environment ...
ISM DATADIR=/tmp/VTune/ISM
ISM INST DIR=/opt/intel/vtune/shared/bin
ISM TEMPDIR=/tmp/ISM tmp
Setting up Callgraph environment ...

Bistro Exit Signal =12
Bistro MASTERPROJECTPATH =/home/elec873g2

CLASSPATH =.:/opt/intel/vtune/analyzer/bin
Setting up Sampling environment ...
VTUNELINUX KERNELLOADADDRESS=0xC0105000
VTUNELINUX KERNELSIZE=0x1F0EC9
VTUNELINUX KERNELFILENAME=/boot/vmlinux-2.4.22
Setting up Remote Data Collection environment ...

PATH=/opt/intel/vtune/shared/bin:/opt/intel/vtune/analyzer/bin:/sbin:...
LD LIBRARY PATH=/opt/intel/vtune/shared/bin:/opt/intel/vtune/analyzer/bin...
DATADIRECTORY=/home/elec873g2
000 12/12/03 10:20:21
========================================================
000 12/12/03 10:20:21
000 12/12/03 10:20:21 VTune(TM) Performance Analyzer Remote Agent for Linux*
000 12/12/03 10:20:21 Copyright(C) 2003, Intel Corporation, All Rights Reserved
000 12/12/03 10:20:21
000 12/12/03 10:20:21 -- System Information --------
000 12/12/03 10:20:21 number of CPUs: 2
000 12/12/03 10:20:21 CPU speed: 1988 MHz
000 12/12/03 10:20:21
000 12/12/03 10:20:21 -- Remote Agent --------------
000 12/12/03 10:20:21 server version: v0.9972
000 12/12/03 10:20:21
000 12/12/03 10:20:21 -- Sampling Collector --------
000 12/12/03 10:20:21 driver version: v0.9193
000 12/12/03 10:20:21 library version: v0.861
000 12/12/03 10:20:21
000 12/12/03 10:20:21 -- Callgraph Collector -------
000 12/12/03 10:20:21 library version: v0.91
000 12/12/03 10:20:23
000 12/12/03 10:20:23 -- ISM Agent Proxy -----------
000 12/12/03 10:20:23 library version: v0.1r
000 12/12/03 10:20:23
000 12/12/03 10:20:23 server on daisy05 (192.168.2.25)
000 12/12/03 10:20:23
000 12/12/03 10:20:23 server listening on port 50000
000 12/12/03 10:20:23
000 12/12/03 10:20:23 server is ready ...

9



9 Appendix 2: Test results

Figure 4:Performance data result for CG class A running on 2 processes

10



Figure 5:Performance data result for CG class A running on 4 processes

11



Figure 6:Performance data result for BT class A running on 4 processes

12


