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Figure 1: SnapToReality allows users to easily position, orient, and scale AR virtual content with respect to real world constraints. 

Our prototype (a) extracts real world planar surfaces and edges as constraints so that users can easily align virtual content to the 

real world via snapping (b, c). This form of interaction enables AR content creation seamlessly integrated into the real world (d). 

 
ABSTRACT 

Augmented Reality (AR) applications may require the 

precise alignment of virtual objects to the real world. We 

propose automatic alignment of virtual objects to physical 

constraints calculated from the real world in real time 

(“snapping to reality”). We demonstrate SnapToReality 

alignment techniques that allow users to position, rotate, 

and scale virtual content to dynamic, real world scenes. Our 

proof-of-concept prototype extracts 3D edge and planar 

surface constraints. We furthermore discuss the unique 

design challenges of snapping in AR, including the user’s 

limited field of view, noise in constraint extraction, issues 

with changing the view in AR, visualizing constraints, and 

more. We also report the results of a user study evaluating 

SnapToReality, confirming that aligning objects to the real 

world is significantly faster when assisted by snapping to 

dynamically extracted constraints. Perhaps more 

importantly, we also found that snapping in AR enables a 

fresh and expressive form of AR content creation. 
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INTRODUCTION 
In the real world, the positioning of objects is often guided 

by physical constraints (e.g., stacking objects on the table, 

or aligning a chair against the wall) or design constraints 

(e.g., aligning collinear objects, or making objects be of 

similar dimensions).  

Performing similar actions in Augmented Reality (AR) may 

be difficult as virtual objects do not necessarily follow the 

same rules of physics. Meanwhile, positioning virtual 

content in space around a user is an important task in many 

AR applications, such as industrial design, home 

redecoration, games, etc. While it is possible to do so 

without regard to the real world surrounding the user, many 

AR experiences tend to require a precise alignment between 

virtual objects and the real environment (e.g., Figure 2). 

In traditional desktop computing, when precise alignment is 

desired, many sophisticated alignment tools are often 

available, such as dynamic guides and snapping behaviors 

[4]. Snapping is a common technique that helps users 

precisely align content with respect to certain constraints. A 

typical approach is to automatically align an object with a 

constraint whenever the user moves the object near to that 

constraint. For example, Microsoft PowerPoint uses “Smart 

Guides” to snap content so that it is parallel to other 

content, directly touching other content, etc. Snapping is 

also readily used in many 3D modeling programs, such as 

SketchUp and AutoCAD, enabling easy interaction that 

would otherwise take a long time and/or be very frustrating. 
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We introduce SnapToReality, the concept of snapping 

virtual content to physical constraints, calculated from the 

real world in real time. In addition to supporting traditional 

alignment tasks in AR, SnapToReality enables new forms 

of interaction due to the world’s dynamic nature: A door 

may be opened, a chair may be moved, and objects may be 

added or taken away, creating new opportunities for 

alignment. Furthermore, users may stack objects to generate 

a new snapping constraint, or even use physical tools (e.g., 

a measuring tape) to guide the formation of virtual objects. 

Snapping to physical constraints is inherently more difficult 

than snapping to virtual constraints because the physical 

constraints are not known by the system a priori and 

therefore must be extracted on-the-fly. If such constraints 

are extracted perfectly, the snapping procedure may be 

considered identical to snapping to virtual constraints. 

However, due to sensor noise, environment complexities, 

and AR hardware limitations, it is easily possible to extract 

the wrong constraints, which may cause an overall negative 

performance impact. To our awareness, our prototype is the 

first to demonstrate 3D physical constraint extraction that 

enhances performance for 3D snapping in AR. 

Our main contributions in this paper are as follows:  

 A proof-of-concept prototype that implements two 

SnapToReality alignment techniques—snapping to real 

world edges and planar surfaces in real-time, thus 

enabling new expressive forms of interaction by utilizing 

dynamic real world scene content. Special care is taken to 

visualize the constraints in the real environment and 

outside the field of view.  

 A detailed analysis of the important design considerations 

for SnapToReality alignment techniques, including the 

user’s limited field of view, noise in constraint extraction, 

issues with changing the view in AR, issues concerning 

dynamic scenes, and visualization of physical constraints. 

 A user evaluation demonstrating (a) that positioning and 

rotating AR objects to be aligned with a real world target 

is faster with snapping than without snapping; and (b) 

that snapping enables expressive forms of interaction for 

creating AR content aligned to the dynamic real world. 

RELATED WORK 

Snapping to Virtual Constraints 

Snapping virtual content to virtual constraints has been 

investigated in many ways. Eric Bier’s work on snap-

dragging [3,4] was one of the first ground breaking works 

in snapping. In its 3D version, snap-dragging enables the 

precise placement of a 3D cursor (the “snap-dragging 

skitter”), which snaps to points, curves, and surfaces 

whenever it is close to existing geometry. Snapping 

between objects using simple affine transformations was 

also available, thus making precise, relative 3D modeling 

easy to achieve. The AR content creation mode in our 

prototype draws inspiration from the snap-dragging skitter. 

Over the years, snapping has been improved in various 

ways [1,10,13,17,27]. Today, snapping is also used in many 

popular desktop and web applications, such as Microsoft 

PowerPoint, Google Slides, SketchUp, AutoCAD, etc. 

However, most, if not all, of these applications only apply 

snapping to virtual constraints. Snapping to real physical 

and dynamically changing constraints is what makes 

SnapToReality stand apart from previous works. 

Snapping to Real Constraints 

Important early works on extracting real-world constraints 

from 2D images for snapping were Gleicher’s image-

snapping [16] and Mortensen & Barrett’s intelligent 

scissors  [23]. More recently, Lee et al. [20,21] applied the 

idea of image-snapping to helping users annotate objects in 

2D images in augmented reality. Nóbrega and Correia [26] 

also applied the idea of augmenting 2D images by 

extracting vanishing points and coarse depth from pairs of 

images. In SnapToReality, we take the idea of extracting 

real constraints a step further, going from 2D to 3D. 

To the best of our knowledge, no previous work exists on 

extracting 3D physical constraints in real-time specifically 

for snapping in augmented reality. In our prototype, we 

focused on snapping to real 3D edges and planar surfaces. 

Edge detection has traditionally been approached by using 

variants of the Hough Transform [8,9,18], or using other 3D 

methods if such data is available [7,15]. Planar surface 

detection has also used variants of the Hough Transform 

[5,8,18,28] and we follow this approach.  

Constraint Optimization Approaches 

An alternative to snapping is constraint optimization 

[2,14,22,30,31]. Here, rather than allowing a user to 

manipulate an object to snap to a set of constraints, objects 

and constraints are jointly optimized to automatically 

achieve an optimal configuration of the objects with respect 

to the constraints. FLARE [14] is a recent example of such 

a system, in which a rule-based framework is used to lay 

out AR content with respect to real world planar surfaces. 

One shortcoming of constraint optimization approaches is 

that opportunities for user input are limited as the system 

attempts to achieve optimal configurations automatically. 

Perhaps the ideal system would first suggest automatic 

placement of objects via constraint optimization and then 

allow users to precisely manipulate individual objects 

thereafter. SnapToReality focuses on this latter part.  

SNAP-TO-REALITY CONCEPT 

SnapToReality allows snapping virtual objects to physical 

ones using constraints extracted in real-time. This can be 

used to position, rotate, and scale AR virtual objects to be 

aligned with the physical world. Such snapping may be as 

simple as mimicking physical behaviors of real objects not 

being able to penetrate each other, or as sophisticated as 

snapping to lie at evenly spaced distances or to fit 

harmoniously with the environment color palette. 



Motivating Scenarios 

We envision alignments to real-world constraints to be one 

of the core interactive requirements of most AR scenarios 

that deal with 3D modeling or 3D positioning of virtual 

content. Imagine the AR task of setting up virtual toys in a 

child’s room. The user builds a train bridge from the bed, 

stretching virtual columns from the floor up to the height of 

the bed, and then installs tracks, lying on the bed and the 

bridge, stretching parallel to the wall. Or maybe a person 

would like to redecorate her room in AR, hanging virtual 

pictures on the wall, parallel to the existing artwork, walls, 

and the floor. Lastly, imagine being able to position a 

variety of 3D virtual content at different available space in 

the room (e.g., above the fireplace, on top of the kitchen 

cabinet, at the corner of the tabletop) as envisioned in 

Figure 2. These are just a few of the interaction scenarios 

made possible by SnapToReality. 

 

Figure 2: An artistic vision of an AR desktop scenario as 

depicted by Microsoft’s HoloLens1. Notice the precise 

positioning of AR apps in various locations in the kitchen—the 

“Recipes” app is centered over the cabinet doors; the sports 

game app over the fireplace; etc. 

EXTRACTING PHYSICAL CONSTRAINTS 

The core capability of our proof-of-concept SnapToReality 

alignment techniques is the real-time extraction of real 

world constraints—specifically linear edges and planar 

surfaces in the environment. These features are common in 

man-made scenes and many times represent useful semantic 

information such as floors, supporting horizontal surfaces, 

walls that separates spaces, and more.  

While there are potentially many other geometric and non-

geometric constraints that can be deduced from the 

environment, we believe that linear edges and surfaces 

represent a good general starting point in our exploration of 

SnapToReality techniques. The principles of our work may 

be extended to other types of constraints, which we leave as 

future work (cf. Semantic Snapping). We now describe the 

details of our extraction algorithms. 

Extracting 3D Linear Edges 

Typical man-made environments contain many linear 

features. Some of those edges distinguish objects from 

                                                           
1 https://www.microsoft.com/microsoft-hololens/en-us 

other objects behind them, others represent a change in an 

object’s surface normal, and some come from a visible 

change of the object’s color. We would like to recover a 

representation of such features in the scene so that virtual 

objects may be aligned to them. 

We use a Microsoft Kinect 2.0 camera to capture the scene 

continuously in several modalities. First the depth channel 

is used to detect depth edges. The noisy depth data is 

temporarily smoothed using an exponential filter: 

𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑒𝑝𝑡ℎ𝑖 = 𝛼 × 𝑑𝑒𝑝𝑡ℎ𝑖 + (1 − 𝛼) × 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑒𝑝𝑡ℎ𝑖−1 

where 𝛼 = 0.3 (found by trial and error) is a midpoint 

between good noise reduction (low 𝛼) and reaction to 

dynamic scenes (high 𝛼). Surface normals are computed at 

each point in the depth image [19] and are used to detect 

surface normal edges. Finally, the color channel is used to 

detect color edges. We now describe the pipeline, shown in 

Figure 3, for the edge extraction in each of these modalities. 

 

Figure 3: Edge extraction pipeline. 

The most dominant lines are extracted from each depth, 

normals component, or color image by the running the 

Hough Transform [9] on edge points detected by Canny 

edge detection [6]. A variant of RANSAC [11] is used to 

extract inlier edge points along the each Hough line and to 

generate a more accurate line equation. Finally each 2D line 

is divided into segments which have a density of edge 

points greater than some threshold (each line must have at 

least 35px in our implementation). Special care is given to 

depth edges, whose location may need to be shifted slightly 

to lie on the near occluding object that originated the edge. 

2D line segments, extracted from all modalities, are back 

projected to 3D space if there are enough valid depth values 

along their length. RANSAC is used to fit 3D linear 

segments through the 3D edge points. 

Special care is given to ensure the consistency of the 

recovered constraints over successive frames. We reduce 

temporal noise in positioning, orientation, and extent, by 

using a Kalman filter. Extracted segments are associated 

with existing edges based on proximity and similarity of 

their orientation. In addition, we require edges to have been 

seen in at least five frames prior to allowing the edge to be 

used for snapping; this minimizes the chance of the user 

relying on false positives from the edge extraction. Once 

detected, constraints will be maintained and updated unless 

they are not seen for one second (or currently being used 

for snapping), at which point they are removed; this helps 

overcome short periods of collusion of constraints that may 

occur as a result of the user’s motion or the scene object 

moving. Our edge extraction algorithm runs around 15 Hz 

in our prototype implementation. See Figure 4 and the 

supplementary video for typical results.  

https://www.microsoft.com/microsoft-hololens/en-us


 

Figure 4: An instance of Kalman filtered edges; please see the 

supplemental video for more typical results. 

Extracting Planar Surfaces 

Planar surfaces are detected in a fashion similar to that of 

recent plane and scene analysis methods [28]. Depth image 

normals vote for a plane equation parameterized by its 

azimuth, elevation, and distance from the origin. A Hough 

transform on 3D depth points is used to detect major plane 

equations in the scene. 

Next, a greedy strategy is used to associate scene points 

with those planes. Unassigned 3D points that lie in the 

vicinity of each candidate plane (up to ~10 cm), with 

compatible normal directions, are associated with the plane 

(~10° angle, and may increase to 20° as depth noise grows 

for farther away planes; see Figure 5). This surface 

extraction algorithm runs around 4 Hz on our prototype 

implementation. 

 

Figure 5: Plane extraction stages: IR image (top left), depth 

image (top right), shaded mesh indicating surface normals 

(bottom left), recovered major planes (bottom right). 

SNAP-TO-REALITY TECHNIQUES 

We now discuss how the extracted constraints are used in 

precise alignment and snapping. In our prototype, a virtual 

object snaps to real edges and planar surfaces that are found 

to be compatible with the object’s own edges and planes.  

The object’s own edges and planes are referred to as 

“internal constraints” since they originate from the virtual 

object, while the physical constraints are external to the 

object. Our approach is designed to support the interactive 

selection of compatible physical constraints. For example, 

an AR designer may decide that a virtual toy soldier’s 

internal constraints should simply be its bounding box, thus 

allowing snapping to physical planes and edges.  

We now describe the two SnapToReality alignment 

techniques implemented in our prototype—edge snapping 

and planar surface snapping. 

Edge & Planar Surface Snapping 

Our edge and plane snapping algorithm is summarized in 

Algorithm 1 and described as follows. For each internal 

edge (plane) constraint, we search through all physical edge 

(plane) constraints for compatible edges (planes). 

An edge (plane) is compatible if the distance between the 

internal edge midpoint (plane centroid) and its projection 

onto the physical edge (plane) is less than some threshold 

(e.g., 20 cm), and the internal and physical edges are 

approximately parallel (e.g., within 20° for edges and 60° 

for planes). We keep the physical edge (plane) with the 

lowest cost, where the cost is a linear combination of (a) the 

distance between the internal edge midpoint (plane 

centroid) and its projection onto the physical edge (plane) 

and (b) the distance between the internal edge midpoint 

(plane centroid) and the physical edge midpoint (plane 

Algorithm 1 

SnapToRealConstraint: 

  BestRealConstraint  null 

  MinCost  ∞ 

  for each Internal {Edge, Planar Surface} 

Constraint I: 

    for each Real {Edge, Planar Surface} 

Constraint R: 

      if IsCompatible(I, R): 

        cost  Cost(I, R) 

        if cost < MinCost: 

          BestRealConstraint  R 

          MinCost  cost 

        endif 

      endif 

    endfor 

  endfor 

  return BestRealConstraint 

 

D  {edge, plane} distance threshold 

A  {edge, normal} angle threshold 

IsCompatible(I, R): 

  if distance(centroid of I, R) > D 

    return false 

  if angle_between(I, R) > A 

    return false 

  return true 

 

Cost(I, R): 

  c  𝛼 ×  distance(centroid of I, R) 
  c  c + 𝛽 ×  distance(centroid of I, centroid 
of R) 

  if R was previously BestRealConstraint 

    c  𝛾 × c 
  endif 

  return c 



centroid); in our experiments, 𝛼 = 1, 𝛽 = 1. The second 

component of this linear combination (b) aids in favoring 

edges (planes) that are nearby. For temporal consistency, 

previously selected edges and planes are favored (𝛾 = 0.1). 

If a compatible physical edge (plane) is found, we rotate 

and translate the AR virtual content so that its 

corresponding internal edge (plane) is parallel to and 

overlapping the physical edge (plane).  

Visualization of Compatible Physical Constraints 

In order to not distract users, we only visualize compatible 

edges and planes when snapping to them. Compatible edges 

are visualized via a green cylinder and a dotted red cylinder 

edge extending outward from the edge (see Figure 6, left). 

Compatible planar surfaces are visualized via a fading 

circular region on the surface’s centroid and a red line 

connecting the snapping virtual content to the surface’s 

centroid (see Figure 6). This red line visualization is 

important for small field of view AR displays, as the user 

may otherwise not know what the virtual content is 

snapping to (cf. User’s Limited Field of View). 

 

Figure 6: Visualizations for compatible physical edges (left) 

and planar surfaces (right). 

PROTOTYPE SNAP-TO-REALITY IMPLEMENTATION 

In our AR system, the user is wearing an optical see-

through head-mounted near-eye display (Lumus DK-322 

1280x720) calibrated with a method similar to the single 

point active alignment method [29]. Figure 7 shows the 

view through the Lumus display. Our glasses are equipped 

with 6 retro-reflective spheres that are tracked using a 

ceiling mounted, motion capture system, Natural Point’s 

OptiTrack Flex 3 system3 (12 cameras). Our glasses are 

also augmented with a 9 degrees-of-freedom inertial 

measurement unit (SparkFun’s Razor SEN-107364) which 

provides a smoother estimate of the unit’s orientation. The 

orientation data from the IMU (~160Hz) is integrated with 

the orientation and position data from the OptiTrack system 

(~100Hz) for a relatively smooth, low latency operation. 

We render at 60Hz corresponding to the refresh rate of our 

glasses. Figure 8 shows our hardware components. 

                                                           
2 http://www.lumus-optical.com/  
3 http://www.optitrack.com/products/flex-3/  
4 https://www.sparkfun.com/products/10736 

We used a Microsoft Kinect 2.0 sensor to obtain 

RGB+Depth images in real-time for extracting the real 

world 3D edges and planar surfaces. Virtual content was 

created using the Unity 5 game engine and was shown to 

the user via the Lumus glasses. In our current prototype 

configuration, the Kinect camera is mounted above the user 

observing the physical scene (see Figure 8).  

 

Figure 7: View through Lumus display (left); note that the 

virtual content does not appear as bright to the human eye. 

Screenshot of Unity player view (right). The red dot indicates 

the user’s gaze direction. 

 

Figure 8: Hardware used in our prototype. 

User input was obtained through a Kensington Wireless 

Presenter remote controller. All processing was done on a 

single PC with an Intel Xeon E5-1620 processor with 16 

GB of RAM and an NVIDIA GeForce GTX 980 GPU.  

To correctly render the occlusion of virtual objects by real 

objects, the depth image acquired by Kinect camera is 

rendered as a black (invisible in the glasses) mesh. AR 

virtual objects are rendered offset by about 5cm towards the 

head-worn glasses to help overcome any noise in the depth 

image and system calibration. 

Demo Applications 

To showcase our SnapToReality alignment techniques, we 

developed two prototype AR scenarios—content placement 

and content creation. In each, the user interacts with a 

virtual object in the following way: A ray is cast from the 

center of the tracked glasses, and its point of intersection 

with the scene geometry is regarded as the object or cursor 

position. The user can then interact with objects that 

intersect the ray using the buttons on the remote controller. 

We looked at other interaction methods such as using a ray 

cast from the handheld remote, and following preliminary 

usability evaluations we settled on head gaze-based 

interaction, which is simpler as display & interaction share 

http://www.lumus-optical.com/
http://www.optitrack.com/products/flex-3/
https://www.sparkfun.com/products/10736


the same location. We leave finding the most ergonomic 

interaction method for snapping in AR as future work. 

AR Content Placement 

A virtual AR app window is positioned in space and is 

highlighted whenever the user gazes at it (Figure 7 shows 

an illustration of this). The user can “pick up” the 

highlighted window by pressing a button on the remote 

controller. The window can then be positioned, oriented, 

and scaled by the user’s head gaze direction, until the user 

drops the object by pressing the same button again. While 

picked up, the AR app window is positioned at the 

intersection point of the user’s head direction and the 

geometry, and oriented towards the user’s head gaze. To 

scale an app window, the user drops the window in place, 

and then gazes at a corner of the window. Pressing a button 

toggles scaling mode, resizing from that corner while the 

opposite corner is fixed. Scale snapping works by finding 

the lowest cost compatible external constraint for each 

internal constraint used in scaling (using Algorithm 1). 

AR Content Creation 

This demo application is inspired by SketchUp’s line, 

rectangle, and push/pull drawing tools5. As the user gazes at 

a planar surface, the detected surface is visualized by a 

fuzzy circle and a surface normal (see Figure 9, top left). 

Pressing the remote’s right button begins drawing a 3D 

edge on the plane starting at the intersection point of the 

user’s gaze direction and the plane. The edge’s end point is 

controlled by the user’s gaze direction (see Figure 9, top 

right) and can snap to nearby physical edges. Furthermore, 

the edge can snap to be made parallel or perpendicular to 

nearby edges. Pressing the right button a second time fixes 

the edge’s end point and starts extending a rectangular area 

away from the fixed edge. Again, the user’s current gaze 

direction determines the size of the rectangular plane, and a 

third right button press fixes the plane (see Figure 9, bottom 

left). Now a 3D box can be extruded upwards away from 

the plane. The height of the 3D box is determined by 

finding the closest intersection between the user’s head 

direction and the ray in direction of the 3D box extrusion 

starting from the 3D box’s center. This height can snap to 

compatible planar surfaces and also to nearby edge 

endpoints (see Figure 6, right). A final right button press 

finishes the box creation process (see Figure 9, bottom 

right). In each step of the process, the left button of the 

remote performs an ‘undo’ operation. Figure 9 illustrates 

this entire process. 

Users can optionally scale a face of a completed box by 

directing their gaze toward the face and pressing the right 

button. In a similar fashion, the height of the 3D prism with 

respect to that face is determined by the closest intersection 

between the user’s gaze direction and the ray in direction of 

the extrusion, starting from the 3D box’s center. 

                                                           
5 http://www.sketchup.com/learn 

Prototype Limitations 

One limitation of our prototype is that the Kinect camera is 

statically mounted above the user. However, we envision 

that with a glasses mounted (or user worn) depth camera, 

similar interactions would be possible. 

Another limitation is that the accuracy of the depth map 

from the Kinect camera is a source of significant noise. 

Using a more robust method, such as Kinect Fusion [25] or 

DynamicFusion [24], could be explored in the future.  

 

Figure 9: Flow of AR content creation. Top left: The user’s 

head direction defines a cursor on a physical surface. Top 

right: Clicking a button starts drawing a line on the surface. 

Bottom left: Clicking again extrudes the drawn line to a 

rectangle. Bottom right: Extruding the rectangle to a 3D box.  

DESIGN CONSIDERATIONS FOR SNAP-TO-REALITY 

In this section, we discuss practical design considerations, 

limitations, and insights gained while developing 

SnapToReality techniques. Because these observations are 

not limited to our current prototype, we hope that this 

discussion will help developers and researchers extend and 

apply the SnapToReality concept. We note that in addition 

to what we discuss here, traditional snapping design issues 

(not specific to SnapToReality) are also important when 

designing any snapping system (e.g., snapping hierarchies, 

the amount of constraints to show to the user, etc.). 

The main considerations and challenges in enabling 

SnapToReality systems are: the limited field of view, noise 

in constraint extraction, changing the view in AR, issues 

concerning dynamic scenes, and visualization of physical 

constraints. We now discuss each in detail. 

Limited Field of View 

User’s Limited Field of View 

Today’s AR glasses typically have a very limited field of 

view (e.g., the Lumus glasses have around only 40° 

diagonal). Thus, many constraints that an object may snap 

to are out of the user’s field of view. In addition, even if AR 

glasses had an unlimited field of view, a particular 

constraint could still be behind the user, out of sight. There 

are at least two ways to address this overall problem. 

http://www.sketchup.com/learn


First, the system can visualize available constraints that are 

outside the field of view. This is the approach taken in our 

prototype. When virtual content begins to snap to a 

compatible constraint, we visualize those constraints in case 

they are out of sight: for edges, by extending them with red 

dotted edges; for planes, by drawing a red edge from the 

virtual content to the plane’s centroid (see Figure 6). 

Another possible way to overcome this problem is to let the 

user actively preselect a constraint by bringing it into the 

field of view and then returning the view to manipulate the 

virtual content. For example, the user may gaze directly at a 

constraint and then press a button to select it. A positive 

side-effect of this approach is that the user’s current field of 

view can aid in the physical constraints extraction process. 

For example, the system may simply follow the user’s gaze 

to limit its extraction there.  

Camera’s Limited Field of View 

The camera’s limited field of view also means that 

extracting many physical constraints is challenging. If the 

user wants to snap virtual content to many different 

constraints, the camera must first be able to see all those 

constraints. Thus, unless snapping is limited to the user’s 

field of view, a global analysis of the scene is required. 

Noise in Constraint Extraction 

Compared to snapping to virtual constraints, the complexity 

of real world geometry, texture, and sensor noise make it 

more likely to have a very dense and noisy set of potential 

constraints. As with any snapping technique, high density 

of constraints will negatively affect the utility and usability 

of snapping. 

Active selection of constraints by the user is again one way 

to overcome this problem. By putting the user “in the loop” 

of the constraint extraction process, the effects of sensor 

noise can be diminished. The user can either select the 

constraint directly or explicitly discard it.  

We can also substantially minimize the effects of sensor 

noise by limiting the types of compatible constraints we 

extract. This can be achieved by adjusting the virtual 

content’s snapping abilities (called “internal constraints” in 

our prototype). For example, a cube has 6 planar surfaces; 

each of the cube’s planar surfaces may only snap to 

physical planar surfaces, not corners or edges. Therefore, 

under this assumption, we can limit the types of physical 

constraints to extract based on the virtual content that we 

are manipulating. This is the approach we used in our 

prototype and helps mitigate problems with sensor noise. 

Changing the View in AR 

In AR, users see virtual objects interacting with real objects 

as if they were life size. Users may move themselves closer 

to the real and virtual objects to inspect them more closely, 

or move to encourage the extraction of a physical 

constraint. However, users are limited by the physics of the 

real world in how they may change their view. This limits 

the ability to see more detail, perform more precise 

manipulation, zoom out to see an overview, or look behind 

objects that are occluded. In addition, physically moving 

around the environment may introduce user fatigue. Future 

SnapToReality systems need to account for these 

considerations, including snapping at far distances and 

helping the user know about available snapping constraints 

outside the field of view (cf. User’s Limited Field of View). 

Interacting with Dynamic Constraints 

When constraints are obtained in real-time from the 

dynamic physical world, new types of snapping interaction 

are possible. Physical constraints can be altered on the fly 

to enable virtual content to be translated, rotated, or scaled 

more appropriately. For example, virtual content can be 

scaled to different physical extents by simply moving 

physical objects in the scene. This interaction of actively 

manipulating reality to alter virtual content in precise ways 

via snapping is an area that needs more exploration. 

One interesting question that arises with dynamic 

constraints is how to deal with a constraint that is currently 

being used, but then suddenly disappears in the real world 

during the interaction (e.g., a real object moves away). In 

our prototype, we chose to simply keep the constraint alive 

until the end of the interaction. However, the constraint 

does not move with the real object as it moves away. Such 

capability may be desired and we leave it as future work. 

Visualizing Physical Constraints in AR 

Choosing how to visualize extracted physical constraints is 

another important matter of design. Should the system 

visualize all available constraints, none, or only those 

currently being snapping to by virtual content? 

In some simple cases it may be obvious which physical 

object a virtual object is snapping to without rendering the 

available constraints. In others, it may be necessary to 

render all available constraints. Visualizations are 

particularly important when snapping to physical 

constraints whose source is far away or outside the user’s 

field of view (e.g., snapping virtual content to be aligned 

with the top of a table that is behind the user). In this case, 

clear guides should let the user be aware of the source. This 

especially becomes an issue when using AR displays with 

small fields of view as is common with most of today’s AR 

display hardware. Figure 6 shows how our prototype 

visualizes edge constraints and planar surface constraints, 

drawing inspiration from common snapping applications 

using dotted linear edges to represent linear constraints. 

USER EVALUATIONS 

We conducted three preliminary evaluations of various 

aspects of our prototype. 

Evaluation of Constraint Extraction Algorithms 

To evaluate our constraint extraction algorithms, we 

recorded eleven scenes showing a large range of physical 

environments. We asked four participants (all male, 24 to 

33 years old, avg. 28 years old) to indicate up to ten edges 

and ten surfaces they would envision aligning AR content 



to for each of the scenes. Participants indicated this by 

drawing on the color image of each scene. 

We compared the edges and planar surfaces drawn by users 

with those extracted from our algorithm by aggregating the 

responses of the four participants and visually comparing 

them to the extracted constraints (see Figure 10 and the 

supplementary video). Our algorithm was able to detect 

51.95% of user drawn edges (min. 30.43%, max 77.78% 

across all scenes) and 60% of user drawn planar surfaces 

(min. 41.67%, max 81.82% across all scenes). We note that 

for each scene, we did not modify any of the edge or plane 

detection algorithm parameters. Had we done so for each 

scene, we believe the percentage of detected user drawn 

constraints would only increase. 

 

Figure 10: Living room scene overlaid with user drawn edges 

(top left) and planar surfaces (bottom left) compared to the 

edges and planar surfaces detected by our algorithm (top right 

and bottom right, respectively). 

Evaluation of SnapToReality Techniques 

We invited 8 different participants (all male, 23 to 49 years 

old, avg. 30 years old) to evaluate our SnapToReality 

techniques. Participants received $10 for their participation 

and each session lasted approximately one hour. The 

physical scene used for interaction was made up of a table, 

several boxes, a wooden board, a white panel folding 

screen, and a wall in the background (see Figure 11). 

The participants filled out pre-study and post-study 

questionnaires and separately evaluated both AR Content 

Placement and AR Content Creation demos. They were 

given a few minutes to familiarize themselves with the 

interface for each demo. 

Evaluation of AR Content Placement 

To evaluate the potential benefits of snapping, we asked the 

participants to place and size a box representing a mock AR 

application window at various locations around the room. 

After verbally confirming that the person understood the 

interface, they were given a set of five training trials. Next, 

each participant completed twenty trials, each composed of 

a positioning & orienting stage followed by a resizing stage. 

The position, orientation, and size for each trial were 

chosen beforehand to align with various physical objects, 

and the order of the trials was chosen randomly. Ten trials 

were completed with snapping and ten trials without 

snapping. The order of snapping and no-snapping 

conditions was counterbalanced over the eight participants. 

Interaction in the no-snapping condition was identical to 

that of the snapping condition except that snapping was 

disabled (physical constraints were extracted but not used). 

 

Figure 11: View from the Kinect camera for the user 

evaluation of SnapToReality techniques. 

In the positioning and orienting stage, participants were 

shown an AR app window placed randomly near a target 

window, which begins invisible. They then picked up the 

window by gazing at it and pressing the top button on the 

wireless remote. At this point, a timer began and the target 

window location was now shown as a white transparent 

box. Participants were asked to place the AR app window at 

the target location as fast as possible, by pressing the top 

button again. If the window was placed too far away from 

the target (distance between the center points of the 

windows greater than 10 cm) or not close enough in 

orientation (angle between the surface normals of the 

windows greater than 10°), text appeared notifying the user 

that the window is not close enough to the target window. 

Participants then had to pick up the window and try to place 

it correctly again. Once the window was positioned and 

oriented closely enough to the target, the timer stopped and 

the user saw the text, “Correct!” 

Next, during the resizing stage, a target transparent box 

appeared, showing the desired dimensions of the window 

and a second timer began. Participants then had to scale the 

window to match the target (measured in terms of both 

position and scale, within 10 cm). To make this second 

stage similar between snapping and no-snapping conditions, 

we adjusted the starting position and orientation of the 

window to be the same for all trials. 

In all trials, a one minute timeout was used and treated as 

outliers in the data, removed before analysis. With snapping 

enabled, participants took an average of 4.45s (median 

2.74s, std. dev. 5.34) to position and orient AR app 



windows correctly. With snapping disabled, participants 

took an average of 11.36s (median 9.89s, std. dev. 6.75). A 

paired t-test indicated a statistical significance (p-value << 

0.001). For scaling, participants took an average of 8.18s 

(median 7.89s, std. dev. 3.97) with snapping and 8.71s 

(7.43s, std. dev. 5.12) without snapping. A paired t-test did 

not indicate any statistical significance. 

In the post-study questionnaire, participants were asked to 

compare their experience with and without snapping. Here 

we list some of their feedback: 

“With snapping, I trusted the system to take me there and it 

allowed me to be a bit careless and [speed] things up. I 

would just go to the nearest corner and trust the system to 

pick the best spot up for me.” 

“Snapping objects […] was a more subtle interaction. 

Small head movements were enough to get the job done. 

Whereas without snaps I had to use my whole body to get 

the object where I wanted.” 

Evaluation of AR Content Creation 

In the second part of the study, we sought to assess 

qualitatively how well participants can create simple virtual 

objects in AR. After explaining the interface, we allowed 

participants to play with this mode freely as long they 

wished. For this task, snapping was always enabled.  

Participants created various structures of 3D geometry 

using the simple prism creation tool. Figure 12 shows an 

example of such a structure created by a participant. 

Participants were made aware of the ability to place virtual 

content aligned to dynamic elements in the scene, such as 

boxes that had been moved into place, and a measuring tape 

used to extrude prisms to certain heights. Please see the 

supplemental video for more results.  

 

Figure 12: Example of virtual content created by a participant 

using AR Content Creation. Here, physical walls (planar 

surfaces) were used as constraints to create “virtual shelves.” 

In the post-study questionnaire, participants were asked to 

describe their approach of creating 3D boxes with snapping. 

Here we list some of their feedback: 

“I started by positioning the cursor near the edge of 

another object, like the table or box, and then moved to 

another edge to set the area. Then setting the volume was 

fairly easy once the other two were in place.” 

“I started by choosing the ‘right plane’. I moved until I saw 

the angle of the plane I wanted. Then I drew one face on 

that plane, not caring too much about the snapping. 

Finally, I adjusted the height, mostly trying to match the 

height of the surrounding objects using snapping. I resized 

it sometimes to match different heights.” 

Additional Questionnaire Results 

In the post-study questionnaire, participants were asked to 

rate several statements using a Likert scale. The statements 

were as follows: “With{out} snapping, I can easily {place, 

orient, resize} objects {where, how} I want,” “While 

interacting with snapping {enabled, disabled}, I felt 

fatigued,” and “Snapping in augmented reality is useful.” 

Responses are shown in Figure 13. The Wilcoxon signed-

rank test found that for the placing, orienting, and feeling 

fatigued statements, participants rated snapping 

significantly better than without snapping at a 0.05 level of 

significance. As with the timing results, no statistical 

significance was found comparing resizing with and 

without snapping. Finally, all participants agreed or 

strongly agreed that snapping in AR is useful. 

Figure 13: Chart visualizing post-study questionnaire 

responses (best viewed in color). 

We also asked participants several open ended questions. 

Some representative quotes with their corresponding 

questions are as follows:  

Q: When did you find snapping most helpful? Least helpful? 

“Snapping was most helpful when moving something 

quickly across the scene to a general target area. 

Movements requiring more finesse or accuracy on behalf of 
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the user are more frustrating when snaps suddenly make 

drastic shift.” 

“When snapping worked it was very helpful because I 

didn't have to move very much to achieve success…” 

(Referring to the Likert scale statements): Please briefly 
describe why you chose the ratings in the previous question. 

“Placing objects is quite easy even without snapping. 

Certainly snapping helped a bit, just did not affect the 

overall experience too much. Orienting and scaling things, 

on the other hand, when done imprecisely, can often be 

quite obvious and seem bizarre, so snapping helps a lot 

more in these cases. […] snapping reduces the time needed, 

hence less fatigue.” 

“Overall snapping is a useful feature. However, just as with 

other design programs like Photoshop, it can become 

obtrusive in certain situations. Easily being able to toggle 

between snapping and non-snapping behavior would be 

ideal. In this specific study, it seemed like when the tracking 

found the surfaces correctly and the world locking was 

working that snapping was fairly helpful. When either of 

those two breakdown, snapping becomes more of a hassle.” 

Q: What snapping features would you like to have for 
augmented reality? 

“It would be great if I could put my hand or finger in the 

field of view and point where I want the object to snap to, 

or where I want the edge to scale to. Manual 

pointing/direction would be nice. I envision it as sort of a 

physical mouse pointer for the virtual objects.” 

“Snap to planes and edges of various virtual and physical 

objects. It'd be nice to also be able to filter what you snap 

to (kind of like AutoCAD's […]) at any given time.” 

Discussion 

In general, we observed that participants physically walked 

around the room much more without snapping than with 

snapping. This may suggest that 3D snapping is even more 

important in AR than in traditional 2D or 3D desktop 

environments where all objects are virtual. In purely virtual 

environments, “magical” navigation techniques (e.g., flying 

and teleporting) enable quick and easy viewpoint 

positioning for easier interaction with virtual content. In 

AR, however, users are limited to physical navigation and 

thus are not necessarily able to quickly and easily assume 

different viewpoints. 

The lack of a statistically significant difference in scaling 

times in our evaluation of AR Content Placement is most 

likely due to the fact that only two degrees of freedom were 

being manipulated, and that we did not allow snapping to 

position content arbitrarily within the snapping threshold 

(by deactivating snapping or by automatic methods [1,10]). 

Adding such features and also comparing scaling in three 

dimensions may change results for future experiments. 

In addition to comments that may apply to any snapping 

system, participants’ open-ended responses also verified 

certain unique points about snapping in AR. For example, 

one participant noted needing to move their whole body to 

achieve object positioning when not using snapping; while 

with snapping, he only needed small head movements (see 

comment in Evaluation of AR Content Placement). 

FUTURE WORK 

Selecting Constraints via Other Modalities 

We imagine many other ways in which users can actively 

select constraints. For example, users should be able to 

physically touch a constraint to select it. Natural language 

processing along with computer vision scene understanding 

is also an interesting avenue for future work (e.g., “place 

the app parallel to and to the right of the door”).  

Using Snapping for Physical Objects 

An interesting idea that has previously been proposed by 

Forster and Tozzi [12], but still remains an open area of 

research is the use of snapping in AR to align physical 

objects to physical constraints. A noted application for this 

would be interior design. 

Semantic Snapping 

Usually when we refer to snapping, we imply a geometric 

relationship of snapping. This may include geometric 

proximity in translation or rotation; objects being 

perpendicular or parallel to one another; aligning to 

dominant directions/axes (e.g., gravity); aligning to mid-

points; etc. However, using semantic relationships is 

another possible way to achieve snapping. For example, an 

AR app related to cooking may favor snapping to relevant 

physical areas of a kitchen (cf. Figure 2). This, however, 

would require a detailed semantic understanding of the 

physical scene. In our SnapToReality prototype, we chose 

to focus its scope toward geometric relationships.  

CONCLUSION 

SnapToReality alignment techniques allow users to 

position, rotate, and scale virtual content to dynamic, real 

world scenes. Our prototype system extracts physical linear 

edges and planar surfaces in real-time and allows users to 

manipulate and create AR content precisely aligned to the 

real world. We contribute a set of design considerations and 

insights for future designers of AR snapping systems. In 

particular, we note the issues of a small field of view in AR, 

sensor noise in the constraint extraction process, changing 

the view in AR being limited to physical movements (thus 

making SnapToReality an important interaction paradigm 

to quickly achieve precise positioning), interacting with 

dynamic constraints, and considerations on how to visualize 

physical constraints. Finally, our user evaluations show that 

aligning virtual content to physical constraints via our 

prototype system is significantly faster with snapping than 

without snapping. Snapping in AR was also shown to 

enable novel forms of AR content creation interaction. 
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