
SnapToReality:
Aligning Augmented Reality to the Real World

Benjamin Nuernberger1,2 Eyal Ofek1 Hrvoje Benko1 Andy Wilson1
1Microsoft Research

Redmond, WA, USA

{eyalofek, benko, awilson}@microsoft.com

2University of California, Santa Barbara

Santa Barbara, CA, USA

bnuernberger@cs.ucsb.edu

(a) (b) (c) (d)

Figure 1: SnapToReality allows users to easily position, orient, and scale AR virtual content with respect to real world constraints.

Our prototype (a) extracts real world planar surfaces and edges as constraints so that users can easily align virtual content to the

real world via snapping (b, c). This form of interaction enables AR content creation seamlessly integrated into the real world (d).

ABSTRACT

Augmented Reality (AR) applications may require the

precise alignment of virtual objects to the real world. We

propose automatic alignment of virtual objects to physical

constraints calculated from the real world in real time

(“snapping to reality”). We demonstrate SnapToReality

alignment techniques that allow users to position, rotate,

and scale virtual content to dynamic, real world scenes. Our

proof-of-concept prototype extracts 3D edge and planar

surface constraints. We furthermore discuss the unique

design challenges of snapping in AR, including the user’s

limited field of view, noise in constraint extraction, issues

with changing the view in AR, visualizing constraints, and

more. We also report the results of a user study evaluating

SnapToReality, confirming that aligning objects to the real

world is significantly faster when assisted by snapping to

dynamically extracted constraints. Perhaps more

importantly, we also found that snapping in AR enables a

fresh and expressive form of AR content creation.

Author Keywords

Interaction techniques; snapping; augmented reality; 3D

user interaction; user studies.

ACM Classification Keywords

H.5.1. Information interfaces and presentation (e.g., HCI):

Multimedia Information Systems—Artificial, augmented,

and virtual realities.

INTRODUCTION
In the real world, the positioning of objects is often guided

by physical constraints (e.g., stacking objects on the table,

or aligning a chair against the wall) or design constraints

(e.g., aligning collinear objects, or making objects be of

similar dimensions).

Performing similar actions in Augmented Reality (AR) may

be difficult as virtual objects do not necessarily follow the

same rules of physics. Meanwhile, positioning virtual

content in space around a user is an important task in many

AR applications, such as industrial design, home

redecoration, games, etc. While it is possible to do so

without regard to the real world surrounding the user, many

AR experiences tend to require a precise alignment between

virtual objects and the real environment (e.g., Figure 2).

In traditional desktop computing, when precise alignment is

desired, many sophisticated alignment tools are often

available, such as dynamic guides and snapping behaviors

[4]. Snapping is a common technique that helps users

precisely align content with respect to certain constraints. A

typical approach is to automatically align an object with a

constraint whenever the user moves the object near to that

constraint. For example, Microsoft PowerPoint uses “Smart

Guides” to snap content so that it is parallel to other

content, directly touching other content, etc. Snapping is

also readily used in many 3D modeling programs, such as

SketchUp and AutoCAD, enabling easy interaction that

would otherwise take a long time and/or be very frustrating.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

CHI'16, May 07 - 12, 2016, San Jose, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-3362-7/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2858036.2858250

We introduce SnapToReality, the concept of snapping

virtual content to physical constraints, calculated from the

real world in real time. In addition to supporting traditional

alignment tasks in AR, SnapToReality enables new forms

of interaction due to the world’s dynamic nature: A door

may be opened, a chair may be moved, and objects may be

added or taken away, creating new opportunities for

alignment. Furthermore, users may stack objects to generate

a new snapping constraint, or even use physical tools (e.g.,

a measuring tape) to guide the formation of virtual objects.

Snapping to physical constraints is inherently more difficult

than snapping to virtual constraints because the physical

constraints are not known by the system a priori and

therefore must be extracted on-the-fly. If such constraints

are extracted perfectly, the snapping procedure may be

considered identical to snapping to virtual constraints.

However, due to sensor noise, environment complexities,

and AR hardware limitations, it is easily possible to extract

the wrong constraints, which may cause an overall negative

performance impact. To our awareness, our prototype is the

first to demonstrate 3D physical constraint extraction that

enhances performance for 3D snapping in AR.

Our main contributions in this paper are as follows:

 A proof-of-concept prototype that implements two

SnapToReality alignment techniques—snapping to real

world edges and planar surfaces in real-time, thus

enabling new expressive forms of interaction by utilizing

dynamic real world scene content. Special care is taken to

visualize the constraints in the real environment and

outside the field of view.

 A detailed analysis of the important design considerations

for SnapToReality alignment techniques, including the

user’s limited field of view, noise in constraint extraction,

issues with changing the view in AR, issues concerning

dynamic scenes, and visualization of physical constraints.

 A user evaluation demonstrating (a) that positioning and

rotating AR objects to be aligned with a real world target

is faster with snapping than without snapping; and (b)

that snapping enables expressive forms of interaction for

creating AR content aligned to the dynamic real world.

RELATED WORK

Snapping to Virtual Constraints

Snapping virtual content to virtual constraints has been

investigated in many ways. Eric Bier’s work on snap-

dragging [3,4] was one of the first ground breaking works

in snapping. In its 3D version, snap-dragging enables the

precise placement of a 3D cursor (the “snap-dragging

skitter”), which snaps to points, curves, and surfaces

whenever it is close to existing geometry. Snapping

between objects using simple affine transformations was

also available, thus making precise, relative 3D modeling

easy to achieve. The AR content creation mode in our

prototype draws inspiration from the snap-dragging skitter.

Over the years, snapping has been improved in various

ways [1,10,13,17,27]. Today, snapping is also used in many

popular desktop and web applications, such as Microsoft

PowerPoint, Google Slides, SketchUp, AutoCAD, etc.

However, most, if not all, of these applications only apply

snapping to virtual constraints. Snapping to real physical

and dynamically changing constraints is what makes

SnapToReality stand apart from previous works.

Snapping to Real Constraints

Important early works on extracting real-world constraints

from 2D images for snapping were Gleicher’s image-

snapping [16] and Mortensen & Barrett’s intelligent

scissors [23]. More recently, Lee et al. [20,21] applied the

idea of image-snapping to helping users annotate objects in

2D images in augmented reality. Nóbrega and Correia [26]

also applied the idea of augmenting 2D images by

extracting vanishing points and coarse depth from pairs of

images. In SnapToReality, we take the idea of extracting

real constraints a step further, going from 2D to 3D.

To the best of our knowledge, no previous work exists on

extracting 3D physical constraints in real-time specifically

for snapping in augmented reality. In our prototype, we

focused on snapping to real 3D edges and planar surfaces.

Edge detection has traditionally been approached by using

variants of the Hough Transform [8,9,18], or using other 3D

methods if such data is available [7,15]. Planar surface

detection has also used variants of the Hough Transform

[5,8,18,28] and we follow this approach.

Constraint Optimization Approaches

An alternative to snapping is constraint optimization

[2,14,22,30,31]. Here, rather than allowing a user to

manipulate an object to snap to a set of constraints, objects

and constraints are jointly optimized to automatically

achieve an optimal configuration of the objects with respect

to the constraints. FLARE [14] is a recent example of such

a system, in which a rule-based framework is used to lay

out AR content with respect to real world planar surfaces.

One shortcoming of constraint optimization approaches is

that opportunities for user input are limited as the system

attempts to achieve optimal configurations automatically.

Perhaps the ideal system would first suggest automatic

placement of objects via constraint optimization and then

allow users to precisely manipulate individual objects

thereafter. SnapToReality focuses on this latter part.

SNAP-TO-REALITY CONCEPT

SnapToReality allows snapping virtual objects to physical

ones using constraints extracted in real-time. This can be

used to position, rotate, and scale AR virtual objects to be

aligned with the physical world. Such snapping may be as

simple as mimicking physical behaviors of real objects not

being able to penetrate each other, or as sophisticated as

snapping to lie at evenly spaced distances or to fit

harmoniously with the environment color palette.

Motivating Scenarios

We envision alignments to real-world constraints to be one

of the core interactive requirements of most AR scenarios

that deal with 3D modeling or 3D positioning of virtual

content. Imagine the AR task of setting up virtual toys in a

child’s room. The user builds a train bridge from the bed,

stretching virtual columns from the floor up to the height of

the bed, and then installs tracks, lying on the bed and the

bridge, stretching parallel to the wall. Or maybe a person

would like to redecorate her room in AR, hanging virtual

pictures on the wall, parallel to the existing artwork, walls,

and the floor. Lastly, imagine being able to position a

variety of 3D virtual content at different available space in

the room (e.g., above the fireplace, on top of the kitchen

cabinet, at the corner of the tabletop) as envisioned in

Figure 2. These are just a few of the interaction scenarios

made possible by SnapToReality.

Figure 2: An artistic vision of an AR desktop scenario as

depicted by Microsoft’s HoloLens1. Notice the precise

positioning of AR apps in various locations in the kitchen—the

“Recipes” app is centered over the cabinet doors; the sports

game app over the fireplace; etc.

EXTRACTING PHYSICAL CONSTRAINTS

The core capability of our proof-of-concept SnapToReality

alignment techniques is the real-time extraction of real

world constraints—specifically linear edges and planar

surfaces in the environment. These features are common in

man-made scenes and many times represent useful semantic

information such as floors, supporting horizontal surfaces,

walls that separates spaces, and more.

While there are potentially many other geometric and non-

geometric constraints that can be deduced from the

environment, we believe that linear edges and surfaces

represent a good general starting point in our exploration of

SnapToReality techniques. The principles of our work may

be extended to other types of constraints, which we leave as

future work (cf. Semantic Snapping). We now describe the

details of our extraction algorithms.

Extracting 3D Linear Edges

Typical man-made environments contain many linear

features. Some of those edges distinguish objects from

1 https://www.microsoft.com/microsoft-hololens/en-us

other objects behind them, others represent a change in an

object’s surface normal, and some come from a visible

change of the object’s color. We would like to recover a

representation of such features in the scene so that virtual

objects may be aligned to them.

We use a Microsoft Kinect 2.0 camera to capture the scene

continuously in several modalities. First the depth channel

is used to detect depth edges. The noisy depth data is

temporarily smoothed using an exponential filter:

𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑒𝑝𝑡ℎ𝑖 = 𝛼 × 𝑑𝑒𝑝𝑡ℎ𝑖 + (1 − 𝛼) × 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐷𝑒𝑝𝑡ℎ𝑖−1

where 𝛼 = 0.3 (found by trial and error) is a midpoint

between good noise reduction (low 𝛼) and reaction to

dynamic scenes (high 𝛼). Surface normals are computed at

each point in the depth image [19] and are used to detect

surface normal edges. Finally, the color channel is used to

detect color edges. We now describe the pipeline, shown in

Figure 3, for the edge extraction in each of these modalities.

Figure 3: Edge extraction pipeline.

The most dominant lines are extracted from each depth,

normals component, or color image by the running the

Hough Transform [9] on edge points detected by Canny

edge detection [6]. A variant of RANSAC [11] is used to

extract inlier edge points along the each Hough line and to

generate a more accurate line equation. Finally each 2D line

is divided into segments which have a density of edge

points greater than some threshold (each line must have at

least 35px in our implementation). Special care is given to

depth edges, whose location may need to be shifted slightly

to lie on the near occluding object that originated the edge.

2D line segments, extracted from all modalities, are back

projected to 3D space if there are enough valid depth values

along their length. RANSAC is used to fit 3D linear

segments through the 3D edge points.

Special care is given to ensure the consistency of the

recovered constraints over successive frames. We reduce

temporal noise in positioning, orientation, and extent, by

using a Kalman filter. Extracted segments are associated

with existing edges based on proximity and similarity of

their orientation. In addition, we require edges to have been

seen in at least five frames prior to allowing the edge to be

used for snapping; this minimizes the chance of the user

relying on false positives from the edge extraction. Once

detected, constraints will be maintained and updated unless

they are not seen for one second (or currently being used

for snapping), at which point they are removed; this helps

overcome short periods of collusion of constraints that may

occur as a result of the user’s motion or the scene object

moving. Our edge extraction algorithm runs around 15 Hz

in our prototype implementation. See Figure 4 and the

supplementary video for typical results.

https://www.microsoft.com/microsoft-hololens/en-us

Figure 4: An instance of Kalman filtered edges; please see the

supplemental video for more typical results.

Extracting Planar Surfaces

Planar surfaces are detected in a fashion similar to that of

recent plane and scene analysis methods [28]. Depth image

normals vote for a plane equation parameterized by its

azimuth, elevation, and distance from the origin. A Hough

transform on 3D depth points is used to detect major plane

equations in the scene.

Next, a greedy strategy is used to associate scene points

with those planes. Unassigned 3D points that lie in the

vicinity of each candidate plane (up to ~10 cm), with

compatible normal directions, are associated with the plane

(~10° angle, and may increase to 20° as depth noise grows

for farther away planes; see Figure 5). This surface

extraction algorithm runs around 4 Hz on our prototype

implementation.

Figure 5: Plane extraction stages: IR image (top left), depth

image (top right), shaded mesh indicating surface normals

(bottom left), recovered major planes (bottom right).

SNAP-TO-REALITY TECHNIQUES

We now discuss how the extracted constraints are used in

precise alignment and snapping. In our prototype, a virtual

object snaps to real edges and planar surfaces that are found

to be compatible with the object’s own edges and planes.

The object’s own edges and planes are referred to as

“internal constraints” since they originate from the virtual

object, while the physical constraints are external to the

object. Our approach is designed to support the interactive

selection of compatible physical constraints. For example,

an AR designer may decide that a virtual toy soldier’s

internal constraints should simply be its bounding box, thus

allowing snapping to physical planes and edges.

We now describe the two SnapToReality alignment

techniques implemented in our prototype—edge snapping

and planar surface snapping.

Edge & Planar Surface Snapping

Our edge and plane snapping algorithm is summarized in

Algorithm 1 and described as follows. For each internal

edge (plane) constraint, we search through all physical edge

(plane) constraints for compatible edges (planes).

An edge (plane) is compatible if the distance between the

internal edge midpoint (plane centroid) and its projection

onto the physical edge (plane) is less than some threshold

(e.g., 20 cm), and the internal and physical edges are

approximately parallel (e.g., within 20° for edges and 60°

for planes). We keep the physical edge (plane) with the

lowest cost, where the cost is a linear combination of (a) the

distance between the internal edge midpoint (plane

centroid) and its projection onto the physical edge (plane)

and (b) the distance between the internal edge midpoint

(plane centroid) and the physical edge midpoint (plane

Algorithm 1

SnapToRealConstraint:

 BestRealConstraint null

 MinCost ∞

 for each Internal {Edge, Planar Surface}

Constraint I:

 for each Real {Edge, Planar Surface}

Constraint R:

 if IsCompatible(I, R):

 cost Cost(I, R)

 if cost < MinCost:

 BestRealConstraint R

 MinCost cost

 endif

 endif

 endfor

 endfor

 return BestRealConstraint

D {edge, plane} distance threshold

A {edge, normal} angle threshold

IsCompatible(I, R):

 if distance(centroid of I, R) > D

 return false

 if angle_between(I, R) > A

 return false

 return true

Cost(I, R):

 c 𝛼 × distance(centroid of I, R)
 c c + 𝛽 × distance(centroid of I, centroid
of R)

 if R was previously BestRealConstraint

 c 𝛾 × c
 endif

 return c

centroid); in our experiments, 𝛼 = 1, 𝛽 = 1. The second

component of this linear combination (b) aids in favoring

edges (planes) that are nearby. For temporal consistency,

previously selected edges and planes are favored (𝛾 = 0.1).

If a compatible physical edge (plane) is found, we rotate

and translate the AR virtual content so that its

corresponding internal edge (plane) is parallel to and

overlapping the physical edge (plane).

Visualization of Compatible Physical Constraints

In order to not distract users, we only visualize compatible

edges and planes when snapping to them. Compatible edges

are visualized via a green cylinder and a dotted red cylinder

edge extending outward from the edge (see Figure 6, left).

Compatible planar surfaces are visualized via a fading

circular region on the surface’s centroid and a red line

connecting the snapping virtual content to the surface’s

centroid (see Figure 6). This red line visualization is

important for small field of view AR displays, as the user

may otherwise not know what the virtual content is

snapping to (cf. User’s Limited Field of View).

Figure 6: Visualizations for compatible physical edges (left)

and planar surfaces (right).

PROTOTYPE SNAP-TO-REALITY IMPLEMENTATION

In our AR system, the user is wearing an optical see-

through head-mounted near-eye display (Lumus DK-322

1280x720) calibrated with a method similar to the single

point active alignment method [29]. Figure 7 shows the

view through the Lumus display. Our glasses are equipped

with 6 retro-reflective spheres that are tracked using a

ceiling mounted, motion capture system, Natural Point’s

OptiTrack Flex 3 system3 (12 cameras). Our glasses are

also augmented with a 9 degrees-of-freedom inertial

measurement unit (SparkFun’s Razor SEN-107364) which

provides a smoother estimate of the unit’s orientation. The

orientation data from the IMU (~160Hz) is integrated with

the orientation and position data from the OptiTrack system

(~100Hz) for a relatively smooth, low latency operation.

We render at 60Hz corresponding to the refresh rate of our

glasses. Figure 8 shows our hardware components.

2 http://www.lumus-optical.com/
3 http://www.optitrack.com/products/flex-3/
4 https://www.sparkfun.com/products/10736

We used a Microsoft Kinect 2.0 sensor to obtain

RGB+Depth images in real-time for extracting the real

world 3D edges and planar surfaces. Virtual content was

created using the Unity 5 game engine and was shown to

the user via the Lumus glasses. In our current prototype

configuration, the Kinect camera is mounted above the user

observing the physical scene (see Figure 8).

Figure 7: View through Lumus display (left); note that the

virtual content does not appear as bright to the human eye.

Screenshot of Unity player view (right). The red dot indicates

the user’s gaze direction.

Figure 8: Hardware used in our prototype.

User input was obtained through a Kensington Wireless

Presenter remote controller. All processing was done on a

single PC with an Intel Xeon E5-1620 processor with 16

GB of RAM and an NVIDIA GeForce GTX 980 GPU.

To correctly render the occlusion of virtual objects by real

objects, the depth image acquired by Kinect camera is

rendered as a black (invisible in the glasses) mesh. AR

virtual objects are rendered offset by about 5cm towards the

head-worn glasses to help overcome any noise in the depth

image and system calibration.

Demo Applications

To showcase our SnapToReality alignment techniques, we

developed two prototype AR scenarios—content placement

and content creation. In each, the user interacts with a

virtual object in the following way: A ray is cast from the

center of the tracked glasses, and its point of intersection

with the scene geometry is regarded as the object or cursor

position. The user can then interact with objects that

intersect the ray using the buttons on the remote controller.

We looked at other interaction methods such as using a ray

cast from the handheld remote, and following preliminary

usability evaluations we settled on head gaze-based

interaction, which is simpler as display & interaction share

http://www.lumus-optical.com/
http://www.optitrack.com/products/flex-3/
https://www.sparkfun.com/products/10736

the same location. We leave finding the most ergonomic

interaction method for snapping in AR as future work.

AR Content Placement

A virtual AR app window is positioned in space and is

highlighted whenever the user gazes at it (Figure 7 shows

an illustration of this). The user can “pick up” the

highlighted window by pressing a button on the remote

controller. The window can then be positioned, oriented,

and scaled by the user’s head gaze direction, until the user

drops the object by pressing the same button again. While

picked up, the AR app window is positioned at the

intersection point of the user’s head direction and the

geometry, and oriented towards the user’s head gaze. To

scale an app window, the user drops the window in place,

and then gazes at a corner of the window. Pressing a button

toggles scaling mode, resizing from that corner while the

opposite corner is fixed. Scale snapping works by finding

the lowest cost compatible external constraint for each

internal constraint used in scaling (using Algorithm 1).

AR Content Creation

This demo application is inspired by SketchUp’s line,

rectangle, and push/pull drawing tools5. As the user gazes at

a planar surface, the detected surface is visualized by a

fuzzy circle and a surface normal (see Figure 9, top left).

Pressing the remote’s right button begins drawing a 3D

edge on the plane starting at the intersection point of the

user’s gaze direction and the plane. The edge’s end point is

controlled by the user’s gaze direction (see Figure 9, top

right) and can snap to nearby physical edges. Furthermore,

the edge can snap to be made parallel or perpendicular to

nearby edges. Pressing the right button a second time fixes

the edge’s end point and starts extending a rectangular area

away from the fixed edge. Again, the user’s current gaze

direction determines the size of the rectangular plane, and a

third right button press fixes the plane (see Figure 9, bottom

left). Now a 3D box can be extruded upwards away from

the plane. The height of the 3D box is determined by

finding the closest intersection between the user’s head

direction and the ray in direction of the 3D box extrusion

starting from the 3D box’s center. This height can snap to

compatible planar surfaces and also to nearby edge

endpoints (see Figure 6, right). A final right button press

finishes the box creation process (see Figure 9, bottom

right). In each step of the process, the left button of the

remote performs an ‘undo’ operation. Figure 9 illustrates

this entire process.

Users can optionally scale a face of a completed box by

directing their gaze toward the face and pressing the right

button. In a similar fashion, the height of the 3D prism with

respect to that face is determined by the closest intersection

between the user’s gaze direction and the ray in direction of

the extrusion, starting from the 3D box’s center.

5 http://www.sketchup.com/learn

Prototype Limitations

One limitation of our prototype is that the Kinect camera is

statically mounted above the user. However, we envision

that with a glasses mounted (or user worn) depth camera,

similar interactions would be possible.

Another limitation is that the accuracy of the depth map

from the Kinect camera is a source of significant noise.

Using a more robust method, such as Kinect Fusion [25] or

DynamicFusion [24], could be explored in the future.

Figure 9: Flow of AR content creation. Top left: The user’s

head direction defines a cursor on a physical surface. Top

right: Clicking a button starts drawing a line on the surface.

Bottom left: Clicking again extrudes the drawn line to a

rectangle. Bottom right: Extruding the rectangle to a 3D box.

DESIGN CONSIDERATIONS FOR SNAP-TO-REALITY

In this section, we discuss practical design considerations,

limitations, and insights gained while developing

SnapToReality techniques. Because these observations are

not limited to our current prototype, we hope that this

discussion will help developers and researchers extend and

apply the SnapToReality concept. We note that in addition

to what we discuss here, traditional snapping design issues

(not specific to SnapToReality) are also important when

designing any snapping system (e.g., snapping hierarchies,

the amount of constraints to show to the user, etc.).

The main considerations and challenges in enabling

SnapToReality systems are: the limited field of view, noise

in constraint extraction, changing the view in AR, issues

concerning dynamic scenes, and visualization of physical

constraints. We now discuss each in detail.

Limited Field of View

User’s Limited Field of View

Today’s AR glasses typically have a very limited field of

view (e.g., the Lumus glasses have around only 40°

diagonal). Thus, many constraints that an object may snap

to are out of the user’s field of view. In addition, even if AR

glasses had an unlimited field of view, a particular

constraint could still be behind the user, out of sight. There

are at least two ways to address this overall problem.

http://www.sketchup.com/learn

First, the system can visualize available constraints that are

outside the field of view. This is the approach taken in our

prototype. When virtual content begins to snap to a

compatible constraint, we visualize those constraints in case

they are out of sight: for edges, by extending them with red

dotted edges; for planes, by drawing a red edge from the

virtual content to the plane’s centroid (see Figure 6).

Another possible way to overcome this problem is to let the

user actively preselect a constraint by bringing it into the

field of view and then returning the view to manipulate the

virtual content. For example, the user may gaze directly at a

constraint and then press a button to select it. A positive

side-effect of this approach is that the user’s current field of

view can aid in the physical constraints extraction process.

For example, the system may simply follow the user’s gaze

to limit its extraction there.

Camera’s Limited Field of View

The camera’s limited field of view also means that

extracting many physical constraints is challenging. If the

user wants to snap virtual content to many different

constraints, the camera must first be able to see all those

constraints. Thus, unless snapping is limited to the user’s

field of view, a global analysis of the scene is required.

Noise in Constraint Extraction

Compared to snapping to virtual constraints, the complexity

of real world geometry, texture, and sensor noise make it

more likely to have a very dense and noisy set of potential

constraints. As with any snapping technique, high density

of constraints will negatively affect the utility and usability

of snapping.

Active selection of constraints by the user is again one way

to overcome this problem. By putting the user “in the loop”

of the constraint extraction process, the effects of sensor

noise can be diminished. The user can either select the

constraint directly or explicitly discard it.

We can also substantially minimize the effects of sensor

noise by limiting the types of compatible constraints we

extract. This can be achieved by adjusting the virtual

content’s snapping abilities (called “internal constraints” in

our prototype). For example, a cube has 6 planar surfaces;

each of the cube’s planar surfaces may only snap to

physical planar surfaces, not corners or edges. Therefore,

under this assumption, we can limit the types of physical

constraints to extract based on the virtual content that we

are manipulating. This is the approach we used in our

prototype and helps mitigate problems with sensor noise.

Changing the View in AR

In AR, users see virtual objects interacting with real objects

as if they were life size. Users may move themselves closer

to the real and virtual objects to inspect them more closely,

or move to encourage the extraction of a physical

constraint. However, users are limited by the physics of the

real world in how they may change their view. This limits

the ability to see more detail, perform more precise

manipulation, zoom out to see an overview, or look behind

objects that are occluded. In addition, physically moving

around the environment may introduce user fatigue. Future

SnapToReality systems need to account for these

considerations, including snapping at far distances and

helping the user know about available snapping constraints

outside the field of view (cf. User’s Limited Field of View).

Interacting with Dynamic Constraints

When constraints are obtained in real-time from the

dynamic physical world, new types of snapping interaction

are possible. Physical constraints can be altered on the fly

to enable virtual content to be translated, rotated, or scaled

more appropriately. For example, virtual content can be

scaled to different physical extents by simply moving

physical objects in the scene. This interaction of actively

manipulating reality to alter virtual content in precise ways

via snapping is an area that needs more exploration.

One interesting question that arises with dynamic

constraints is how to deal with a constraint that is currently

being used, but then suddenly disappears in the real world

during the interaction (e.g., a real object moves away). In

our prototype, we chose to simply keep the constraint alive

until the end of the interaction. However, the constraint

does not move with the real object as it moves away. Such

capability may be desired and we leave it as future work.

Visualizing Physical Constraints in AR

Choosing how to visualize extracted physical constraints is

another important matter of design. Should the system

visualize all available constraints, none, or only those

currently being snapping to by virtual content?

In some simple cases it may be obvious which physical

object a virtual object is snapping to without rendering the

available constraints. In others, it may be necessary to

render all available constraints. Visualizations are

particularly important when snapping to physical

constraints whose source is far away or outside the user’s

field of view (e.g., snapping virtual content to be aligned

with the top of a table that is behind the user). In this case,

clear guides should let the user be aware of the source. This

especially becomes an issue when using AR displays with

small fields of view as is common with most of today’s AR

display hardware. Figure 6 shows how our prototype

visualizes edge constraints and planar surface constraints,

drawing inspiration from common snapping applications

using dotted linear edges to represent linear constraints.

USER EVALUATIONS

We conducted three preliminary evaluations of various

aspects of our prototype.

Evaluation of Constraint Extraction Algorithms

To evaluate our constraint extraction algorithms, we

recorded eleven scenes showing a large range of physical

environments. We asked four participants (all male, 24 to

33 years old, avg. 28 years old) to indicate up to ten edges

and ten surfaces they would envision aligning AR content

to for each of the scenes. Participants indicated this by

drawing on the color image of each scene.

We compared the edges and planar surfaces drawn by users

with those extracted from our algorithm by aggregating the

responses of the four participants and visually comparing

them to the extracted constraints (see Figure 10 and the

supplementary video). Our algorithm was able to detect

51.95% of user drawn edges (min. 30.43%, max 77.78%

across all scenes) and 60% of user drawn planar surfaces

(min. 41.67%, max 81.82% across all scenes). We note that

for each scene, we did not modify any of the edge or plane

detection algorithm parameters. Had we done so for each

scene, we believe the percentage of detected user drawn

constraints would only increase.

Figure 10: Living room scene overlaid with user drawn edges

(top left) and planar surfaces (bottom left) compared to the

edges and planar surfaces detected by our algorithm (top right

and bottom right, respectively).

Evaluation of SnapToReality Techniques

We invited 8 different participants (all male, 23 to 49 years

old, avg. 30 years old) to evaluate our SnapToReality

techniques. Participants received $10 for their participation

and each session lasted approximately one hour. The

physical scene used for interaction was made up of a table,

several boxes, a wooden board, a white panel folding

screen, and a wall in the background (see Figure 11).

The participants filled out pre-study and post-study

questionnaires and separately evaluated both AR Content

Placement and AR Content Creation demos. They were

given a few minutes to familiarize themselves with the

interface for each demo.

Evaluation of AR Content Placement

To evaluate the potential benefits of snapping, we asked the

participants to place and size a box representing a mock AR

application window at various locations around the room.

After verbally confirming that the person understood the

interface, they were given a set of five training trials. Next,

each participant completed twenty trials, each composed of

a positioning & orienting stage followed by a resizing stage.

The position, orientation, and size for each trial were

chosen beforehand to align with various physical objects,

and the order of the trials was chosen randomly. Ten trials

were completed with snapping and ten trials without

snapping. The order of snapping and no-snapping

conditions was counterbalanced over the eight participants.

Interaction in the no-snapping condition was identical to

that of the snapping condition except that snapping was

disabled (physical constraints were extracted but not used).

Figure 11: View from the Kinect camera for the user

evaluation of SnapToReality techniques.

In the positioning and orienting stage, participants were

shown an AR app window placed randomly near a target

window, which begins invisible. They then picked up the

window by gazing at it and pressing the top button on the

wireless remote. At this point, a timer began and the target

window location was now shown as a white transparent

box. Participants were asked to place the AR app window at

the target location as fast as possible, by pressing the top

button again. If the window was placed too far away from

the target (distance between the center points of the

windows greater than 10 cm) or not close enough in

orientation (angle between the surface normals of the

windows greater than 10°), text appeared notifying the user

that the window is not close enough to the target window.

Participants then had to pick up the window and try to place

it correctly again. Once the window was positioned and

oriented closely enough to the target, the timer stopped and

the user saw the text, “Correct!”

Next, during the resizing stage, a target transparent box

appeared, showing the desired dimensions of the window

and a second timer began. Participants then had to scale the

window to match the target (measured in terms of both

position and scale, within 10 cm). To make this second

stage similar between snapping and no-snapping conditions,

we adjusted the starting position and orientation of the

window to be the same for all trials.

In all trials, a one minute timeout was used and treated as

outliers in the data, removed before analysis. With snapping

enabled, participants took an average of 4.45s (median

2.74s, std. dev. 5.34) to position and orient AR app

windows correctly. With snapping disabled, participants

took an average of 11.36s (median 9.89s, std. dev. 6.75). A

paired t-test indicated a statistical significance (p-value <<

0.001). For scaling, participants took an average of 8.18s

(median 7.89s, std. dev. 3.97) with snapping and 8.71s

(7.43s, std. dev. 5.12) without snapping. A paired t-test did

not indicate any statistical significance.

In the post-study questionnaire, participants were asked to

compare their experience with and without snapping. Here

we list some of their feedback:

“With snapping, I trusted the system to take me there and it

allowed me to be a bit careless and [speed] things up. I

would just go to the nearest corner and trust the system to

pick the best spot up for me.”

“Snapping objects […] was a more subtle interaction.

Small head movements were enough to get the job done.

Whereas without snaps I had to use my whole body to get

the object where I wanted.”

Evaluation of AR Content Creation

In the second part of the study, we sought to assess

qualitatively how well participants can create simple virtual

objects in AR. After explaining the interface, we allowed

participants to play with this mode freely as long they

wished. For this task, snapping was always enabled.

Participants created various structures of 3D geometry

using the simple prism creation tool. Figure 12 shows an

example of such a structure created by a participant.

Participants were made aware of the ability to place virtual

content aligned to dynamic elements in the scene, such as

boxes that had been moved into place, and a measuring tape

used to extrude prisms to certain heights. Please see the

supplemental video for more results.

Figure 12: Example of virtual content created by a participant

using AR Content Creation. Here, physical walls (planar

surfaces) were used as constraints to create “virtual shelves.”

In the post-study questionnaire, participants were asked to

describe their approach of creating 3D boxes with snapping.

Here we list some of their feedback:

“I started by positioning the cursor near the edge of

another object, like the table or box, and then moved to

another edge to set the area. Then setting the volume was

fairly easy once the other two were in place.”

“I started by choosing the ‘right plane’. I moved until I saw

the angle of the plane I wanted. Then I drew one face on

that plane, not caring too much about the snapping.

Finally, I adjusted the height, mostly trying to match the

height of the surrounding objects using snapping. I resized

it sometimes to match different heights.”

Additional Questionnaire Results

In the post-study questionnaire, participants were asked to

rate several statements using a Likert scale. The statements

were as follows: “With{out} snapping, I can easily {place,

orient, resize} objects {where, how} I want,” “While

interacting with snapping {enabled, disabled}, I felt

fatigued,” and “Snapping in augmented reality is useful.”

Responses are shown in Figure 13. The Wilcoxon signed-

rank test found that for the placing, orienting, and feeling

fatigued statements, participants rated snapping

significantly better than without snapping at a 0.05 level of

significance. As with the timing results, no statistical

significance was found comparing resizing with and

without snapping. Finally, all participants agreed or

strongly agreed that snapping in AR is useful.

Figure 13: Chart visualizing post-study questionnaire

responses (best viewed in color).

We also asked participants several open ended questions.

Some representative quotes with their corresponding

questions are as follows:

Q: When did you find snapping most helpful? Least helpful?

“Snapping was most helpful when moving something

quickly across the scene to a general target area.

Movements requiring more finesse or accuracy on behalf of

0%

20%

40%

60%

80%

100%

Strongly disagree Disagree Neutral Agree Strongly agree

(with snapping) (without snapping)

the user are more frustrating when snaps suddenly make

drastic shift.”

“When snapping worked it was very helpful because I

didn't have to move very much to achieve success…”

(Referring to the Likert scale statements): Please briefly
describe why you chose the ratings in the previous question.

“Placing objects is quite easy even without snapping.

Certainly snapping helped a bit, just did not affect the

overall experience too much. Orienting and scaling things,

on the other hand, when done imprecisely, can often be

quite obvious and seem bizarre, so snapping helps a lot

more in these cases. […] snapping reduces the time needed,

hence less fatigue.”

“Overall snapping is a useful feature. However, just as with

other design programs like Photoshop, it can become

obtrusive in certain situations. Easily being able to toggle

between snapping and non-snapping behavior would be

ideal. In this specific study, it seemed like when the tracking

found the surfaces correctly and the world locking was

working that snapping was fairly helpful. When either of

those two breakdown, snapping becomes more of a hassle.”

Q: What snapping features would you like to have for
augmented reality?

“It would be great if I could put my hand or finger in the

field of view and point where I want the object to snap to,

or where I want the edge to scale to. Manual

pointing/direction would be nice. I envision it as sort of a

physical mouse pointer for the virtual objects.”

“Snap to planes and edges of various virtual and physical

objects. It'd be nice to also be able to filter what you snap

to (kind of like AutoCAD's […]) at any given time.”

Discussion

In general, we observed that participants physically walked

around the room much more without snapping than with

snapping. This may suggest that 3D snapping is even more

important in AR than in traditional 2D or 3D desktop

environments where all objects are virtual. In purely virtual

environments, “magical” navigation techniques (e.g., flying

and teleporting) enable quick and easy viewpoint

positioning for easier interaction with virtual content. In

AR, however, users are limited to physical navigation and

thus are not necessarily able to quickly and easily assume

different viewpoints.

The lack of a statistically significant difference in scaling

times in our evaluation of AR Content Placement is most

likely due to the fact that only two degrees of freedom were

being manipulated, and that we did not allow snapping to

position content arbitrarily within the snapping threshold

(by deactivating snapping or by automatic methods [1,10]).

Adding such features and also comparing scaling in three

dimensions may change results for future experiments.

In addition to comments that may apply to any snapping

system, participants’ open-ended responses also verified

certain unique points about snapping in AR. For example,

one participant noted needing to move their whole body to

achieve object positioning when not using snapping; while

with snapping, he only needed small head movements (see

comment in Evaluation of AR Content Placement).

FUTURE WORK

Selecting Constraints via Other Modalities

We imagine many other ways in which users can actively

select constraints. For example, users should be able to

physically touch a constraint to select it. Natural language

processing along with computer vision scene understanding

is also an interesting avenue for future work (e.g., “place

the app parallel to and to the right of the door”).

Using Snapping for Physical Objects

An interesting idea that has previously been proposed by

Forster and Tozzi [12], but still remains an open area of

research is the use of snapping in AR to align physical

objects to physical constraints. A noted application for this

would be interior design.

Semantic Snapping

Usually when we refer to snapping, we imply a geometric

relationship of snapping. This may include geometric

proximity in translation or rotation; objects being

perpendicular or parallel to one another; aligning to

dominant directions/axes (e.g., gravity); aligning to mid-

points; etc. However, using semantic relationships is

another possible way to achieve snapping. For example, an

AR app related to cooking may favor snapping to relevant

physical areas of a kitchen (cf. Figure 2). This, however,

would require a detailed semantic understanding of the

physical scene. In our SnapToReality prototype, we chose

to focus its scope toward geometric relationships.

CONCLUSION

SnapToReality alignment techniques allow users to

position, rotate, and scale virtual content to dynamic, real

world scenes. Our prototype system extracts physical linear

edges and planar surfaces in real-time and allows users to

manipulate and create AR content precisely aligned to the

real world. We contribute a set of design considerations and

insights for future designers of AR snapping systems. In

particular, we note the issues of a small field of view in AR,

sensor noise in the constraint extraction process, changing

the view in AR being limited to physical movements (thus

making SnapToReality an important interaction paradigm

to quickly achieve precise positioning), interacting with

dynamic constraints, and considerations on how to visualize

physical constraints. Finally, our user evaluations show that

aligning virtual content to physical constraints via our

prototype system is significantly faster with snapping than

without snapping. Snapping in AR was also shown to

enable novel forms of AR content creation interaction.

ACKNOWLEDGMENTS

We thank Michael Waechter and the anonymous reviewers

for their helpful feedback.

REFERENCES

1. Patrick Baudisch, Edward Cutrell, Ken Hinckley, and

Adam Eversole. 2005. Snap-and-go: helping users

align objects without the modality of traditional

snapping. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (CHI ’05),

301-310. http://doi.org/10.1145/1054972.1055014

2. Blaine Bell, Steven Feiner, and Tobias Höllerer. 2001.

View management for virtual and augmented reality. In

Proceedings of the 14th Annual ACM Symposium on

User Interface Software and Technology (UIST ’01),

101-110. http://doi.org/10.1145/502348.502363

3. Eric A. Bier and Maureen C. Stone. 1986. Snap-

dragging. In Proceedings of the 13th Annual

Conference on Computer Graphics and Interactive

Techniques (SIGGRAPH '86), 233-240.

http://dx.doi.org/10.1145/15922.15912

4. Eric A. Bier. 1990. Snap-dragging in three dimensions.

In Proceedings of the 1990 Symposium on Interactive

3D Graphics (I3D ’90), 193-204.

http://doi.org/10.1145/91385.91446

5. Dorit Borrmann, Jan Elseberg, Kai Lingemann, and

Andreas Nüchter. 2011. The 3D Hough Transform for

plane detection in point clouds: A review and a new

accumulator design. 3D Research. 2, 2, Article 32

(June 2011): 1-13.

http://dx.doi.org/10.1007/3DRes.02(2011)3

6. John Canny. 1986. A Computational Approach to Edge

Detection. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI). 8, 6 (Nov. 1986): 679-

698. http://doi.org/10.1109/TPAMI.1986.4767851

7. Changhyun Choi, Alexander J. B. Trevor, and Henrik I.

Christensen. 2013. RGB-D Edge Detection and Edge-

based Registration. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS '13), 1568-1575.

http://doi.org/10.1109/IROS.2013.6696558

8. Richard O. Duda and Peter E. Hart. 1972. Use of the

Hough transformation to detect lines and curves in

pictures. Communications of the ACM. 15, 1 (Jan.

1972): 11-15. http://doi.org/10.1145/361237.361242

9. Leandro A. F. Fernandes and Manuel M. Oliveira.

2008. Real-time line detection through an improved

Hough transform voting scheme. Pattern Recognition.

41, 1 (Jan. 2008): 299-314.

http://dx.doi.org/10.1016/j.patcog.2007.04.003

10. Jennifer Fernquist, Garth Shoemaker, and Kellogg S.

Booth. 2011. “Oh Snap” – Helping Users Align Digital

Objects on Touch Interfaces. In Proceedings of the

13th IFIP TC 13 International Conference on Human-

Computer Interaction (INTERACT 2011), 338-355.

http://dx.doi.org/10.1007/978-3-642-23765-2_24

11. Martin A. Fischler and Robert C. Bolles. 1981.

Random sample consensus: a paradigm for model

fitting with applications to image analysis and

automated cartography. Communications of the ACM.

24, 6 (June 1981): 381-395.

http://doi.org/10.1145/358669.358692

12. Carlos H. Q. Forster and Clésio L. Tozzi. 2001. An

architecture based on constraints for augmented shared

workspaces. In Proceedings of the 14th Brazilian

Symposium on Computer Graphics and Image

Processing (SIBGRAPI '01), 328-335.

http://doi.org/10.1109/SIBGRAPI.2001.963073

13. Mathias Frisch, Ricardo Langner, and Raimund

Dachselt. 2011. Neat: a set of flexible tools and

gestures for layout tasks on interactive displays. In

Proceedings of the ACM International Conference on

Interactive Tabletops and Surfaces (ITS ’11), 1-10.

http://doi.org/10.1145/2076354.2076356

14. Ran Gal, Lior Shapira, Eyal Ofek, and Pushmeet Kohli.

2014. FLARE: Fast layout for augmented reality

applications. In Proceedings of the 13th IEEE

International Symposium on Mixed and Augmented

Reality (ISMAR '14), 207-212.

http://doi.org/10.1109/ISMAR.2014.6948429

15. Natasha Gelfand and Leonidas J. Guibas. 2004. Shape

segmentation using local slippage analysis. In

Proceedings of the 2004 Eurographics/ACM

SIGGRAPH Symposium on Geometry Processing (SGP

’04), 214-223. http://doi.org/10.1145/1057432.1057461

16. Michael Gleicher. 1995. Image snapping. In

Proceedings of the 22nd Annual Conference on

Computer Graphics and Interactive Techniques

(SIGGRAPH ’95), 183-190.

http://doi.org/10.1145/218380.218441

17. Seongkook Heo, Yong-Ki Lee, Jiho Yeom, and

Geehyuk Lee. 2012. Design of a shape dependent

snapping algorithm. In CHI '12 Extended Abstracts on

Human Factors in Computing Systems (CHI EA ’12),

2207-2212. http://doi.org/10.1145/2212776.2223777

18. Paul V. C. Hough. 1962. Method and means for

recognizing complex patterns. (Dec. 1962). US Patent

3069654 A, Filed Mar. 25, 1960, Issued Dec. 18, 1962.

19. Klaas Klasing, Daniel Althoff, Dirk Wollherr, and

Martin Buss. 2009. Comparison of surface normal

estimation methods for range sensing applications. In

Proceedings of the 26th IEEE International

Conference on Robotics and Automation (ICRA '09),

3206-3211.

http://doi.org/10.1109/ROBOT.2009.5152493

20. Gun A. Lee, Ungyeon Yang, Yongwan Kim, Dongsik

Jo, and Ki-Hong Kim. Snap-to-feature interface for

annotation in mobile augmented reality. In Augmented

Reality Super Models Workshop at the 9th IEEE

International Symposium on Mixed and Augmented

Reality (ISMAR '10), Retrieved September 14, 2015

from

http://www.icg.tugraz.at/Members/arth/arsupermodels/

04_lee.pdf

21. Gun A. Lee and Mark Billinghurst. 2012. Assistive

techniques for precise touch interaction in handheld

augmented reality environments. In Proceedings of the

11th ACM SIGGRAPH International Conference on

Virtual-Reality Continuum and its Applications in

Industry (VRCAI ’12), 279-285.

http://doi.org/10.1145/2407516.2407582

22. Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh

Agrawala, and Vladlen Koltun. 2011. Interactive

furniture layout using interior design guidelines. ACM

Transactions on Graphics (TOG). 30, 4, Article 87

(July 2011): 1-10.

http://dx.doi.org/10.1145/2010324.1964982

23. Eric N. Mortensen and William A. Barrett. 1998.

Interactive segmentation with intelligent scissors.

Graphical Models and Image Processing. 60, 5 (Sept.

1998): 349-384.

http://dx.doi.org/10.1006/gmip.1998.0480

24. Richard A. Newcombe, Dieter Fox, and Steven M.

Seitz. 2015. DynamicFusion: Reconstruction and

tracking of non-rigid scenes in real-time. In

Proceedings of the 28th IEEE Conference on Computer

Vision and Pattern Recognition (CVPR '15), 343-352.

http://dx.doi.org/10.1109/CVPR.2015.7298631

25. Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,

David Molyneaux, David Kim, Andrew J. Davison,

Pushmeet Kohli, Jamie Shotton, Steve Hodges, and

Andrew Fitzgibbon. 2011. KinectFusion: Real-time

dense surface mapping and tracking. In Proceedings of

the 10th IEEE International Symposium on Mixed and

Augmented Reality (ISMAR '11), 127-136.

http://doi.org/10.1109/ISMAR.2011.6092378

26. Rui Nóbrega and Nuno Correia. 2012. Magnetic

augmented reality. In Proceedings of the International

Working Conference on Advanced Visual Interfaces

(AVI ’12), 332-335.

http://doi.org/10.1145/2254556.2254620

27. Ji-Young Oh, Wolfgang Stuerzlinger, and John

Danahy. 2006. SESAME: towards better 3D

conceptual design systems. In Proceedings of the 6th

Conference on Designing Interactive Systems (DIS

’06), 80-89. http://doi.org/10.1145/1142405.1142419

28. Nathan Silberman, Lior Shapira, Ran Gal, and

Pushmeet Kohli. 2014. A contour completion model

for augmenting surface reconstructions. In Proceedings

of the 14th European Conference on Computer Vision

(ECCV '14), 488-503. http://dx.doi.org/10.1007/978-3-

319-10578-9_32

29. Mihran Tuceryan and Nassir Navab. 2000. Single point

active alignment method (SPAAM) for optical see-

through HMD calibration for AR. In Proceedings of

the IEEE and ACM International Symposium on

Augmented Reality (ISAR '00), 149-158.

http://doi.org/10.1109/ISAR.2000.880938

30. Ken Xu, James Stewart, and Eugene Fiume. 2002.

Constraint-based Automatic Placement for Scene

Composition. In Proceedings of the Graphics Interface

Conference (GI '02), 25-34. Retrieved September 14,

2015 from http://graphicsinterface.org/wp-

content/uploads/gi2002-4.pdf

31. Pengfei Xu, Hongbo Fu, Chiew-Lan Tai, and Takeo

Igarashi. 2015. GACA: Group-Aware Command-based

Arrangement of Graphic Elements. In Proceedings of

the 33rd Annual ACM Conference on Human Factors

in Computing Systems (CHI ’15), 2787-2795.

http://doi.org/10.1145/2702123.2702198

	SnapToReality: Aligning Augmented Reality to the Real World
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Snapping to Virtual Constraints
	Snapping to Real Constraints
	Constraint Optimization Approaches

	SNAP-TO-REALITY CONCEPT
	Motivating Scenarios

	EXTRACTING PHYSICAL CONSTRAINTS
	Extracting 3D Linear Edges
	Extracting Planar Surfaces

	SNAP-TO-REALITY TECHNIQUES
	Edge & Planar Surface Snapping
	Visualization of Compatible Physical Constraints

	PROTOTYPE SNAP-TO-REALITY IMPLEMENTATION
	Demo Applications
	AR Content Placement
	AR Content Creation

	Prototype Limitations

	DESIGN CONSIDERATIONS FOR SNAP-TO-REALITY
	Limited Field of View
	User’s Limited Field of View
	Camera’s Limited Field of View

	Noise in Constraint Extraction
	Changing the View in AR
	Interacting with Dynamic Constraints
	Visualizing Physical Constraints in AR

	USER EVALUATIONS
	Evaluation of Constraint Extraction Algorithms
	Evaluation of SnapToReality Techniques
	Evaluation of AR Content Placement
	Evaluation of AR Content Creation

	Additional Questionnaire Results
	Q: When did you find snapping most helpful? Least helpful?
	(Referring to the Likert scale statements): Please briefly describe why you chose the ratings in the previous question.
	Q: What snapping features would you like to have for augmented reality?

	Discussion

	FUTURE WORK
	Selecting Constraints via Other Modalities
	Using Snapping for Physical Objects
	Semantic Snapping

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

