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Abstract 
Mixed and augmented reality (XR) devices blur the 
boundaries between the physical and the digital worlds, 
resulting in user inputs that are noisy and unreliable 
and an interaction environment that is not fully known 
to the system. And yet these devices can display 
information to the user in a low-friction manner that is 
more tightly coupled to one’s body and the physical 
environment, exposing the opportunity for persistent 
“always-on” assistance. We argue that to build effective 
XR interactions, we must (1) reduce system uncertainty 
by understanding the user and environment, and (2) 
effectively adapt the interface to engage the user in 
uncertainty reduction and to allow for online learning 
and personalization. Modern methods in AI and 
machine learning are important to achieve these goals. 
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CSS Concepts 
• Human-centered computing~Human computer 
interaction (HCI); HCI theory, concepts and models  

Introduction 
Head-mounted mixed and augmented reality (XR) 
devices provide the opportunity for an entirely new era 
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of personal computing. For the first time, XR 
technologies may allow users to benefit from persistent 
“always-on” assistance that is integrated seamlessly 
into their physical world, personalized to their goals, 
and assistive without being disruptive. In contrast to 
current personal computing devices, such as a laptop or 
smartphone, XR technologies are characterized by four 
distinguishing attributes: (1) XR devices can display 
outputs in a more accessible, lower-friction manner 
that is more tightly coupled to the physical environment 
(e.g., labels placed on real-world objects); (2) the 
interaction environment cannot be fully known or 
prespecified by the designer (e.g., virtual content is 
overlaid on the unknown real world); (3) user inputs 
are ambiguous, low precision, and noisy (e.g., hand 
gestures, speech); and (4) XR devices can ingest large 
volumes of data that is highly informative of user 
context (e.g., egocentric video, gaze, audio). 

These important differences highlight the need for a 
completely new interaction paradigm beyond what is 
currently used in personal computing. In particular, the 
first attribute exposes an exciting opportunity for XR 
devices by enabling low-friction, “always-on” 
assistance; this contrasts with the traditional “opt-in” 
paradigm, wherein the user explicitly initiates 
interaction with the device by picking it up and 
launching the app of interest. However, the second and 
third attributes indicate that XR-interaction research 
must focus on reducing uncertainty about user context 
and intent. To this end, the fourth attribute implies that 
the device likely has access to enough data to make 
each of these efforts viable through the application of 
modern AI and machine-learning techniques.  

We posit that AI and machine learning are important 
for reducing uncertainty about user context and intent, 
which will ultimately allow XR to provide low-friction, 
“always-on” assistance. We view these as the most 
important problems facing XR interaction researchers. 
In service of these goals, we share a framework that 
leverages AI and machine learning to (1) gain an 
understanding of the user’s context, (2) sense 
intentional input to the system, (3) infer the user’s 
interaction goals within the environment, (4) engage 
the user in uncertainty reduction as needed, and (5) 
personalize and refine these interactions by learning 
from past user actions.  

Robust interaction through input and 
context modeling    
We propose a general framework for how XR systems 
might leverage machine learning, AI, and an adaptive 
user interface (UI) to produce high quality XR 
interactions, which is shown in Figure 1.  

One important aspect of the proposed framework is to 
leverage the large volume of data ingested by the XR 
device, such as eye-gaze on targets of interest or 
knowledge of the current location (e.g., office), to 
imbue the system with context understanding. Here, 
without any explicit user input, machine-learning 
methods can be deployed to infer important contextual 
elements of the user’s environment, such as the objects 
of interest and the user’s activity. Such contextual 
features, in turn, are highly informative of the set of 
interactions the user is most likely to desire. Context 
understanding enables the system to increase 
understanding of the unknown interaction environment, 
and it can be used to enhance input sensing, which is 
also a critical component of our framework.  



 

 

Figure 1:  A visual diagram of our AI-assisted interaction framework for XR systems. This framework represents an example of how 
different models (shown in blue) can interact to produce compelling XR interactions.

Core input sensing captures sensing of explicit system 
input, such as gesture recognition or voice commands. 
In the real world, these sensing modalities are noisy 
and may not always be driven by intentional interaction 
with the system (e.g., pointing for emphasis during 
conversation rather than selection in the system). 
Thus, one important role of machine learning is to 
disambiguate explicit commands from natural 
movements. Note that this pipeline can leverage data 
not only from multiple sensors, but also from context-
understanding models, which can lend insight into 
whether natural movements are expected given the 
present context. For example, if the system detects 
that the user is engaged in conversation, the system 
might adjust the threshold for detection of pointing 
gestures in input sensing to avoid false positives.  

Intent prediction involves predicting the interaction 
goals of the user. For example, Henrikson et al. [3] 
used hand motion, head motion, and eye gaze to make 
predictions about where a user might point in VR. 

Similarly, Desai et al. [1] enabled users to specify their 
high-level intent explicitly in an interactive design task. 
The specified high-level intent combined with user 
interactions over time allowed the system to fine-tune 
and customize the design suggestions for the user. 
These two examples involve prediction of intentional 
system interactions, but a system might also infer 
implicit intent. For example, Gebhardt et al. [2] used 
reinforcement learning to show an object’s label in a 
visual search task based on eye movement data (see 
Figure 2). This model can learn the categories of 
features that are of interest to a user, effectively 
predicting where they might gaze next. 

Robust interaction through UI adaptation, 
user feedback, and personalization 
Building models of input sensing, context 
understanding, and intent inference is a massive and 
challenging endeavor, and these models will likely 
never provide perfect predictions of the user’s precise 
interaction goal. To ensure that XR interactions produce 



 

a positive user experience despite this, we propose two 
system features: (1) the UI adapts to underlying 
uncertainty in the system, engaging the user to reduce 
uncertainty as needed; and (2) user feedback is used 
to refine and personalize the underlying models.  

Interface adaptation is inspired by principles of the 
mixed-initiative systems proposed by Horvitz [4], 
wherein the AI models and users collaborate efficiently 
to achieve the user’s goals. The adaptations explicitly 
engage the user to provide feedback about the errors 
that may be produced by the net uncertainty of the AI 
models. For example, the UI might invoke a dialog for 
confirmation, or it might prompt the user to dwell 
longer during pointing to reduce uncertainty.  

These UI adaptations will lead to user actions, which 
can provide a feedback signal to models for iterative 
improvement and, ultimately, personalization. There 
are three types of user actions that a system might 
leverage. Confirmation actions involve a positive or 
negative response from the user to the UI prompt. For 
example, when the UI produces a dialogue, the user 
can finalize the interaction by confirming, which can be 
used to execute the action and as reinforcement 
feedback to the underlying models. During corrective 
actions, the user corrects an output from the system. 
For example, a user might undo the spelling 
autocorrection. Finally, during rejection actions, the 
user fails to engage with a system’s suggestion because 
it is inappropriate. For example, a user might ignore a 
smartphone’s suggestion to try a new app. These 
feedback actions are a powerful implicit signal for 
adaptation and improvement of the underlying AI 
models.  

Conclusion 
XR presents the opportunity to enable low-friction, 
“always-on” assistance, but given that it operates in 
the real world, it also requires that a system reduce 
uncertainty about user context and intent. AI and 
machine learning are important for a positive user 
experience. We propose a novel framework for 
structuring several classes of models for user 
interaction in XR.  

References 
[1] Ruta Desai, Fraser Anderson, Justin Matejka, Stelian 

Coros, James McCann, George Fitzmaurice, and Tovi 
Grossman. 2019. Geppeto: Enabling semantic design 
of expressive robot behaviors. In Conference on 
Human Factors in Computing Systems - Proceedings, 
Association for Computing Machinery. 
DOI:https://doi.org/10.1145/3290605.3300599 

[2] Christoph Gebhardt, Brian Hecox, Bas Van Opheusden, 
Daniel Wigdor, James Hillis, Otmar Hilliges, and Hrvoje 
Benko. 2019. Learning cooperative personalized 
policies from gaze data. In UIST 2019 - Proceedings of 
the 32nd Annual ACM Symposium on User Interface 
Software and Technology, Association for Computing 
Machinery, Inc, 197–208. 
DOI:https://doi.org/10.1145/3332165.3347933 

[3] Rorik Henrikson, Tovi Grossman, Sean Trowbridge, 
Daniel Wigdor, and Hrvoje Benko. 2020. Head-Coupled 
Kinematic Template Matching: A Prediction Model for 
Ray Pointing in VR. In Conference on Human Factors in 
Computing Systems - Proceedings CHI 2020. 

[4] Eric Horvitz. 1999. Principles of Mixed-Initiative User 
Interfaces. In Conference on Human Factors in 
Computing Systems - Proceedings, 159–166. 
DOI:https://doi.org/10.1145/302979.303030 

 

Figure 2: A gaze-driven 
intent prediction example 
from Gebhardt et al. [2]: 
Behaviour of two different 
policies trained and tested in 
a supermarket scenario. (A) 
Policy trained on data where 
the user was instructed to 
search for wine. Here, the 
policy correctly displays only 
labels of a single item of 
interest (B) Policy trained on 
data where the user was 
instructed to search for wine, 
water, and juice. Here, the 
policy displays the labels of 
multiple items from the 
target categories while hiding 
other irrelevant drinks.  


