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As	eye	tracking	becomes	increasingly	common	in	consumer	products,	these	systems	have	the	opportunity	to	leverage	users’	gaze	behaviors	
to	infer	interaction	goals	and	assist	users.	For	example,	by	inferring	that	a	user	is	encoding	information	into	working	memory	(WM),	a	
system	could	provide	supportive	tools	(e.g.,	a	notepad)	to	users	when	they	are	most	likely	to	need	it.	The	goal	of	the	present	work	was	to	
explore	whether	natural	gaze	dynamics	could	be	used	to	decode	the	onset	of	WM	encoding.	In	an	immersive	virtual	reality	task,	participants	
searched	for	and	then	encoded	objects	into	WM	while	their	eye	movements	were	recorded.	We	then	computed	61	gaze	features	and	trained	
a	sliding	window	logistic	regression	model	to	decode	the	onset	of	WM	encoding.	The	results	demonstrated	that	the	model	was	able	to	
detect	WM	encoding	onsets	and	that	this	effect	was	not	simply	an	artifact	of	learning	when	fixations	will	occur.	The	findings	suggest	that	
natural	gaze	dynamics	can	index	when	users	intend	to	encode	information,	which	could	be	used	to	drive	adaptive	interfaces.		
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1 INTRODUCTION 

We	move	our	eyes	about	three	times	per	second	to	sample	our	environment	and	gather	information	that	is	relevant	to	our	
current	 goals	 [1,	2,	3,	4].	As	 such,	 these	 eye	movements	might	 be	 useful	 for	 inferring	 internal,	 otherwise	 unobservable	
cognitive	states,	such	as	the	onset	of	encoding	information	into	working	memory	(WM)	[5,	6,	7].	As	eye	tracking	becomes	
more	common	in	consumer	products,	a	gaze-based	model	that	infers	a	user’s	cognitive	state	could	allow	a	system	to	provide	
adaptive	assistance	to	support	their	tasks.	For	example,	if	a	system	detects	that	a	user	is	searching	their	pantry	to	construct	
a	mental	shopping	list,	it	might	launch	a	list	app	to	help	the	user	record	these	items	and	effectively	offload	the	taxing	WM	
task.	
Empirical	work	has	demonstrated	a	link	between	WM	encoding	and	people’s	gaze	patterns,	such	as	the	frequency	and	

distance	of	saccades	between	objects	in	an	environment	[5,	6,	7].	However,	these	findings	have	not	been	incorporated	into	
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predictive	models.	Furthermore,	they	link	WM	encoding	to	gaze-environment	interactions,	which	requires	knowledge	of	
target	 object	 location	 and	 identity.	A	model	 that	 takes	 gaze	 as	 input	 on	 target	 objects	might,	 however,	 be	 impractical.	
Consumer-grade	 eye	 tracking	 does	 not	 track	 gaze	 locations	 with	 high	 precision	 and	 accuracy	 for	 everyone,	 which	
undermines	the	system’s	ability	to	accurately	identify	gaze	targets.	Furthermore,	even	if	gaze	coordinates	can	be	accurately	
tracked,	the	system	must	be	able	to	identify	the	object	at	those	coordinates,	which	requires	power-hungry	cameras	and	
computationally	expensive	computer	vision	models.	As	such,	there	is	benefit	in	developing	models	of	the	intent	to	encode	
that	do	not	depend	on	gaze-environment	interactions.	
Although	there	is	clear	value	to	developing	models	that	rely	on	gaze	dynamics	alone,	this	is	not	yet	a	well-explored	area.	

For	example,	[8]	used	aggregate	gaze	measures	(e.g.,	total	fixation	counts	across	time)	to	discriminate	reading	from	scene	
viewing.	These	findings	suggest	that	gaze	can	be	used	to	decode	cognitive	state,	but	they	rely	on	aggregation	of	gaze	data	
across	time,	which	means	they	will	not	be	responsive	to	real-time	changes	in	cognitive	state.	To	develop	systems	that	can	
react	to	rapid	changes	in	user	goals	and	drive	adaptive	interfaces,	a	model	must	consume	non-aggregate	gaze	measures	
(such	as	saccade	amplitudes)	in	real-time.		
Our	work	addressed	two	hypotheses.	First,	we	hypothesized	that	(H1)	gaze	dynamics	alone	can	be	used	to	anticipate	the	

onset	of	encoding.	To	address	this,	we	developed	a	logistic	regression	model	of	the	intent	to	encode	using	gaze	data	from	a	
virtual	WM	task	(Figure	A1).	In	a	follow-up	analysis,	we	hypothesized	that	(H2)	the	predictive	model	trained	to	test	H1	is	
sensitive	 to	 the	onset	of	WM	rather	 than	the	onset	of	 fixations.	To	ensure	 that	 the	model	captured	the	gaze	dynamics	of	
encoding	rather	than	fixations	alone,	we	performed	a	stringent	test	of	our	model.	

2 METHODOLOGY 

2.1 Participants, Apparatus, and Procedure  

Thirty-eight	 participants	 completed	 the	 study.	 Informed	 consent	 was	 obtained,	 and	 protocols	 were	 approved	 by	 the	
Western	Institutional	Review	Board.	Six	participants	were	excluded	as	they	failed	to	complete	the	study	due	to	discomfort	
or	noise	disruptions	resulting	in	a	sample	of	N=32	(mean	age:	27.7	years,	16	females).		
Tasks	were	performed	and	gaze	data	were	collected	using	the	HTC	Vive	headset	with	Tobii	Pro	binocular	eye	tracking	

(120	Hz).	The	built-in	Tobii	5-point	calibration	protocol	was	used.	
A	 practice	 trial	 preceded	 the	 main	 trial	 sequence.	In	 each	 trial,	 participants	 were	 spawned	 in	 one	 of	 two	 virtual	

apartments	 and	 received	on-screen	 instructions	 to	navigate	 to	 a	 specific	 room	using	point-and-teleport	navigation.	An	
arrow	indicated	the	room’s	location,	and	it	was	visible	through	the	walls	to	guide	navigation	(Figure	A1).	Upon	arrival,	the	
navigation	arrow	and	text	cue	disappeared	and	either	1)	one	of	the	objects	in	the	room	became	marked	with	a	blue	arrow	
hovering	over	it,	or	2)	participants	were	prompted	to	navigate	to	a	new	room.	Participants	were	to	remember	the	identity	
of	the	object	marked	with	the	blue	arrow.	After	the	initial	gaze	intersection	on	the	object,	the	arrow	disappeared	and	either	
1)	another	object	became	marked	in	the	same	room,	or	2)	participants	were	prompted	to	navigate	to	a	new	room.	At	the	
end	of	each	trial,	participants	verbally	recalled	the	objects	and	were	then	given	an	optional	break.	Participants	completed	
30	trials	in	the	same	order.	Fifteen	trials	contained	5	objects	and	15	contained	9	objects	for	a	total	of	210	encoded	objects.		

2.2   Feature Computation and Sliding Window Framework 

Encoding	onsets	were	defined	as	the	fixation	after	the	first	gaze	ray	intersection	with	either	the	arrow	or	object	(whichever	
occurred	first).	The	time-series	gaze	data	collected	in	one	trial	were	then	trimmed	into	5	or	9	clips	per	trial	based	upon	the	
number	of	encoded	objects.	Each	clip	began	with	the	appearance	of	the	blue	arrow	and	ended	with	the	onset	of	encoding.	
Two	exclusion	criteria	were	applied:	1)	Clips	corresponding	to	forgotten	items	were	discarded	(14.43%	data	loss)	as	it	was	
impossible	to	know	whether	incorrect	trials	were	due	to	forgetting	or	inattentiveness;	2)	To	account	for	tracker	error,	we	
used	a	strict	criterion:	only	clips	in	which	encoding	onsets	were	less	than	500ms	after	the	first	gaze	intersection	were	used	
(M	=	17.40%	data	loss;	range	=	2.13%	to	34.52%).	
Gaze	 data	were	 transformed	by	 a	 rotation	matrix	 to	 correct	 for	 head	 orientation	 [9].	 The	 identification	by	 velocity	

threshold	was	used	for	event	detection	[10].	Gaze	velocity	was	computed	as	the	angular	distance	between	samples	divided	
by	the	change	in	time.	A	saccade	was	detected	if	gaze	velocity	was	greater	than	70°/s	for	12	to	300ms	[9,	11].	A	fixation	was	
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detected	if	gaze	velocity	was	less	than	20°/s	for	50	to	1500ms	[9].	We	then	computed	61	gaze	features	which	included	gaze	
velocity,	58	 fixation/saccade	 features	 [11],	 the	k-coefficient,	 [12]	and	dispersion	 (see	A.2	 for	 full	 feature	 set).	Features	
derived	from	fixations/saccades	have	missing	values	when	no	events	are	detected	and	were	therefore	linearly	interpolated	
since	 logistic	 regression	 cannot	 handle	 missing	 data	 (see	 next	 section).	 Each	 gaze	 feature	 was	 also	 z-scored	 within-
participant.	To	augment	the	number	of	true	data	points,	data	occurring	20ms	prior	to	the	encoding	onset	was	marked	as	a	
true	class.	
To	 create	 input	 samples	 for	model	 training,	 a	 sliding	window	of	N	ms	 (later	 determined	 through	hyper-parameter	

search)	with	a	step	size	of	1	sample	(~8.33ms;	how	many	samples	to	move	forward	in	time)	was	used	on	each	feature.	The	
class	 label	 (encoding	or	not	 encoding)	was	determined	by	 the	 class	of	 the	 last	 timestamp	 in	 a	window.	Features	 from	
fixation/saccade	events	may	contain	duplicate	values.	To	increase	the	computational	efficiency	and	reduce	collinearity,	we	
downsampled	by	averaging	every	5	samples	(~42ms)	within	each	window.	
Logistic	regression	models	were	used	to	detect	the	intent	to	encode	because	they	are	interpretable	and	lightweight.	Due	

to	 highly	 imbalanced	 data	 with	 99.1%	 more	 null	 samples,	 the	 class	 weights	 of	 the	 models	 were	 set	 to	 be	 inversely	
proportional	to	the	number	of	samples	for	each	class.	Models	were	trained	within-participant.	Each	participant’s	data	were	
split	 into	 90%	 training	 and	 10%	 test	 sets.	 A	 stratified	 10-fold	 cross-validation	 with	 three	 repeats	 was	 used	 for	
hyperparameter	tuning	and	feature	selection	on	the	training	set.		
The	area	under	the	precision-recall	curve	(AUC-PR)	was	used	for	model	evaluation,	which	is	well-suited	to	imbalanced	

data.	A	shortcoming	of	AUC-PR	is	that	the	baseline	value	is	derived	from	the	chance	rate	of	true	examples,	which	varies	by	
individual	and	window	size,	making	it	difficult	to	compare	model	performance.	To	create	a	standardized	chance	rate	for	
each	individual,	we	resampled	the	training	and	testing	data	to	have	a	fixed	percentage	of	true	classes	(0.9%)	based	on	the	
average	true	class	percentage	across	individuals.		
Since	the	predictive	window	size	may	vary	by	gaze	feature,	we	computed	the	AUC-PR	for	a	set	of	window	sizes	(5,	10,	

15,	20,	25,	30,	40,	50,	60,	70,	80,	90,	100,	110,	120)	ranging	from	42ms	to	1000ms	and	chose	the	window	size	with	the	
largest	AUC-PR	for	each	feature.	Recursive	feature	selection	was	then	applied	to	identify	useful	gaze	features.	Individual	
features	were	 added	 in	 a	 random	order	 to	 the	model.	 Features	were	 retained	 if	 they	 increased	 the	AUC-PR	 and	were	
dropped	otherwise	 after	 the	 addition	of	 a	 feature.	 Features	were	 concatenated	with	 their	 optimal	window	size	 if	 they	
aligned	at	the	same	endpoint.	Features	were	relatively	consistent	across	participants:	56	out	of	61	features	were	selected	
for	50%	or	more	participants.	The	top	three	consistent	 features	were	 fixation	detection,	gaze	velocity,	and	the	angular	
displacement	between	the	current	and	previous	saccade	landing	points.	

3 RESULTS 

H1	was	first	tested.	Here,	our	model	performed	above	chance	(M	=	0.29,	SD	=	0.21,	chance	=	0.009)	on	unseen	test	data	as	
per	 a	 one-sample	 t-test	 (t(31)	 =	 7.34,	 p	 <	 0.001),	 demonstrating	 that	 our	 model	 detected	 encoding	 onsets	 without	
knowledge	of	the	environment.	We	next	tested	whether	the	model	trained	to	test	H1	had	simply	learned	fixation	onsets	
(H2).	If	this	was	the	case,	then	the	H1	model	should	confuse	null	classes	preceding	fixations	with	true	classes	preceding	
encoding	fixations,	thereby	resulting	in	chance	performance.	To	match	our	selection	for	true	classes,	we	filtered	null	classes	
from	the	test	set	to	have	the	same	onsets:	Null	classes	were	included	if	the	last	sample	in	a	window	containing	no	fixation	
was	followed	by	the	onset	of	a	fixation.	These	filtered	test	cases	were	then	resampled	to	match	the	standardized	chance	
rate	(0.009)	(see	also	A.3.1).	Overall,	the	H1	model	performed	significantly	above	chance	(M	=	0.26,	SD	=	0.23,	t(31)	=	6.11,	
p	<	0.001),	suggesting	that	the	model	did	not	learn	to	detect	fixation	onsets	(Figure	1).	Finally,	there	was	no	difference	
between	the	H1	and	H2	results	as	per	a	paired	t-test,	suggesting	that	any	differences	in	performance	were	not	great	enough	
to	detect	statistically	 (t(31)	=	1.04,	p	=	0.31).	Overall,	 the	results	showed	that	 the	model	decoded	 the	 intent	 to	encode	
without	knowledge	of	the	environment	and	that	this	was	not	due	to	the	model	learning	fixation	onsets.	We	also	report	the	
results	using	AUC-ROC	for	interpretability	(A.3.2)	and	discuss	the	between-subject	variation	in	performance	(A.3.3).	
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Figure 1: The blue (cyan) bars represent the AUC-PR for H1 (H2). The red line is chance (0.009). 

4 DISCUSSION 

The	 present	 work	 tested	 whether	 gaze	 dynamics	 can	 decode	 the	 onset	 of	 WM	 encoding	 without	 knowledge	 of	 the	
environment.	Overall,	our	model	performed	above	chance,	demonstrating	that	gaze	dynamics	do	reflect	the	intent	to	encode	
(H1).	 Importantly,	 these	models	were	performant	using	 consumer-grade	 eye-tracking	devices,	 suggesting	potential	 for	
integration	into	working	systems.	Furthermore,	a	control	analysis	verified	that	the	model	did	not	simply	learn	to	detect	
fixation	onsets	(H2),	suggesting	that	the	model’s	gaze	features	are	sensitive	to	the	intent	to	encode	beyond	general	fixation	
onsets.		
Prior	empirical	work	has	relied	on	gaze-environment	 interactions	to	make	inferences	about	encoding	[5,	6,	7].	Using	

knowledge	of	the	environment	to	validate	internal	goals	may	be	problematic	in	consumer	settings,	though,	as	eye-tracking	
technologies	are	inaccurate	and	computer	vision	is	computationally	expensive.	To	provide	a	novel	solution,	we	used	gaze	
dynamics	alone	to	successfully	decode	encoding	intent.	
Although	we	 validated	 the	 intent	 to	 encode	model	 in	 a	 single	 setting,	 future	work	 should	 examine	 if	 these	models	

generalize	to	different	tasks	and	environments.	Furthermore,	logistic	regression	does	not	capture	relative	changes	in	the	
time-series	signal;	therefore,	time-series	modeling	might	improve	performance	of	the	models	and	provide	more	theoretical	
insights	about	the	relationship	between	gaze	and	encoding	intent.	Finally,	because	high-performing	participants	retained	
more	features	than	low-performing	participants	(Figure	A2),	it	may	be	the	case	that	the	chosen	features	did	not	capture	the	
full	range	of	gaze	behaviors	across	people.	Future	work	may	wish	to	explore	whether	additional	features	are	sensitive	to	
encoding	onsets.	
In	conclusion,	the	present	study	leveraged	gaze	features	to	decode	the	intent	to	encode.	We	provided	a	framework	using	

gaze	dynamics	that	did	not	rely	on	knowledge	of	the	environment	to	decode	cognitive	state	before	the	onset	of	encoding.	
Although	gaze	features	aggregated	across	time	can	differentiate	tasks,	such	as	scene	viewing	versus	reading	[8],	our	work	
demonstrates	 the	potential	 to	detect	 the	onsets	 of	new	cognitive	 states	 in	 real-time.	This	has	great	potential	utility	 for	
adaptive	 interfaces	as	 these	onsets	 can	be	used	 to	 launch	new	assistive	 tools	 in	 response	 to	 real-time	changes	 in	gaze	
behavior.	
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APPENDICES 

A.1 Task Figure 

	

Figure A1: Task figure.   

A.2 Feature Set 

The	following	features	were	computed.	M3S2K	refers	to	the	computation	of	mean,	median,	maximum,	standard	deviation,	
skewness,	and	kurtosis.	

• Gaze	velocity 
• Dispersion:	500ms	time	window;	computed	as	the	maximum	angular	distance	between	centroid	of	samples	in	

time	window	and	each	sample	
• Fixation	detection:	sample-level	categorical	feature	indicating	whether	a	sample	was	a	fixation	or	not	
• Saccade	detection:	sample-level	categorical	feature	indicating	whether	a	sample	was	a	saccade	or	not.	
• K-coefficient:	1000ms	time	window;	computed	from	how	exploratory	(ambient)	or	directed	(focal)	gaze	was	[12]	
• Features	derived	from	[11]	

o Fixation	duration	
o Standard	deviation	of	horizontal	gaze	position	during	fixation	
o Standard	deviation	of	vertical	gaze	position	during	fixation	
o Path	length	of	gaze	samples	during	fixation	
o Angular	displacement	between	current	and	previous	fixation	centroids		
o Angular	displacement	between	fixation	centroid	and	last	sample	of	previous	fixation	
o Horizontal	skewness	of	gaze	samples	during	fixation	
o Vertical	skewness	of	gaze	samples	during	fixation	
o Horizontal	kurtosis	of	gaze	samples	during	fixation	
o Vertical	kurtosis	of	gaze	samples	during	fixation	
o Dispersion	of	gaze	samples	during	fixation	
o Average	velocity	of	gaze	samples	during	fixation	
o Saccade	duration	
o Dispersion	of	gaze	samples	during	saccade		
o M3S2K	of	gaze	velocity	during	saccade	
o M3S2K	of	gaze	acceleration	during	saccade	
o Standard	deviation	of	horizontal	gaze	position	during	saccade	
o Standard	deviation	of	vertical	gaze	position	during	saccade	
o Path	length	of	gaze	samples	during	saccade	
o Angular	displacement	between	current	and	previous	saccade	landing	points	
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o Angular	displacement	between	current	and	previous	saccade	centroids	 
o Saccadic	ratio:	peak	velocity	/	saccade	duration	
o Saccade	amplitude		
o M3S2K	of	horizontal	gaze	velocity	during	saccade	
o M2S2K	of	vertical	gaze	velocity	during	saccade	
o M3S2K	of	horizontal	gaze	acceleration	during	saccade	
o M3S2K	of	vertical	gaze	acceleration	during	saccade	

A.3 Supplementary Results 

A.3.1 H2 Results Using Average Chance From H2 
Because	the	H2	chance	was	greater	than	H1	(due	to	using	filtered/fewer	null	cases	preceding	fixations),	we	also	computed	
the	H2	results	using	the	average	chance	from	H2	(8%)	to	resample	the	data.	The	results	were	still	significant	(M	=	0.63,	SD	
=	0.19;	t(31)	=	16.14,	p	<	0.001),	suggesting	that	the	model	was	not	predicting	above	chance	on	the	null	classes	preceding	
fixations	due	to	our	resampling	method.		

A.3.2 Results using AUC-ROC 
We	also	computed	the	results	using	the	area	under	the	receiver	operating	characteristic	curve	(AUC-ROC)	since	this	is	more	
common	and	interpretable	than	AUC-PR.	Overall,	the	results	were	unchanged.	When	testing	H1,	the	results	showed	that	the	
model	performed	above	chance	(M	=	0.96;	SD	=	0.02,	chance	=	0.5)	on	the	unseen	test	data	as	per	a	one-sample	t-test	(t(31)	
=	 113.82,	 p	 <	 0.001)	 suggesting	 that	 gaze	 features	 can	 decode	 the	 intent	 to	 encode	without	 the	 use	 of	 environmental	
features.	The	H2	results	were	also	unchanged	(M	=	0.95;	SD	=	0.04,	chance	=	0.5;	t(31)	=	59.64,	p	<	0.001),	suggesting	that	
the	model	was	not	simply	detecting	when	fixations	would	occur.	Overall,	the	results	using	AUC-ROC	showed	that	the	models	
performed	exceedingly	well	at	decoding	the	intent	to	encode.		

A.3.3 High- Vs. Low-Performing Participants 
Some	 participant	 models	 performed	 better	 than	 others.	 One	 reason	 for	 this	 could	 be	 that	 there	 were	 more	 features	
predictive	 of	 encoding	 in	 high-performing	 participants	 relative	 to	 the	 low-performing	 participants.	 Indeed,	 a	
supplementary	analysis	showed	that	test	AUC-PRs	were	significantly	correlated	to	the	number	of	 features	retained	per	
participant	 (Pearson	 r	 =	 0.37,	 p	 =	 0.04),	 suggesting	 that	 there	 are	 likely	 individual	 differences	 in	 which	 features	 are	
predictive	of	the	intent	to	encode.	
	

	 	

Figure A2: The relationship between test AUCs and the number of features retained for each participant. Each blue circle corresponds to a 
participant. The red line corresponds to the Pearson correlation between test AUC-PRs and the number of features retained. 

 


