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ABSTRACT
Freehand interactions with augmented and virtual reality are grow-
ing in popularity, but they lack reliability and robustness. Implicit
behavior from users, such as hand or gaze movements, might pro-
vide additional signals to improve the reliability of input. In this
paper, the primary goal is to improve the detection of a selection
gesture in VR during point-and-click interaction. Thus, we propose
and investigate the use of information contained within the hand
motion dynamics that precede a selection gesture. We built two
models that classified if a user is likely to perform a selection ges-
ture at the current moment in time. We collected data during a
pointing-and-selection task from 15 participants and trained two
models with different architectures, i.e., a logistic regression clas-
sifier was trained using predefined hand motion features and a
temporal convolutional network (TCN) classifier was trained using
raw hand motion data. Leave-one-subject-out cross-validation PR-
AUCs of 0.36 and 0.90 were obtained for each model respectively,
demonstrating that the models performed well above chance (=0.13).
The TCN model was found to improve the precision of a noisy se-
lection gesture by 11.2% without sacrificing recall performance. An
initial analysis of the generalizability of the models demonstrated
above-chance performance, suggesting that this approach could be
scaled to other interaction tasks in the future.
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1 INTRODUCTION
To support natural and immersive experiences in augmented reality
(AR) or virtual reality (VR), systems have been leveraging freehand
interactions, which rely on computer vision or wrist-based sensing
technologies [25, 49, 59]. These systems recognize and track mid-
air, freehand user input rather than relying on users to perform
specific input actions using controllers or joysticks. Although these
freehand technologies are intuitive and less encumbered, they in-
troduce new challenges because they require highly robust input
recognizers and effortless interaction techniques.

Unfortunately, mid-air gesture detection is relatively unreliable.
Vision-based tracking systems tend to fail when occlusion occurs
[6], while wrist-based sensing techniques are sensitive to motion ar-
tifacts and sensor placements [47]. The use of these techniques also
often results in false positive and false negatives during recogni-
tion [6, 21, 38, 70], which can significantly impact user experiences
[41]. To reduce the false positives that occur when detecting a
thumb-finger pinch gesture using a smartwatch, Wen et al. [65]
proposed using an activation gesture so that input events would
only be detected when the system was activated. This is a non-
optimal solution because it places an undue burden on the user to
perform additional actions. In this paper, we propose an alterna-
tive approach to improve the detection of a selection gesture in
VR during point-and-click interaction by harnessing natural user
behaviors to implicitly infer whether a user intends to make a se-
lection. To this end, we present our approach that does Real-time
Implicit Detection of Selections (RIDS). RIDS leverages historical
hand motion dynamics during freehand pointing to detect the prob-
ability of a user’s selection gesture at any time, independently of,
and agnostic to, the actual sensing of the gesture (e.g., a finger-
thumb pinch) and the selection target. RIDS increases selection
accuracy when the sensing of a selection gesture is noisy, which
often occurs with wearable systems when freehand gestures are
performed. As demonstrated in this work, fusing the output from
RIDS with a gesture sensing model increases selection accuracy.

Prior research on implicit input detection has only explored
using natural gaze behavior for point-and-select VR tasks [18]. The
drawbacks to using gaze are that eye-tracking technology is not
integrated within most consumer AR/VR devices and eye-trackers
are influenced by variations in scene brightness, eyeglasses, and
eye tracker biases [17]. As such, this research explores whether
hand motion dynamics during pointing in VR might be useful for
improving the detection of a selection gesture.

To this end, data was collected during a pointing and selection
task that was representative of a VR game. The hand motion data
was then used to build two different RIDS models, one using logistic
regression and the other using a temporal convolutional network
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(TCN). During an evaluation of the models, Leave-one-subject-out
cross-validation (LOSOCV) PR-AUC scores of 0.36 and 0.90, were
reported (chance = 0.13). Further testing of the model was then
conducted using an existing VR pointing dataset to explore the
generalizability of the model. Finally, the model was fused with
a noisy inertial pinch model and found to increase the selection
PR-AUC by 11.19%.

The primary contribution of this research is the development
and demonstration of two RIDS models that performed well above
chance in a VR setting using users’ natural hand motion dynam-
ics. The secondary contributions are an analysis of the models’
generalizability to other point-and-select task scenarios and the
application of the TCN model to increase the precision of a noisy
selection gesture.

2 RELATEDWORK
This work builds upon prior research on hand motion dynamics in
VR selection and explicit input prediction during pointing.

2.1 Hand Motion Dynamics During Pointing
It is generally assumed that hand motions while pointing consist
of predictable patterns that can be modeled [5, 22, 51]. This as-
sumption formed the basis of our motivation to use hand motion
dynamics for RIDS. As there are several kinematic parameters from
the experimental arm pointing literature that measure predictable
patterns over the course of the arm’s trajectory (i.e., velocity, peak
velocity, time to peak velocity, index of velocity shape etc., [9]),
these features were explored in our logistic regression model.

In terms of models, the most well-established model explaining
hand motion while pointing is Meyer et al.’s hybrid OII model [50]
which separated pointing motions into two distinct stages: a high
velocity, large movement to bring the pointer close enough to a
target without visual tracking (i.e., the ballistic phase), and a lower
velocity, corrective movement to reach a target under feedback con-
trol (i.e., the corrective phase). A further assumption noted that this
behavior was the result of humans trying to behave optimally ac-
cording to a certain internalized cost function [22]. Flash and Hogan
[23] proposed that this function took the form of a minimum jerk
model, where humans aimed to minimize the jerk (i.e., derivative
of acceleration) and generate smooth movements, at least during
the ballistic phase of movement. Alternatively, other research pro-
posed a minimum acceleration model [10]. Berret et al. argued that
vertical arm movements in the air minimized absolute work, the
energy consumption of the muscular forces [10]. One implication
that results from these models explaining ballistic motion is that
as a user gets closer to selecting a target, they would switch from
ballistic to corrective motion, possibly resulting in more frequent
instances of higher jerk, for example. The variation in these feature
values could therefore be informative for RIDS so we explored the
use of these features during our logistic regression model develop-
ment. As described later, we performed feature selection on this
set to arrive at the final features that were predictive of selection
gestures across individuals.

2.2 Input Prediction During Pointing
There have been several types of input prediction models that have
been developed to understand pointing, the most common being
end-point prediction [36, 42, 68], hand trajectory prediction [24, 46],
and target prediction [14]. Multiple techniques used hand and input
devicemotion for predicting user-intended targets [11, 12, 52, 71]. In
human-robot collaboration, existing work used trajectory matching
[57] or neural networks [53, 58] to enable proactive robot assistance
whenever a user’s hand reached for objects. For 3D environments,
there has been research predicting vehicular touchscreen input [1–
4] and on using long short-term memory (LSTM) models to predict
the probability of selecting candidate objects using hand-reach
features like position and orientation [16]. A heuristic method was
also developed to disambiguate the target object a user intends
to grasp in a cluttered scene using hand action cues [56]. Further,
existing work has also predicted future cursor positions in target-
agnostic ways for mouse input [7, 43, 54], touchscreens [31, 45, 67],
and controller input in VR [28, 29]. Gamage et al. [24] demonstrated
continuous 3D hand trajectory prediction in VR using a kinematics-
based prediction approach.

In addition to hand and input devices, eye tracking has also been
used for prediction. For example, gaze scanpaths have been used to
predict search targets [13, 60, 61] or anticipate user actions that a
robot can perform [34, 35, 40, 62, 69]. Researchers have also explored
target forecasting in VR (e.g., [33]), with some research taking
advantage of gaze fixations to anticipate a user’s hand movements
while reaching for objects [15, 26].

Although these techniques have been shown to be useful, each
of these projects focused on explicitly predicting the trajectory,
the final target, or the final hand or cursor position. The present
research focuses on a different problem, namely the implicit detec-
tion of a selection gesture in the current moment using contextual
information that is independent of the sensing of gestures. The
closest research in this space comes from David et al. [19] and
Bednarik et al. [18]. Bednarik et al. used an SVM model based on
hand-crafted features such as eye fixations and saccades. Bednarik
et al’s prediction model, however, incorporated gaze data up to
one fixation after a click, which reduced its potential application to
real-time scenarios. David et al. overcame this limitation but still
only used feature-based regression models. In contrast, the present
research used hand motion dynamics for a feature-based model, as
well as a temporal convolutional network that took raw time-series
data as input. It further demonstrated the model’s application and
investigated its generalizability to another task scenario.

3 DATA COLLECTION
To train and test the RIDS model, hand motion data was collected
during a freehand pointing and selection task that invoked move-
ment dynamics analogous to a real-world VR task. While existing
work has used controlled, prompt-based pointing tasks [29] for
problems such as end-point prediction, those tasks yielded a nar-
row set of movement dynamics that were not representative of
real-world use, making the problem seem easier than it is. There-
fore, a VR game that contained target size and distance variations,
as well as the unstructured behaviors inherent in real-world use,
was developed.
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3.1 Task Design
The task was a VR version of Yahtzee [66]. The participant’s goal
was to compete against the computer to collect as many points as
possible within a specific time period (i.e., a three minute block).
Each turn started by rolling five dice and the number of turns de-
pended on how fast the participant played the game. A set of actions
was displayed on a panel in front of the participant, indicating the
points that they could collect if they rolled that combination with
their dice (Figure 1). After each roll, the participant could "lock"
any subset of the dice to try to aggregate the dice towards a desired
combination. Possible actions included rolling the dice, "locking" a
die, and selecting a combination to claim points. All actions were
selected using a finger-thumb pinch gesture.

Figure 1: A competitive VR Dice Game task.

There were 12 trials within each block and each lasted 3 minutes.
Before each block, participants were offered a voluntary break from
using the HMD, if desired. After each block, participants completed
subjective surveys (these data were not used for model development
and were not analyzed within this paper). The entire data collection
process lasted approximately one hour.

3.2 Apparatus
The task was built using the Unity game engine. Participants wore
an HTC Vive Pro Eye HMD and used a hand tracker puck [32]
whose raycast was used for pointing. The tracker’s position and
orientation provided the 6 DOF hand motion data that was used for
the models. To sense the selection pinch gesture, wristwatch-IMU
driven pinch sensing similar to Wen et al. [65] was used. The pinch
sensing was usable, but not 100% accurate. Although the reported
pinch detection had an F1-score of 83%, this score was artificially
high because it did not include false positives from non-gestures,
where in real world cases, they would be detected frequently. This
sensing technique enabled for an investigation of howwell the RIDS
model could increase the precision of noisy selection gestures. The
ground-truth of the pinch selection gesture was also collected using
an approach similar to ElectroRing [39], which required the partici-
pant to wear rings on their thumb and the index finger proximal
phalanges, ensuring near-perfect pinch detection accuracy.

The data from the ground truth rings were not used to drive the
selection gesture because the IMU-driven pinch sensing enabled for
the collection of data about a participant’s hand motion dynamics
in the event of false positives and negatives, which the RIDS model
needed to account for.

3.3 Participants
For a safe data collection during the COVID-19 pandemic, seven-
teen right-handed participants were recruited remotely. The de-
vices were mailed to each participant and the study was conducted
through video calls. Participants’ ages ranged from 23 to 42 with a
mean age of 34. Participants included 6 females and 11 males. Two
participants reported no experience with VR devices, while the rest
had used VR devices in the past. Informed consent was obtained
and protocols were approved by the Western Institutional Review
Board. Two of the participants’ data was removed from the study
due to the data being incomplete.

4 MODELING FRAMEWORK
Simple regression models have lower power, processing, and mem-
ory costs, which are significant factors for wearable devices, how-
ever, a more complex convolutional model may offer better per-
formance despite higher costs. Therefore, two RIDS models were
investigated within this research, a logistic regression model and
a temporal convolutional network (TCN) model. The two mod-
els shared the same modeling framework, producing probabilistic
outputs which indicated how likely the participant performed a
selection gesture, however they had key differences in terms of
model input and architectures.

4.1 Data Processing
The time-series hand motion data was first resampled to 60 Hz to
account for irregular data sampling during the real-time recording
(i.e., approximately 90 Hz at the standard Unity frame rate). To
mark the ground truth of a participant’s selection gesture, the RIDS
models utilized the onset of the pinch selection signalled by the
ground truth pinch device. For each time frame, a class label, i.e.,
True/Null, was added, according to the pinch detection from the
ground truth device in each time frame.

The time series hand motion data was then divided into two
continuous datasets, with the first 70% of the data being used for
training and the remaining 30% of the data being used for held-out
testing within each participant. Five-fold cross validation was used
on the 70% training data.

4.2 Sliding Window
A sliding window approach was used to enable the model to make
an inference at every time frame. The sliding windows had two
parameters, i.e., window size and step size. The window size defined
the duration of the predictive window used for the model input,
while the step size determined how many samples to move forward
in time when generating the sliding windows. The models used a
step size of 16.67𝑚𝑠 (i.e., one data point in a time series with 60𝐻𝑧
sampling rate) and the window size was determined through hyper-
parameter tuning on the training set. Hyperparameters are typically
specified heuristically and then tuned for a given machine learning
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problem. Tuning allows one to build a model for each combination
of hyperparameter values and select the best hyperparameter value
based on the one that provides the best performance on the valida-
tion set. Window sizes ranging from 83.33 to 2500.00 milliseconds
were investigated. The class label for each window was determined
by the class of the last sample in the window. All windows with a
pinch gesture detected in the middle of the sample were discarded
to ensure that the model considered only a single instance of a true
pinch in the data. As training samples were generated through a
sliding window over the time series data, cross-validation could not
be performed using a randomized sampling strategy to ensure that
there were no overlapping window segments between the training
and testing sets nor the cross-validation folds. To maintain data
independence, we first split the time-series into continuous data
folds (i.e., Fold 1 from time 0 to t, Fold 2 from time t+1 to 2t+1..),and
then applied the sliding window to each fold.

4.3 Model Evaluation Metric
Both the area under the curve of the Receiver Operator Character-
istic (ROC-AUC) and the Precision Recall Curve (PR-AUC) were
used to evaluate the models. ROC-AUC is a more commonly used
metric in evaluating a model’s performance, however, compared to
ROC-AUCs assuming a chance rate of 0.5, PR-AUCs are more appro-
priate for unbalanced datasets [20, 63]. The PR-AUC metric is more
sensitive to a large number of null classes that are misclassified as
false positives and the chance rate of PR-AUC is derived from the
percentage of positive examples among all samples, which varies
by individual. To facilitate direct comparisons between participants
and models, a standardized chance rate of 0.13 was created for each
participant by resampling the data to a fixed ratio of 1:7 between
positive and null classes. A much higher chance rate was used
in this research to address the data unbalance problem for model
training. In original data, the ratio between the number of true and
null classes is 1:128.18 (chance rate = 0.0078). This would have had
an impact on our real-time evaluation since the actual ratio would
be heavily skewed in favor of null samples. Essentially, the resam-
pling emphasized the detection of true positives more than true
negatives. Section 6.3 further evaluated the model’s performance
using an adjusted metric which considered real-time application
requirements. Although models evaluated on resampled data do not
represent their real-time performance, such data enabled for model
selection by facilitating parameter tuning and model comparisons.
In contrast, the additional parameters used in the adjusted metric
(Section 6.3) made the training space intractable.

5 FEATURE-BASED LOGISTIC REGRESSION
MODEL

To implicitly detect selection gestures, a logistic regression model
was developed using a set of hand motion features (Figure 2a). A
recursive feature addition (RFA) approach, which is commonly used
to select features that have meaningful independent contributions
towards predicting the target value [27, 55], was used as part of the
feature exploration pipeline (Figure 2b).

5.1 Feature Extraction
Based on the pointing model literature [5, 9, 51], 19 features were
extracted from the triaxial hand positions and forward pointing di-
rection vectors which the pointing raycast was also generated with
(Table 1). The features included hand position and forward pointing
direction velocity, acceleration, jerk, time since peak velocity, time
since peak acceleration, velocity shape, acceleration shape, absolute
work, and hand position direction change in velocity and jerk.

A Pearson correlation matrix was computed to examine whether
these extracted 19 features were correlated. Given the similarity
amongst some of the features, it was expected that collinearity
would exist within the data, which is a problem for feature se-
lection because highly correlated features could be selected inter-
changeably. As six features including hand position velocity shape,
forward pointing direction velocity shape, time since peak velocity of
hand position, time since peak velocity of forward pointing direction,
time since peak acceleration of hand position, and time since peak
acceleration of forward pointing direction were highly correlated
(correlation coefficient 𝑟 > 0.58; Figure 2c), velocity shape of hand
position was selected to represent this set of correlated features.
Other features were excluded as they were more dependent on
absolute time, making them challenging to generalize across tasks.

5.2 Feature Selection
A recursive feature addition (RFA) approach was used to select fea-
tures from the remaining set of possible features. A sliding window
was used to extract input samples for model development. Because
different window sizes impact results differently, this RFA process
was repeated seventeen times for different window sizes ranging
from 83.33 to 2500.00 milliseconds. The selected features reported
belowwere generated using the window size of the highest PR-AUC
(i.e., window size = 2166.67 milliseconds).

5.2.1 Model Description. Sklearn (version 1.0.1) was used for the
logistic regression models. Due to the imbalanced dataset, the train-
ing parameter, class weight, was set to be inversely proportional
to the number of samples for each class. Thus, a class with fewer
samples was penalized more when it was wrongly classified.

5.2.2 Recursive Feature Addition (RFA). RFA was first performed
for each participant (Figure 2b). Features were added using a ran-
domized order to ensure the best features were selected irrespective
of the order they were added. Features were retained if they in-
creased the average PR-AUC across folds; otherwise, they were
dropped. The features were then rank ordered by the percentage of
participants that retained a given feature (Figure 3a). The resulting
feature order served as the input order for the next-step recursive
feature selection using the training data from all participants to
ensure that noise did not eliminate a good feature and to remove
features that were not consistently predictive across participants.
Similarly, features that increased the PR-AUC were retained, oth-
erwise they were dropped (Figure 3b). The final set of selected
features are highlighted in Table 1.

While the velocity and acceleration features are self-explanatory,
the other selected features may be less intuitive. Absolute work, for
example, accounts for the assumption that a participant’s goal was
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Figure 2: Feature-based logistic regression model development. (a) The feature exploration pipeline. Hand features were first
extracted from the raw hand motion time series data. To identify a set of predictive features, training samples were generated
using a sliding window approach followed by an RFAmethod. A logistic regression model leveraged this set of selected features.
(b) A flowchart of the RFA method. (c) The feature correlation matrix.

Figure 3: Results of the RFA. (a) The proportion of partici-
pants that retained a given feature. (b) Features that were
retained from the RFA within participants were iteratively
added, from the most retained to the least retained. Each
point depicts the average PR-AUC from the 5-fold cross-
validation. The error bars depict 95% confidence intervals.
Asterisks correspond with features that increased the PR-
AUC relative to the previous benchmark and were used in
follow-up model evaluations.

to minimize the work performed while pointing [10]. While kine-
matic models use joint torques to estimate this, the experimental
setup did not afford access to such information so an approximation

was used. The other features, including velocity shape and direction
change, capture the relative dynamics of the hand motions. Velocity
shape, for example, is a standard kinematic parameter for modeling
arm movements [9] that tries to approximate a single value for the
shape of a velocity curve as the hand approaches a target. Assum-
ing a perfect ballistic-corrective motion, velocity shape will be at
its highest at the time of selection. Direction change features, on
the other hand, are intended to capture how the corrective phase
includes adjustments around a target when a participant changed
their motion direction multiple times to correct for overshooting or
undershooting. Lastly, although different participants might have
had different speed-accuracy trade-offs during pointing such that
absolute features including velocity, acceleration and absolute work
were not as generalizable as the selected relative features, there
were consistent temporal patterns among them (e.g., participants
slowed their hand motions down to a near-zero velocity or acceler-
ation just before a selection).

5.3 Model Evaluation Results
From the RFA analysis, a set of 7 hand motion features that could
implicitly detect selections during freehand pointing in VR was
obtained. To further evaluate model performance using these fea-
tures, the effect of different sliding window sizes and the model’s
generalizability across participants was evaluated. This evaluation
demonstrated that the model performance grew as the window
size increased from 83.33 to 2500 milliseconds (Figure 4). The best
PR-AUC of 0.37 was achieved with a 2166.67 millisecond window.

A different type of cross-validation, Leave-one-subject-out cross-
validation (LOSOCV), was also performed to evaluate the model’s
generalizability across participants. Figure 5 represents the model
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Table 1: A description of the extracted features. The shaded rows denote the final features after feature selection.

Feature Name Description Mathematical Formula

Pos. Vel. hand position velocity 𝑣 𝑣 =

√
(𝑥1−𝑥0)2+(𝑦1−𝑦0)2+(𝑧1−𝑧0)2

Δ𝑡 , where Δ𝑡 = 𝑡1 − 𝑡0
Pos. Accel. hand position acceleration 𝑎 𝑎 =

𝑣1−𝑣0
Δ𝑡

Pos. Jerk hand position jerk 𝑗 𝑗 =
𝑎1−𝑎0
Δ𝑡

Pos. Vel. Dir. Chge. velocity direction change Δ𝛼 Δ𝑣 =
arccos[ ( ®𝑝1 · ®𝑝0)/( | ®𝑝1 | | ®𝑝0 |)]

Δ𝑡

Pos. Accel. Dir. Chge. acceleration direction change Δ𝑎 Δ𝑎 =
arccos[ ( ®𝑣1 · ®𝑣0)/( | ®𝑣1 | | ®𝑣0 |) ]

Δ𝑡

Pos. Jerk Dir. Chge. jerk direction change Δ 𝑗 Δ 𝑗 = arccos[ ( ®𝑎1 · ®𝑎0)/( | ®𝑎1 | | ®𝑎0 |) ]
Δ𝑡

Pos. Abs. Work absolute work of hand position 𝑤 = 𝑎 ∗
�� ®𝑝1 − ®𝑝0

��, ®𝑝𝑡 is the position vector at time 𝑡

Time since Pos. Peak Vel.
time since peak hand position velocity 𝑡𝑣𝑝 ,
reset the start time to 0 after
each pinch selection event

𝑡𝑣𝑝 =

{
0 𝑣 ≤ 𝑣𝑝

𝑡 − 𝑡𝑣𝑝 𝑣𝑝 ≤ 𝑣
, 𝑣𝑝 is the rolling peak velocity

Time since Pos. Peak Accel.
time since peak hand position acceleration 𝑡𝑎𝑝 ,
reset the start time to 0 after
each pinch selection event

𝑡𝑎𝑝 =

{
0 𝑎 ≤ 𝑎𝑝

𝑡 − 𝑡𝑎𝑝 𝑎𝑝 ≤ 𝑎
, 𝑎𝑝 is the rolling peak acceleration

Pos. Vel. Shape position velocity shape 𝑣𝑠 𝑣𝑠 =
𝑣𝑝
𝑣𝑚

, 𝑣𝑝 , 𝑣𝑚 is the rolling peak and mean velocity
Pos. Accel. Shape position acceleration shape 𝑎𝑠 𝑎𝑠 =

𝑎𝑝
𝑎𝑚

, 𝑎𝑝 , 𝑎𝑚 is the rolling peak and mean acceleration

Dir. Vel. hand pointing direction velocity 𝑣
𝑣 =

arccos
[
( ®𝑑1 · ®𝑑0)/(

��� ®𝑑1������ ®𝑑0���)]
Δ𝑡 , ®𝑑𝑡 is pointing direction vector

Dir. Accel. hand pointing direction acceleration 𝑎 𝑎 =
𝑣1−𝑣0
Δ𝑡

Dir. Jerk hand pointing direction jerk 𝑗 𝑗 =
𝑎1−𝑎0
Δ𝑡

Dir. Abs. Work pointing direction absolute work 𝑤 = 𝑎 ∗
�� ®𝑝1 − ®𝑝0

��, ®𝑝𝑡 is the position vector at time 𝑡

Time since Dir. Peak Vel.
time since peak velocity of pointing
direction 𝑡𝑣𝑝 , reset the start time to 0
after each pinch selection event

𝑡𝑣𝑝 =

{
0 𝑣 ≤ 𝑣𝑝

𝑡 − 𝑡𝑣𝑝 𝑣𝑝 ≤ 𝑣
, 𝑣𝑝 is the rolling peak velocity

Time since Dir. Peak Accel.
time since peak acceleration of pointing
direction 𝑡𝑎𝑝 , reset the start time to 0
after each pinch selection event

𝑡𝑎𝑝 =

{
0 𝑎 ≤ 𝑎𝑝

𝑡 − 𝑡𝑎𝑝 𝑎𝑝 ≤ 𝑎
, 𝑎𝑝 is the rolling peak acceleration

Dir. Vel. Shape pointing direction velocity shape 𝑣𝑠 𝑣𝑠 =
𝑣𝑝
𝑣𝑚

, 𝑣𝑝 , 𝑣𝑚 is the rolling peak and mean velocity
Dir. Accel. Shape pointing direction acceleration shape 𝑎𝑠 𝑎𝑠 =

𝑎𝑝
𝑎𝑚

, 𝑎𝑝 , 𝑎𝑚 is the rolling peak and mean acceleration

Figure 4: The effect of sliding window size on the Logistic
Regression-based RIDS model.

performance trained on 14 users’ data and tested on the left out
participant. An average ROC-AUC of 0.79 and PR-AUC of 0.36 were
found to be 57.60% and 184% higher than chance, respectively. All

participants’ ROC-AUC and PR-AUC scores were also found to be
higher than chance. This indicates that there is a set of hand motion
features that can be used to implicitly detect selection gestures
during freehand pointing in VR.

The above results also suggest that there is space for improve-
ment. More complex model architectures are commonly explored
when it comes to performance improvements with a simple model.
In the next section, we present improved model performance by
utilizing a Temporal Convolutional Network (TCN).

6 TCN MODEL
To further improve the implicit detection of participants’ selection
gestures using hand motion dynamics, a temporal convolutional
network (TCN) was also developed.

6.1 Model Description
Prior work has shown that TCNs can achieve good performance
when learning spatio-temporal patterns from long term series data
[44, 48, 64]. TCN model architectures are comprised of causal and
dilated convolutional layers. The causal convolutions ensure that
there is no leakage of information from the future to the past.
The dilated convolutions help the model to learn longer historical
information while maintaining a relatively simple architecture. This
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Figure 5: The logistic regressionmodel LOSOCVperformance.
The ROC and PR curves are depicted on the left and right
panels, respectively. Each colored curve represents each par-
ticipants’ performance. The thick red curve represents the
averaged curve across participants.

is an important property for the present research as the dataset
might not be large enough such that a much more complex but also
promising architecture (i.e., a FCN or a ResNet) might easily overfit
it [37]. The TCN model implemented within this research followed
the architecture defined in Bai et al. [8] with 4 layers.

Different from the logistic regression model, the TCNmodel used
raw hand motion data as input rather than engineered features.
Compared to linear models, a convolutional network has a higher
capability to learn meaningful patterns from raw data with different
convolution kernels. In this work, the model input was formulated
as the first-order difference between two consecutive time frames
of the hand position and forward pointing direction vectors.

6.2 Results
Similar to the logistic regression model evaluation, the TCN’s model
performance was investigated using different sliding window sizes
and generalizability across participants.

The performance of the TCN model was first evaluated with
different window sizes using the training data from all participants.
The PR-AUC increased from 0.86 to 0.92 when the window size
increased from 83.33 to 333.33 milliseconds and then continued
fluctuating around 0.92 afterwards (Figure 6). The best PR-AUC,
i.e., 0.93, was obtained using a 1333.33 millisecond sliding window,
which was 644% higher than the chance rate of 0.13. This result
demonstrates how a shorter duration of hand motion dynamics
(i.e., 1333.33 milliseconds) could effectively infer selection gestures
using the TCN model.

To investigate its generalizability across participants, the TCN
model performance was then evaluated using Leave-one-subject-
out cross-validation (LOSOCV; Figure 7). The averaged ROC-AUC
of 0.97 and PR-AUC of 0.90 were 94% and 617.6% higher than chance,
respectively. Each of the folds’ performance was also higher than
chance, with ROC-AUCs ranging from 0.91 to 0.99 and PR-AUCs
ranging from 0.69 to 0.99. Compared to the feature-based logistic
regression model performance (Figure 5), TCN improved the ROC-
AUC by 23.10% and the PR-AUC by 152.68%. This indicates that
the TCN model captured motion dynamics that were hidden in
the raw data, whereas the engineered features used in the logistic
regression model were not able to.

Figure 6: The effect of the sliding window size on the TCN
model.

Figure 7: The TCN model LOSOCV performance. The ROC
and PR curves are depicted on the left and right panel, re-
spectively. Each colored curve represents each participants’
performance. The thick red curve represents the averaged
curve across participants.

6.3 Evaluation with an Adjusted Metric for
Real-time Applications

As mentioned in 4.3, to facilitate model optimization and promote
the occurrence of true samples during training, the data was resam-
pled into a 1:7 ratio between the number of true and null samples
(original ratio = 1:128.18). To investigate how this model might per-
form in a real-time application using a sliding window, a different
metric was needed because overlapping windows over penalize the
model’s precision. When a sliding window was used for real-time
applications without resampling, the overlapping windows were
expected to be predicted as similar values, which over counted the
number of false positives for windows that were overlapping with
the true samples. This metric scanned the predicted time series
using a debounce window and identified the predictions as true
positive, false positives, or false negatives by searching within a
time duration around the positive events and matching them with
the ground truth. Debounce windows are a common technique used
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in real-time gesture classification algorithms [39] and they were
also used in the pinch detector algorithm herein.

The two parameters, the debounce window and the search length,
could be adjusted according to the requirements of the application.
The debounce window was needed to reduce the frequency of signal
onset due to overlapping windows. When debounce was applied to
a time series, the first prediction that was above the onset thresh-
old might not be perfectly synchronized with the ground truth.
Therefore, a synchronization step was needed to find the matching
events for evaluation. This was realized through a search around
any onset event with a search length. Although the evaluation was
not performed with the model deployed in real-time, this metric
not only hinted at how the model might work in real-time, but also
supported the exploration of different application requirements by
adjusting the debounce window.

A debounce window of 300 milliseconds with a search length of
150 millisenconds was used to evaluate the TCN RIDS model. When
evaluating the onset threshold from 0.1 to 1.0, the best performance
was achieved with a precision of 0.58 and a recall of 0.70 when the
threshold was set to 0.63. Although the real-time evaluation does
not show near-ceiling performance, the RIDS model is expected
to work well when used with noisy input recognizers to improve
their performance (see Section 7.2). Also note that existing research
on the implicit detection of selections did not evaluate real-time
performance [18, 19].

7 ADDITIONAL EXPLORATIONS
Besides the development and evaluation of the two RIDS models,
preliminary explorations were also performed to understand the
models’ generalizablity across other point-and-select task scenarios
and to improve noisy input sensing models.

7.1 Model Generalizability Across Task
Scenarios

Although the models might be representative of the specific task
that they were trained for, the learnt behavior prior to the selection
events should be generalizable to a certain extent to other pointing
and selection tasks in VR. To explore the model’s generalizability
to other point-and-select task scenarios, the trained model was
applied to an existing dataset from a reciprocal pointing task [30]
in VR, wherein participants were prompted to point back and forth,
in succession, between start and end targets that were rendered as
spheres. The task consisted of controlled variations of the target
angle, depth, and circular position of the spheres. The task used
an Oculus Rift headset and handheld controllers for pointing. Not
only was the task scenario different from this present research, but
the selection events were also triggered through button presses on
the controller instead of pinch gestures. The dataset consisted of
6 DOF motion data (i.e., triaxial controller positions and forward
direction vectors) that was collected from the Oculus Rift controller.
For more details on the task, refer to Henrikson et al.’s paper [30].

To ensure that fair comparisons were performed, for each task,
the first 70% of the data for each participant was used as training
data and the remaining 30% was used as testing data. Given that
the reciprocal pointing task was far more constrained than the Dice
Game task, we expected that training on the Dice Game task and

testing on the reciprocal pointing task would be more effective than
the reverse, because training on the Dice Game task could capture
more variance in hand motions than the reciprocal pointing task.

Figure 8 shows the performance of the logistic regression model
while Figure 9 shows the TCN model’s performance. Given the
reciprocal task simplicity, it is not surprising that both models
have high PR-AUCs of .99 when trained and tested on this task.
Also, as expected, models trained using the reciprocal pointing task
produced above-chance performance on the Dice Game task, but the
PR-AUCs were relatively poor (0.15 for logistic regression and 0.26
for TCN). This was not surprising as the reciprocal pointing task
contained much simpler behaviors than the Dice Game task, such
that the model might fail when interpreting such unseen patterns.
The application of the Dice Game model to the reciprocal pointing
task, on the other hand, was able to achieve a PR-AUC of 0.47
(𝑐ℎ𝑎𝑛𝑐𝑒 = 0.13) using both models. This result, which is 276% higher
than chance, indicates that the model captured task independent
hand motion dynamics which were useful while detecting selection
events on a novel task that the model had not been trained on. It is
likely that these results could be improved further using a transfer
learning approach to facilitate quick applications of this model to
other novel tasks or by training the model on multiple distinct
pointing-and-selection interaction tasks.

Comparing the two models, the TCN model had a much better
performance than the logistic regression model when trained on
the simple reciprocal task and tested on the more complex Dice
Game task (i.e., 0.15 vs 0.26). This also indicates that when training
data has less variance, TCN can capture more generalizable hidden
features compared to engineered features.

Figure 8: The results of the Logistic regression model gener-
alizability cross-testing.

7.2 Application: Improving Accuracy of a Noisy
Pinch

The Real-time Implicit Detection of Selections (RIDS) could be
used to increase selection accuracy when the sensing of a selection
gesture is noisy. Since the collected data was comprised of the IMU-
driven pinch detection and the pinch ground truth, it was possible
to investigate how TCN RIDS could be used to improve the accuracy
of the IMU-driven pinch detection.
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Figure 9: The results of the TCNmodel generalizability cross-
testing.

Using the real-time evaluation metric described in Section 6.3,
the IMU-driven pinch detection precision and recall were found to
be 0.62 and 0.79, respectively. This evaluation contained pinches
that did not trigger any UI events, thus participants might have
experienced a more reliable pinch recognizer while interacting.

The IMU-driven pinch probabilities were then integrated with
the probabilities generated by RIDS using a weighted sum algorithm
(Eq. 1), where 0 < 𝑤 < 1.
𝑃 (𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛) = 𝑤 ∗ 𝑃 (𝑅𝐼𝐷𝑆) + (1 −𝑤) ∗ 𝑃 (pinch recognizer) (1)
Weight values, 𝑤 , from 0.1 to 0.9 were used to calculate the

improvement at every value. As studies have shown that false posi-
tives have more impact on user experience of a input recognizer
than false negatives [41], this exploration focused on improving
the precision performance of the pinch recognizer. At 𝑤 = 0.34,
the output demonstrated maximum performance, improving the
selection precision by 11.19% (from 0.62 to 0.69) without sacrificing
recall performance (from 0.79 to 0.80). This preliminary investiga-
tion shows that RIDS can be used to increase selection accuracies
of noisy selection gestures.

8 DISCUSSION AND FUTUREWORK
Two models leveraging dynamic hand motions were built to im-
plicitly detect a user’s selection gesture: 1) a logistic regression
model using engineered hand motion features, and 2) a TCN model
using raw hand motion data. Through the development of the
logistic regression model, we identified a consistent set of hand
motion features across participants that were predictive of partic-
ipant selection gestures. While both models perform well above
chance, the TCN model demonstrated improved performance and
task generalizability over the logistic regression model by learn-
ing discriminating hand motion dynamics using a much shorter
duration of relative hand movements.

8.1 Limitations of the Experimental Design
In contrast to typical controlled tasks that prompt participants to
select the highlighted target and therefore may not have realistic
hand motion dynamics, this research used an unstructured task to
represent real world hand motion dynamics. However, the models

were still conditioned on the Dice Game task dynamics as seen in
the generalizability results for the reciprocal pointing task. Sensing
hardware is another factor that could affect the direct application of
the models. For example, hand motions could be captured through
headset cameras instead of the tracker puck used in this research.
Although fatigue effects were minimal because each trial included a
3 minute break, the weight and mounting of the tracker puck might
have affected participants’ hand motions. The sensing capability
of the hardware, such as low resolution cameras and IMUs with
drift issues, may also impact the captured raw data as well as the
extracted features.

The models developed in this research might not translate di-
rectly to other tasks due to the above factors, but the framework for
building these RIDS models can be reproduced on other hardware
and tasks.

8.2 Other Potential Applications
This research demonstrated a 11.2% improvement in pinch detec-
tion precision when a noisy pinch recognizer was combined with
the TCN RIDS model. While this research focused primarily on
the problem of pointing and selection, RIDS could be useful for
other interactions that involve the use of noisy discrete gestures,
such as scrolling, sliding, or typing. Another application area for
such models could be to discriminate between multiple discrete
gestures. For instance, if the user can pinch, double-pinch, or do
a thumb-middle finger pinch at the end of their motion trajectory,
detection accuracies may be even lower, in which case, a real-time
discrimination model leveraging implicit behavioral patterns may
be useful. Finally, given the high power and processing costs of
gesture sensing algorithms for wearable devices, RIDS could act
as a gatekeeper such that gesture sensing algorithms lay dormant
until RIDS determines that a user might be trying to interact.

8.3 Early Fusion vs. Late Fusion
While the probabilities from the RIDS model were integrated with
those from the IMU-driven model, an alternate approach could be to
use both data streams to train a single classifier, thus performing an
early fusion of the two streams and deploying the resulting stream.
The trade-off here though, is that while a pinch detection algorithm
could be task- and context-agnostic, hand motion dynamics may
vary and a single early fused model may not work for all tasks. Late
fusion thus provides deployment flexibility and additional accuracy
only when it is trained for and needed.

8.4 Detection vs. Prediction
RIDS focuses on the implicit detection of selection gestures in the
current moment, which is a narrower slice of the larger problem
of predicting when and what users will select after pointing. This
narrower focus enables for the exploration of specific problems that
occur at the moment of selection, pertaining to the improvement of
noisy gesture detection, and can be extended to other applications
such as gesture discrimination and gatekeeping. In contrast to this
narrowly-scoped detection model, an interesting future direction
would be the input anticipation problem in advance of user selection.
This is a more complex problem than detection in the moment, but
different from end-point or target prediction.
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9 CONCLUSION
To improve input and interaction for mid-air, freehand technolo-
gies leveraging implicit user behavior, this research presented two
models for the Real-time Implicit Detection of Selections (RIDS) for
freehand pointing in virtual reality. The models used hand motion
dynamics during pointing to classify selection events. The general-
izability of the model to another task scenario was also investigated.
This research also reported on an application of the models, where
outputs were fused with a noisy pinch sensing system and improved
the sensing system’s accuracy.

As virtual and augmented reality devices become more popu-
lar, they will require more complex input techniques that do not
encumber the hands and can be used anywhere. Such input tech-
niques will be driven by wearable sensing modules that will not
be as certain in their input detection as a mouse or touchscreen.
In such scenarios, RIDS can offer a useful and independent signal
of selection input that can be deployed flexibly depending on a
system’s needs. This research outlines the initial steps in what it
believed to be an promising future for AR/VR input and interaction.
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