
Autonomous inverted helicopter flight via

reinforcement learning

Andrew Y. Ng1, Adam Coates1, Mark Diel2, Varun Ganapathi1, Jamie
Schulte1, Ben Tse2, Eric Berger1, and Eric Liang1

1 Computer Science Department, Stanford University, Stanford, CA 94305
2 Whirled Air Helicopters, Menlo Park, CA 94025

Abstract. Helicopters have highly stochastic, nonlinear, dynamics, and autonomous
helicopter flight is widely regarded to be a challenging control problem. As heli-
copters are highly unstable at low speeds, it is particularly difficult to design con-
trollers for low speed aerobatic maneuvers. In this paper, we describe a successful
application of reinforcement learning to designing a controller for sustained in-
verted flight on an autonomous helicopter. Using data collected from the helicopter
in flight, we began by learning a stochastic, nonlinear model of the helicopter’s
dynamics. Then, a reinforcement learning algorithm was applied to automatically
learn a controller for autonomous inverted hovering. Finally, the resulting controller
was successfully tested on our autonomous helicopter platform.

1 Introduction

Autonomous helicopter flight represents a challenging control problem with
high dimensional, asymmetric, noisy, nonlinear, non-minimum phase dynam-
ics, and helicopters are widely regarded to be significantly harder to control
than fixed-wing aircraft. [3,10] But helicopters are uniquely suited to many
applications requiring either low-speed flight or stable hovering. The con-
trol of autonomous helicopters thus provides an important and challenging
testbed for learning and control algorithms.

Some recent examples of successful autonomous helicopter flight are given
in [7,2,9,8]. Because helicopter flight is usually open-loop stable at high speeds
but unstable at low speeds, we believe low-speed helicopter maneuvers are
particularly interesting and challenging. In previous work, (Ng et al.,2004)
considered the problem of learning to fly low-speed maneuvers very accu-
rately. In this paper, we describe a successful application of machine learning
to performing a simple low-speed aerobatic maneuver—autonomous sustained

inverted hovering.

2 Helicopter platform

To carry out flight experiments, we began by instrumenting a Bergen in-
dustrial twin helicopter (length 59”, height 22”) for autonomous flight. This



2 Ng et al.

Fig. 1. Helicopter in configuration for upright-only flight (single GPS antenna).

helicopter is powered by a twin cylinder 46cc engine, and has an unloaded
weight of 18 lbs.

Our initial flight tests indicated that the Bergen industrial twin’s original
rotor-head was unlikely to be sufficiently strong to withstand the forces en-
countered in aerobatic maneuvers. We therefore replaced the rotor-head with
one from an X-Cell 60 helicopter. We also instrumented the helicopter with
a PC104 flight computer, an Inertial Science ISIS-IMU (accelerometers and
turning-rate gyroscopes), a Novatel GPS unit, and a MicroStrain 3d mag-
netic compass. The PC104 was mounted in a plastic enclosure at the nose
of the helicopter, and the GPS antenna, IMU, and magnetic compass were
mounted on the tail boom. The IMU in particular was mounted fairly close
to the fuselage, to minimize measurement noise arising from tail-boom vibra-
tions. The fuel tank, originally mounted at the nose, was also moved to the
rear. Figure 1 shows our helicopter in this initial instrumented configuration.

Readings from all the sensors are fed to the onboard PC104 flight com-
puter, which runs a Kalman filter to obtain position and orientation estimates
for the helicopter at 100Hz. A custom takeover board also allows the com-
puter either to read the human pilot’s commands that are being sent to the
helicopter control surfaces, or to send its own commands to the helicopter.
The onboard computer also communicates with a ground station via 802.11b
wireless.

Most GPS antenna (particularly differential, L1/L2 ones) are directional,
and a single antenna pointing upwards relative to the helicopter would be un-
able to see any satellites if the helicopter is inverted. Thus, a single, upward-
pointing antenna cannot be used to localize the helicopter in inverted flight.
We therefore added to our system a second antenna facing downwards, and
used a computer-controlled relay for switching between them. By examining
the Kalman filter output, our onboard computer automatically selects the
upward-facing antenna. (See Figure 2a.) We also tried a system in which



Autonomous inverted helicopter flight via reinforcement learning 3

(a) (b)

Fig. 2. (a) Dual GPS antenna configuration (one antenna is mounted on the tail-
boom facing up; the other is shown facing down in the lower-left corner of the
picture). The small box on the left side of the picture (mounted on the left side of
the tail-boom) is a computer-controlled relay. (b) Graphical simulator of helicopter,
built using the learned helicopter dynamics.

the two antenna were simultaneously connected to the receiver via a Y-cable
(without a relay). In our experiments, this suffered from significant GPS
multipath problems and was not usable.

3 Machine learning for controller design

A helicopter such as ours has a high center of gravity when in inverted hover,
making inverted flight significantly less stable than upright flight (which is
also unstable at low speeds). Indeed, there are far more human RC pilots
who can perform high-speed aerobatic maneuvers than can keep a helicopter
in sustained inverted hover. Thus, designing a stable controller for sustained
inverted flight appears to be a difficult control problem.

Most helicopters are flown using four controls:

• a[1] and a[2]: The longitudinal (front-back) and latitudinal (left-right)
cyclic pitch controls cause the helicopter to pitch forward/backwards or
sideways, and can thereby also be used to affect acceleration in the lon-
gitudinal and latitudinal directions.

• a[3]: The main rotor collective pitch control causes the main rotor blades
to rotate along an axis that runs along the length of the rotor blade, and
thereby affects the angle at which the main rotor’s blades are tilted rela-
tive to the plane of rotation. As the main rotor blades sweep through the
air, they generate an amount of upward thrust that (generally) increases
with this angle. By varying the collective pitch angle, we can affect the
main rotor’s thrust. For inverted flight, by setting a negative collective
pitch angle, we can cause the helicopter to produce negative thrust.

• a[4]: The tail rotor collective pitch control affects tail rotor thrust, and
can be used to yaw (turn) the helicopter.



4 Ng et al.

A fifth control, the throttle, is commanded as pre-set function of the main
rotor collective pitch, and can safely be ignored for the rest of this paper.

To design the controller for our helicopter, we began by learning a stochas-
tic, nonlinear, model of the helicopter dynamics. Then, a reinforcement learn-
ing/policy search algorithm was used to automatically design a controller.

3.1 Model identification

We applied supervised learning to identify a model of the helicopter’s dy-
namics. We began by asking a human pilot to fly the helicopter upside-down,
and logged the pilot commands and helicopter state s comprising its position
(x, y, z), orientation (roll φ, pitch θ, yaw ω), velocity (ẋ, ẏ, ż) and angular
velocities (φ̇, θ̇, ω̇). A total of 391s of flight data was collected for model iden-
tification. Our goal was to learn a model that, given the state st and the
action at commanded by the pilot at time t, would give a good estimate of
the probability distribution Pstat

(st+1) of the resulting state of the helicopter
st+1 one time step later.

Following standard practice in system identification [4], we converted the
original 12-dimensional helicopter state into a reduced 8-dimensional state
represented in body coordinates sb = [φ, θ, ẋ, ẏ, ż, φ̇, θ̇, ω̇]. Where there is risk
of confusion, we will use superscript s and b to distinguish between spatial
(world) coordinates and body coordinates. The body coordinate representa-
tion specifies the helicopter state using a coordinate frame in which the x,
y, and z axes are forwards, sideways, and down relative to the current ori-
entation of the helicopter, instead of north, east and down. Thus, ẋb is the
forward velocity, whereas ẋs is the velocity in the northern direction. (φ and
θ are always expressed in world coordinates, because roll and pitch relative
to the body coordinate frame is always zero.) By using a body coordinate
representation, we encode into our model certain “symmetries” of helicopter
flight, such as that the helicopter’s dynamics are the same regardless of its
absolute position and orientation (assuming the absence of obstacles).1

Even in the reduced coordinate representation, only a subset of the state
variables need to be modeled explicitly using learning. Specifically, the roll φ

and pitch θ (and yaw ω) angles of the helicopter over time can be computed
exactly as a function of the roll rate φ̇, pitch rate θ̇ and yaw rate ω̇. Thus,
given a model that predicts only the angular velocities, we can numerically
integrate the velocities over time to obtain orientations.

We identified our model at 10Hz, so that the difference in time between st

and st+1 was 0.1 seconds. We used linear regression to learn to predict, given

1 Actually, by handling the effects of gravity explicitly, it is possible to obtain an
even better model that uses a further reduced, 6-dimensional, state, by eliminat-
ing the state variables φ and θ. We found this additional reduction useful and
included it in the final version of our model; however, a full discussion is beyond
the scope of this paper.



Autonomous inverted helicopter flight via reinforcement learning 5

sb
t ∈ R

8 and at ∈ R
4, a sub-vector of the state variables at the next timestep

[ẋb
t+1, ẏ

b
t+1, ż

b
t+1, φ̇

b
t+1, θ̇

b
t+1, ω̇

b
t+1]. This body coordinate model is then con-

verted back into a world coordinates model, for example by integrating an-
gular velocities to obtain world coordinate angles. Note that because the
process of integrating angular velocities expressed in body coordinates to
obtain angles expressed in world coordinates is nonlinear, the final model
resulting from this process is also necessarily nonlinear. After recovering the
world coordinate orientations via integration, it is also straightforward to ob-
tain the rest of the world coordinates state. (For example, the mapping from
body coordinate velocity to world coordinate velocity is simply a rotation.)

Lastly, because helicopter dynamics are inherently stochastic, a determin-
istic model would be unlikely to fully capture a helicopter’s range of possible
behaviors. We modeled the errors in the one-step predictions of our model as
Gaussian, and estimated the magnitude of the noise variance via maximum
likelihood.

The result of this procedure is a stochastic, nonlinear model of our heli-
copter’s dynamics. To verify the learned model, we also implemented a graph-
ical simulator (see Figure 2b) with a joystick control interface similar to that
on the real helicopter. This allows the pilot to fly the helicopter in simulation
and verify the simulator’s modeled dynamics. The same graphical simulator
was subsequently also used for controller visualization and testing.

3.2 Controller design via reinforcement learning

Having built a model/simulator of the helicopter, we then applied reinforce-
ment learning to learn a good controller.

Reinforcement learning [11] gives a set of tools for solving control problems
posed in the Markov decision process (MDP) formalism. An MDP is a tuple
(S, s0, A, {Psa}, γ, R). In our problem, S is the set of states (expressed in
world coordinates) comprising all possible helicopter positions, orientations,
velocities and angular velocities; s0 ∈ S is the initial state; A = [−1, 1]4 is the
set of all possible control actions; Psa(·) are the state transition probabilities
for taking action a in state s; γ ∈ [0, 1) is a discount factor; and R : S 7→ R is
a reward function. The dynamics of an MDP proceed as follows: The system
is first initialized in state s0. Based on the initial state, we get to choose
some control action a0 ∈ A. As a result of our choice, the system transitions
randomly to some new state s1 according to the state transition probabilities
Ps0a0

(·). We then get to pick a new action a1, as a result of which the system
transitions to s2 ∼ Ps1a1

, and so on.

A function π : S 7→ A is called a policy (or controller). It we take action
π(s) whenever we are in state s, then we say that we are acting according to
π. The reward function R indicates how well we are doing at any particular
time, and the goal of the reinforcement learning algorithm is to find a policy



6 Ng et al.

π so as to maximize

U(π)=̇Es0,s1,...

[

∞
∑

t=0

γtR(st) | π

]

, (1)

where the expectation is over the random sequence of states visited by acting
according to π, starting from state s0. Because γ < 1, rewards in the distant
future are automatically given less weight in the sum above.

For the problem of autonomous hovering, we used a quadratic reward
function

R(ss) = −(αx(x − x∗)2 + αy(y − y∗)2 + αz(z − z∗)2

+αẋẋ2 + αẏ ẏ2 + αż ż
2 + αω(ω − ω∗)2), (2)

where the position (x∗, y∗, z∗) and orientation ω∗ specifies where we want
the helicopter to hover. (The term ω − ω∗, which is a difference between two
angles, is computed with appropriate wrapping around 2π.) The coefficients
αi were chosen to roughly scale each of the terms in (2) to the same order
of magnitude (a standard heuristic in LQR control [1]). Note that our re-
ward function did not penalize deviations from zero roll and pitch, because
a helicopter hovering stably in place typically has to be tilted slightly.2

For the policy π, we chose as our representation a simplified version of
the neural network used in [7]. Specifically, the longitudinal cyclic pitch a[1]
was commanded as a function of xb−x∗b (error in position in the x direction,
expressed in body coordinates), ẋb, and pitch θ; the latitudinal cyclic pitch
a[2] was commanded as a function of yb − y∗b, ẏb and roll φ; the main rotor
collective pitch a[3] was commanded as a function of zb − z∗b and żb; and
the tail rotor collective pitch a[4] was commanded as a function of ω − ω∗.3

Thus, the learning problem was to choose the gains for the controller so that
we obtain a policy π with large U(π).

Given a particular policy π, computing U(π) exactly would require taking
an expectation over a complex distribution over state sequences (Equation 1).
For nonlinear, stochastic, MDPs, it is in general intractable to exactly com-
pute this expectation. However, given a simulator for the MDP, we can ap-
proximate this expectation via Monte Carlo. Specifically, in our application,
the learned model described in Section 3.1 can be used to sample st+1 ∼ Pstat

2 For example, the tail rotor generates a sideways force that would tend to cause
the helicopter to drift sideways if the helicopter were perfectly level. This side-
ways force is counteracted by having the helicopter tilted slightly in the opposite
direction, so that the main rotor generates a slight sideways force in an opposite
direction to that generated by the tail rotor, in addition to an upwards force.

3 Actually, we found that a refinement of this representation worked slightly better.
Specifically, rather than expressing the position and velocity errors in the body
coordinate frame, we instead expressed them in a coordinate frame whose x and
y axes lie in the horizontal plane/parallel to the ground, and whose x axis has
the same yaw angle as the helicopter.



Autonomous inverted helicopter flight via reinforcement learning 7

for any state action pair st, at. Thus, by sampling s1 ∼ Ps0π(s0), s2 ∼ Ps1π(s1),
. . . , we obtain a random state sequence s0, s1, s2, . . . drawn from the distri-
bution resulting from flying the helicopter (in simulation) using controller π.
By summing up

∑

∞

t=0 γtR(st), we obtain one “sample” with which to esti-
mate U(π).4 More generally, we can repeat this entire process m times, and
average to obtain an estimate Û(π) of U(π).

One can now try to search for π that optimizes Û(π). Unfortunately, op-
timizing Û(π) represents a difficult stochastic optimization problem. Each
evaluation of Û(π) is defined via a random Monte Carlo procedure, so multi-
ple evaluations of Û(π) for even the same π will in general give back slightly
different, noisy, answers. This makes it difficult to find “arg maxπ Û(π)” us-
ing standard search algorithms. But using the Pegasus method (Ng and
Jordan, 2000), we can turn this stochastic optimization problem into an or-
dinary deterministic problem, so that any standard search algorithm can now
be applied. Specifically, the computation of Û(π) makes multiple calls to the
helicopter dynamical simulator, which in turn makes multiple calls to a ran-
dom number generator to generate the samples st+1 ∼ Pstat

. If we fix in
advance the sequence of random numbers used by the simulator, then there
is no longer any randomness in the evaluation of Û(π), and in particular
finding maxπ Û(π) involves only solving a standard, deterministic, optimiza-
tion problem. (For more details, see [6], which also proves that the “sample
complexity”—i.e., the number of Monte Carlo samples m we need to average
over in order to obtain an accurate approximation—is at most polynomial
in all quantities of interest.) To find a good controller, we therefore applied
a greedy hillclimbing algorithm (coordinate ascent) to search for a policy π

with large Û(π).
We note that in earlier work, (Ng et al., 2004) also used a similar approach

to learn to fly expert-league RC helicopter competition maneuvers, including
a nose-in circle (where the helicopter is flown in a circle, but with the nose
of the helicopter continuously pointed at the center of rotation) and other
maneuvers.

4 Experimental Results

Using the reinforcement learning approach described in Section 3, we found
that we were able to extremely quickly design new controllers for the heli-
copter. We first completed the inverted flight hardware and collected (human
pilot) flight data on 3rd Dec 2003. Using reinforcement learning, we completed
our controller design by 5th Dec. In our flight experiment on 6th Dec, we suc-
cessfully demonstrated our controller on the hardware platform by having a
human pilot first take off and flip the helicopter upside down, immediately

4 In practice, we truncate the state sequence after a large but finite number of
steps. Because of discounting, this introduces at most a small error into the
approximation.



8 Ng et al.

Fig. 3. Helicopter in autonomous sustained inverted hover.

after which our controller took over and was able to keep the helicopter in
stable, sustained inverted flight. Once the helicopter hardware for inverted
flight was completed, building on our pre-existing software (implemented for
upright flight only), the total time to design and demonstrate a stable in-
verted flight controller was less than 72 hours, including the time needed to
write new learning software.

A picture of the helicopter in sustained autonomous hover is shown in
Figure 3. To our knowledge, this is the first helicopter capable of sustained
inverted flight under computer control. A video of the helicopter in inverted
autonomous flight is also at

http://www.cs.stanford.edu/~ang/rl-videos/

Other videos, such as of a learned controller flying the competition maneuvers
mentioned earlier, are also available at the url above.

5 Conclusions

In this paper, we described a successful application of reinforcement learning
to the problem of designing a controller for autonomous inverted flight on
a helicopter. Although not the focus of this paper, we also note that, using
controllers designed via reinforcement learning and shaping [5], our helicopter
is also capable of normal (upright) flight, including hovering and waypoint
following.



Autonomous inverted helicopter flight via reinforcement learning 9

We also found that a side benefit of being able to automatically learn
new controllers quickly and with very little human effort is that it becomes
significantly easier to rapidly reconfigure the helicopter for different flight
applications. For example, we frequently change the helicopter’s configura-
tion (such as replacing the tail rotor assembly with a new, improved one)
or payload (such as mounting or removing sensor payloads, additional com-
puters, etc.). These modifications significantly change the dynamics of the
helicopter, by affecting its mass, center of gravity, and responses to the con-
trols. But by using our existing learning software, it has proved generally
quite easy to quickly design a new controller for the helicopter after each
time it is reconfigured.

Acknowledgments

We give warm thanks to Sebastian Thrun for his assistance and advice on
this project, to Jin Kim for helpful discussions, and to Perry Kavros for his
help constructing the helicopter. This work was supported by DARPA under
contract number N66001-01-C-6018.

References

1. B. D. O. Anderson and J. B. Moore. Optimal Control: Linear Quadratic Meth-

ods. Prentice-Hall, 1989.
2. J. Bagnell and J. Schneider. Autonomous helicopter control using reinforcement

learning policy search methods. In Int’l Conf. Robotics and Automation. IEEE,
2001.

3. J. Leishman. Principles of Helicopter Aerodynamics. Cambridge Univ. Press,
2000.

4. B. Mettler, M. Tischler, and T. Kanade. System identification of small-size
unmanned helicopter dynamics. In American Helicopter Society, 55th Forum,
1999.

5. Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under
reward transformations: Theory and application to reward shaping. In Pro-

ceedings of the Sixteenth International Conference on Machine Learning, pages
278–287, Bled, Slovenia, July 1999. Morgan Kaufmann.

6. Andrew Y. Ng and Michael I. Jordan. Pegasus: A policy search method for
large MDPs and POMDPs. In Uncertainty in Artificial Intellicence, Proceedings

of Sixteenth Conference, pages 406–415, 2000.
7. Andrew Y. Ng, H. Jin Kim, Michael Jordan, and Shankar Sastry. Autonomous

helicopter flight via reinforcement learning. In Neural Information Processing

Systems 16, 2004.
8. Jonathan M. Roberts, Peter I. Corke, and Gregg Buskey. Low-cost flight control

system for a small autonomous helicopter. In IEEE International Conference

on Robotics and Automation, 2003.
9. T. Schouwenaars, B. Mettler, E. Feron, and J. How. Hybrid architecture for

full-envelope autonomous rotorcraft guidance. In American Helicopter Society

59th Annual Forum, 2003.



10 Ng et al.

10. J. Seddon. Basic Helicopter Aerodynamics. AIAA Education Series. America
Institute of Aeronautics and Astronautics, 1990.

11. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-

duction. MIT Press, 1998.


