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Abstract

Pervasive computing is to seamlessly integrate computers into everyday settings to
support people in their everyday tasks. However, the complexity, invisibility, and
inconsistency in pervasive interactive systems are challenging problems. In order
to improve the users’ acceptance and usability of these systems, there should be
a solution to relieve these problems. Task computing aims to reduce complexity
of using technologies by shifting users’ attentions to what they want to do rather
than on the specific means for doing those tasks. This research proposal describes a
research plan to develop a task-driven framework for development and operation of
pervasive interactive systems. The framework includes a design phase and a runtime
phase. At the design phase, tasks are described using a standard language. At the
runtime phase, relevant tasks are recommended based on user’s situational context.
Then on the user’s selection, models of selected tasks are loaded and executed by a
task execution engine. The user is guided to accomplish the selected tasks.
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Chapter 1

Introduction

Pervasive Computing or Ubiquitous Computing is emerged from seamless integration
of technologies into the fabric of everyday life [28]. Adding technologies to our
lives is to “support our activities, complement our skills, and add to our pleasure,
convenience, and accomplishments, but not to our stress” [29].

The aim of this research is to show that the use of smart spaces will be more effective
if interactive systems are task-driven.

We want to make ubiquitous technologies disappearing (from user’s attention) both
physically and cognitively. In other words, we want to make ubiquitous technologies
available to users’ attention[30]. Indicating to a user what tasks are possible in a
place and a moment will increase cognitive disappearance.

1.1 The Basic Idea

We examine tasks in continuously immanent movement and evolving of a smart
space as shown in Figure [Tl The context of a smart space can be effected due to
removing/adding devices or accomplishment of actions (required by a task). The
change of context leads to the change of available tasks.

1.2 Future of Smart Spaces

I predict that in the future,

e Computing elements will weave themselves into the fabric of out everyday
existence.

e Smart spaces are computers operating based on the cloud computing model.
In this model, physical objects embedded with computing elements are 1/0O
devices of smart spaces while processing is responsible of powerful native com-
puters offered by the cloud.

e Emerging context-sensing technologies will enable more accurate context in-
formation acquisition.
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Figure 1.1: A task-driven smart space

e Service discovery will be the cornerstone.

e Wireless technologies are emerging as cable replacements and may potentially
serve as system buses in a dispersed system.

e The interaction paradigm will shift from humancomputer interaction to human-
environment interaction.

e Developers will develop tasks for smart spaces instead of developing individual
applications.

e Users will interact with smart spaces in terms of tasks rather than individual
applications running on individual computers.

1.3 The Crisis in User Interfaces for Smart Spaces

“Current consumer electronics are getting more and more complicated, threatening
to outstrip the competence that can be reasonably expected from their intended
users. For example, a typical consumer camera, the Canon S500, has 15 buttons,
two dials, 4 x 2 mode switches, three menus of five choices in each mode, each with
two or three values, 7 on-screen mode icons, and so on.” [31]

For example, a typical multipurpose photocopier...

“We attribute the growing complexity of consumer electronics interface design to
the desire to maintain the one-to-one correspondence between functions and controls
that worked well for simpler devices. But as the number of functions of a device
grows, controls get overloaded, leading to heavily-moded interfaces, push-and-hold



buttons, long and deep menus, and other confusing and error-prone interface ele-
ments. For this reason, the devices have interfaces with bad affordances where there
is no easy way to help the user perform the basic operations on the device.”[32]

“The next generation of consumer electronics devices will incorporate processing and
networking, making things potentially more complex if we stick to manual operation,
but also opening up new possibilities for automating co-operation between multiple
devices.” [32]

“We propose to re-orient the interface around the goals of the user, rather than the
functions of the device. Something, then, has to map between the users goals and
the concrete functions of the device. We propose to fill this gap with Roadie, an
interface that makes use of commonsense knowledge and a partial-order planner to
give the user proactive advice, automate complex tasks, and provide debugging help
when things go wrong.”[32]

1.4 Users Need Help with Many Scenarios of Use

“It is not only the “normal operation” of the device that users need help with. There
are other scenarios associated with consumer devices that users need help with. The
advent of powerful computing and communication in devices gives us the potential
of providing help with these scenarios, as well as merely invoking functions of the
device.

What can [ do “out of the box”? When the user first acquires the device, how do they
know what it can do? How do they know what its capabilities and limitations are?
Devices should be self-aware, self-explaining, and self-revealing. Onboard memory,
processing, and networking can access and display information like introductory
tutorials, user group messages, examples of use, etc. just when they are needed.
The system should describe its capabilities and limitations in terms that the user
can understand.

Oops, it doesn’t work! Devices should also be self-debugging. Devices should know
what the possibilities for error are, and give users sensible options for investigating
the problem, mapping the behaviour of the device to their expectations, and plau-
sible routes to a solution or to seeking more assistance. The interface should help
generate hypotheses concerning what might have gone wrong. It should test those
hypotheses automatically, when possible. If the system cannot test a hypothesis it
should give to the user an explanation of what might be wrong, how he or she can
test it, and the steps he or she should follow to correct the problem.

Don’t do that to me again! Devices should accept feedback on their behaviour and
modify their behaviour accordingly. They should have the capability of customising
device operation for particular situations and automating common patterns of usage.

[ should be able to... Devices should enable unanticipated, but plausible, patterns of
use. Especially when several devices are networked together, users should be able to
compose the results of using one device with the input of another without learning
arcane procedures; converting file formats, figuring out how to patch cables, etc.

[ want to do... The information presented to the user, and the information exchanged
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between the user and the system, should always be in the context of the user’s goals.
For this kind of dialogue, the system needs to have a good idea of the relations
between the user’s actions and the goals he or she is trying to accomplish.

To sum up, our goal is to create an interface that is goal-oriented, self-describing,
self-revealing and self-debugging.” [31]

1.5 Problems of Pervasive Interactive Systems

User needs:

e Get insight in the digital services the environment offers, i.e. what resources
are at hand and what tasks do they support?

e Interact with available resources, e.g. browse the contact list in a mobile phone
through the car’s head-up display or navigate a picture slide-show displayed
on a television using a hand-held device.

e Configure the default and context-specific behaviour of resources, e.g. au-
tomatically turn off the lights and turn down the heating when leaving the
house.

From users’ perspectives, pervasive interactive systems currently exposes at least
three problems: complexity, invisibility and inconsistency.

Two major approaches to provide the end-user with an interactive view on the
environment’s features [33]:

Service-oriented The end-user is shown a list of software services that make up
the pervasive computing environment, where she can directly interact with.

Goal-oriented or Task-oriented The pervasive environment is seen as an inte-
grated system where tasks define what the end-user can do within the envi-
ronment. The end-user is presented with an overview of available tasks while
the actual software services that give rise to these tasks are hidden.

Consider for example a scenario that demands for multimedia features such as play-
ing music in a room. A service-oriented view might integrate a ‘media’ service that
exports an integrated user interface to perform all media-related tasks. In contrast,
a goal-oriented view might present the end-user with ‘play media’ and ‘create play-
list” tasks, which are represented as separate user interfaces to the functionalities of
an underlying ‘media’ service.

To execute a task or even a simple task, the user is required to have knowledge and
ability to

e control interfaces of devices involved while each device may have different
interface;
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e understand devices properties and functions of devices so that the user can
exploit completely the features of the devices;

e configuring devices which is significantly difficult;

e choose, customise, config, and perform tasks correctly which is often a time
consuming activity.

How we can eliminate these difficulties?

Mark and Su [34] investigated challenges faced by nomadic workers due to their lack
of local knowledge of infrastructure. They suggest that until the field of pervasive
computing can attain Weiser’s vision, most users of ubiquitous computing need
infrastructure to be visible.

Weiser’s vision of a seamless connection is unfortunately still a dream at this point
in time. Indeed, recent articles have begun to question the primacy of invisibility
in research on ubiquitous computing [35].

Zimmermann [36] agree that user interfaces of systems in smart environments should
meet three requirements: coherence, task-orientation, scalability, and accessibility.
Coherence means a user interface should allow for seamless control cross many
devices in the environment. Task orientation means a user interface should expose
what the user can do which an integrated set of devices rather than how this will
be achieved. Scalability means that a user can have a initial system with only a
small number of devices. When subsequently adding devices to the environment,
the user interface should present additional tasks that are made possible by the
new devices. Thus a environment with many devices could incrementally evolve
over years. The user should not need a new controller for controlling a new device,
and should not have to buy a new set of devices when transitioning to a different
controller. Accessibility—a user interface should be accessible to a wide range of
users, including older people and people with disabilities.

1.5.1 Complexity of Use

Following, I will present problems existing in pervasive computing environments and
approaches to these problems.

1. Nowadays, to accomplish a particular task, a user has to configure themselves
available services, devices, and resources. The user has to manage the failures
of service invocations. These procedures are not simple for ordinary users.
Even for experts, this activity is time and endeavour consumption. In other
words, the user is required to at least be an expert or a developer in order to
exploit the benefits deriving from the pervasive computing environments. This
requirement is a great restriction and a challenge for deployment of pervasive
services to the everyday life [37].

Approach: Pervasive computing systems should recognise user’s intentions
and then autonomously fill in any technical details that the user left out and
assist the user in performing a suitable task [18].
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“Many “smart environments” are currently more complex to either set up or operate
than their predecessors.

The rapid advances in technology are allowing us to create products which have
increasingly complex control systems. For those who have difficulty dealing with
technology and complexity to begin with, it is creating a crisis. Simple versions of
products are disappearing and being replaced by complex, multifunction products,
or even simple products with numerous additional options, setting and features.
This is also being reflected in the usability and return rates of consumer electronic
products. It is widely acknowledged that complex user interfaces are an impediment
for the proliferation of the digital home. “Ease of use” is the third most important
aspect for home theater owners according to a recent CEA study|[38]. This lack of
‘ease of use’ is now directly impacting purchasing (and return) behaviour. Two out
of three Americans have lost interest in a technology product because it seemed
too complex to set up or operate[39]. Den Ouden[4(] found out that half of all
‘malfunctioning products’ returned to stores by consumers are in full working order,
but customers cannot figure out how to operate the product.”

The more technologies and features added to pervasive computing environments,
the more resulting complexity they have. This can lead to a usability crisis similar
to the current usability crisis in computer-controlled electronic products. Because
of their feature-richness, pervasive interactive systems overwhelm users’ perception
and cognition ability by the overload of services, features, properties, settings, and
configurations [37, |41-43]. Moreover, their resulting complexity has exceeded the
capacity of current user interface designs for users to operate them intuitively [44].
For example, if the services and devices involved are from different manufacturers
or domains, users currently need to learn the different operational details of each
device and service to carry out their whole tasks correctly. A challenge is to allow
users focusing on their daily life and just use the tools when they need them, without
studying their use beforehand and without distracting their focus too much from
the everyday activities [45].

Currently, the operation of a typical pervasive system is to show the user a list of
all functions/actions (via buttons or menus) and let the user decide himself /herself
the combination of functions/actions in order to accomplish his/her intended tasks.
In many cases, users have trouble understanding what tasks are supported or how
to associate the desired logical actions with physical actions [46]. Consequently,
to exploit a pervasive system, users must (1) understand the meanings of features
(and perhaps their combinations) provided by the system in order to issue feasible
tasks; (2) map their high-level goals of tasks to low-level operational vocabularies
of the system; and (3) properly specify constraints for tasks subject to contextual
information and available services. These requirements may be beyond ordinary
users, as the complexity, the diversity, and the sheer number of devices and services
(as well as different combinations of ways they can work together) continually rises.

There is an apparent conflict. As the number of features increases, so too does the
desirability of the device. But as the number of features increases, simplicity goes
down. Subsequently, even as people buy the devices with extra features, they cry
out for simplicity [47].
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Pervasive computing environments are complex to interact with due to the dynamic
assembly of interaction resources. When the complexity of such an environment is
masked by the underlying computing system, end-users are often left with limited
or no control over their interactive space. This brings up the need to make users
aware of their surroundings.

Two out of three Americans have lost interest in a technology product because it
seemed too complex to set up or operate [39].

Remote user interfaces are device-oriented rather than task-oriented [48]. Since
there are typically multiple devices from different manufacturers in the home, users
end up “juggling” multiple user interfaces, one per device. Each of these user
interfaces reflects the functionality of a single device, and does not directly offer
cross-device functionality that would be required for more intuitive and task-oriented
user interfaces. For example, the task of watching a DVD movie on a typical home
theater system involves at least 3 devices that the user needs to set up in the right
way for inter-operation: The TV screen must be switched on and accept input from
the DVD player; the same holds for the receiver/equalizer; and the DVD player
must be switched on and instructed to play the DVD. The fact that users have to
operate multiple user interfaces (one per device involved) to achieve a goal is one of
the biggest impediments for easy-to-use interfaces in the digital home. This problem
becomes worse the more devices are required for a particular task.

An evolving standard on task model representation, CEA-2018 |49], currently being
developed, may help to solve this problem for future generations of devices in the
digital home.

1.5.2 Invisibility of Features

One challenge to pervasive computing systems is their inherent invisibility from
users’ awareness. The invisibility is originated from the perfectly and naturally
integrating technologies into environments. For example, a table can also be a com-
puter too. Thus, the user tends to be unaware of the presence of functions available
to them. Occasional visitors to a particular place are of another example. When
arriving for the first time to a particular place, occasional visitors have little or no
idea about what the local environment is providing to support their activity. Fur-
thermore, this support has to be self-explainable and quickly learnable, as occasional
visitors are not prepared to interact with an unknown system and do not have time
to spend understanding and learning how to use new tools [50]. Moreover, because
of the rapid advances of technologies, users find difficult understanding what a com-
puting device is or what an artifact is and what it could do for them. They can’t
reuse it if they don’t understand it or don’t think they need it.

An inherent challenge with pervasive interactive systems is a user’s awareness of
the functionality which is relevant to their specific goals and needs. Awareness of
functionality is not only important for learning how to accomplish new tasks, but
also learning how to better accomplish existing tasks. In a potential “best case
scenario”, the user works with an expert next to them, who can recommend tasks
when appropriate.
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TASKREC collects usage data from a pervasive interactive system’s user community;,
and applies recommender system algorithms to generate personalised task recom-
mendations to each user. With TASKREC, we hope to expose users to tasks they
are not currently familiar with that will help them use the system more effectively.
The recommended tasks are displayed on a master device within the user’s vicinity
that the user to refer to when convenient. Thus, the system is much more ambient
in nature.

The problems faced by the users of a smart space are many. First of all, they may not
know which devices and services may be appropriate to accomplish a particular task.
Secondly, even if the users are aware of the existence of a particular device or service,
they may not know where and how to locate it (because it blend into normal physical
objects), and finally how to interact with the device/service. Current smart spaces
expect users to know what they want precisely and also expect them to formulate
a sequences of actions to achieve their needs, or to map their task onto the often
unknown sets of devices/services.

[the problem of organising devices/services in a smart space]

One of the biggest problems faced by the users in a smart space is that the needed
devices/services are not organised efficiently and effectively. Rather, they are mostly
scattered all over the space. The other problem is the number of devices/services is
growing everyday at an astonishing rate, making it difficult to identify the needed
devices/services. Building a smart space using a task-based design provides one
appropriate means to organise and group these devices appropriately for accom-
plishing different types of tasks and subtasks. In other words, a task-based design
can help the user to locate the relevant devices/services at the right time by select-
ing the relevant task to be accomplished. The proposed Task-Based Smart Space
(TABASS) is aimed at assisting the users in a smart space in carrying out various
tasks, thereby eliminating some of the aforementioned problems.

TABASS is designed with the main objective of providing a one-stop access point
to local and remote devices/services that exists in the smart space. Additionally, it
uses the task-based model to provide an efficient means of organising and facilitating
access to these devices.

Users in a smart space have tasks that they want to achieve, and interaction with
a individual device are only important as a means of achieving those goals.

The tasks is often not solved in a single session. Systems should save current session
automatically for use later.

Our primary goal is to support the users accomplishing their tasks in a smart space.
The tasks we have in mind are composite entities. For example, a student might
want to borrow a book from a library (the library is a smart space). The corre-
sponding subtasks would involve going to the library, locating the book, checking
out the book, and identifying the student.

Since user tasks often involve an increasingly rich variety of devices/services, our
next goal is to design the interface to integrate the interfaces to a broad array of
devices/services. In our example of the student borrowing a book, relevant de-
vices/services include location estimation service (to locate the student at a par-
ticular place such a library, a particular book shelf), book searching service, book
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identifying service/device (such as barcode reader), and student identifying service
(e.g., RFID tag reader). We use the term “service” to refer to computational ser-
vices.

User tasks differ widely in the amount of time they require to be accomplished, so
another goal is to design the interface to handle widely varying time scales. The
interface needs to let the user know before initiating a task whether it will take
milliseconds or hours to complete. While a task is being executed, the interface
needs to provide feedback on the progress of the task, and a means for interrupting
the task. If the user has moved on to another task (in parallel or multi-tasking),
the interface should continue to executing the current task and compile them into
a meaningful form for when the user returns to this task.

Devices/services in a smart space are available at different locations with different
interaction styles.

In current smart spaces, users are expected to be able to address the “what”,
“where”, “when” and “how” questions in their quest to achieve their goals. The
current user interfaces to smart spaces are not generally organised according to the
various user tasks. A user-centred approach to smart space design is therefore de-
sirable as it aims to shift the focus from a system-oriented design to a user-oriented
design in an attempt to meet users’ real needs and facilitate means and ways to
support their task accomplishments. The proposed system has the potential to re-
solve the user’s questions by offering a user-friendly interface that serves to aid the
user to locate, access, and use services/devices directly according to their tasks.

“A single task in a smart space that the user engages in can span multiple devices.
For example, a task to view a DVD movie would involve at least a TV and a
DVD player device. These tasks would be personalised for each user, and would
be generic enough to avoid being bound to individual devices. The user would not
need to think about devices or services; he/she would only need to interact with
higher-level tasks.”

1.5.3 Inconsistency of User Interfaces

Much attention has been spent on developing multi-device user interfaces for per-
vasive interactive applications. While some created user interfaces from scratch to
get the best from the devices, others looked for automatic adaptations to reduce the
load imposed to the designer. In both cases, resulting user interfaces so inconsistent
from each other to the point of compromising usability when performing the same
task on many devices [51]. Another reason for inconsistency is that because device
manufactures want to reserve their brand identification and product differentiation,
hence there is little or no user interface consistency between computing devices with
even similar functions [44].

One way to reduce the complexity of a device without sacrificing its features is
to design the Ul consistently [52]. If a user interface is designed consistently, the
user will benefit from what psychologists call transfer of training. In other words,
learning to do one thing in one context will make it easier to learn how to do similar
things in similar contexts [53].
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Traditional remote user interfaces are dedicated to one particular target. Infrared-
based remote controls shipped with and bound to specific target devices are preva-
lent in today’s homes. This results in a large number of remote controls in the
digital home, a real usability problem with a growing number of target devices in
the average home [36]. Clearly, traditional infra-red controls do not provide for user
interfaces that are reasonably consistent, task oriented and scalable.

“Universal remote controls” are an improvement because they allow for controlling a
set of devices with one controller only. This makes for more coherent user interfaces,
and enables task-oriented features that span multiple devices. However, universal
remote controls typically come with an increase on complexity, especially if user
programming is required. Scalability is not guaranteed unless the user interface for
the new device can be downloaded from the database of the universal remote control
manufacturer [36].

Recently, custom installation environments have been equipped with integrated and
sometimes task-oriented user interfaces for consumer electronics products and ap-
pliances. The drawback of custom installation is that the design of custom-made
user interface is a cumbersome process requiring special skills. It is not really scal-
able since every time a new device is added, the user interface needs to be revised
manually [36].

1.6 Proposal of a Task-Driven Framework

One way to deal with the complexity problem is to simplify their user interfaces as
much as possible but without reducing the usage of the systems. When comput-
ers are embedded into an environment, the means for interaction between the user
and the environment is not just desktop monitors with menus and buttons, key-
boards, and mouses, but any interactive devices such as mobile phones, televisions,
fridges, chairs, doors, bicycles, washing machines, mirrors... Traditional graphical
user interfaces with menus and buttons are no longer suitable for such the emerging
interactions. There is a need for a new methodology to design user interfaces of
pervasive interactive systems. Task-based user interfaces which communicate with
the user in terms of “what to do” rather than “how to do it” are seen as potential
remedy for the complexity problem in pervasive interactive systems.

For the inconsistency problem, standardisation would appear to be a logical solu-
tion. Unfortunately, the standardisation of user interfaces cross devices with sim-
ilar functions has been obstructed because device appearance and operational de-
tails are crucial to brand identification and product differentiation [44]. Therefore,
application-level standardisation would be more suitable. Task-driven development
of pervasive interactive systems can deal with this inconsistency problem. Task
models are abstractly specified using a standard language. Once a task model is
specified, it can be loaded and executed consistently in different environments for
achieving its goal.

To address the invisibility problem, task recommendation would be a solution. The
system will base on user’s situational context and available functionalities of the
environment to recommend relevant tasks for the user. The system will guide the
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user through steps specified in the task models to accomplish the selected tasks.

My Task-Based Framework is proposed to achieve the objectives mentioned above.
The framework supports two phases: design time and run time. At design time,
task models are specified using a standard language. At runtime, a runtime system
called Task Execution Engine manages and controls the execution of task models.
Another runtime system called TASKREC run on devices carried by users. TASKREC
acts as the interface between the user, the Task Execution Engine, and interactive
computing devices.

1.6.1 Use Case 1

To prove the advantages of the proposed framework, an experimental environment
should consist of a number of different computer-controlled devices and should pro-
vide a range of different features. Moreover, the operation of some tasks should
span cross different places to show how the inconsistency problem of task operation
can be solved. Let’s consider the following scenario which involves places: house,
car park and library.

Assume that the house, the car park and the library are installed with a Task
Execution Engine. Each is loaded with specific domain task models (i.e., a database
of task descriptions) and is connected to various sensors for acquiring contexts from
the physical environment.

On a heavy rain and cold early morning in winter, when Bob has stepped out of the
house, the Task Fxecution Engine uses knowledge about his routine and calendar,
and asks the TASKREC on his mobile phone to recommend him the task ‘Drive to
work’. As Bob selects this task, the Task Ezxecution Engine automatically loads the
model of this task and evecutes it. As a result, the heater and the TV are turned
off; his mobile phone is switched to outdoor mode, all calls to his home phone will
now be forwarded to his mobile phone. ..

At his workplace, while Bob is walking into the university library, the Task Ezrecu-
tion Engine of the library asks the TASKREC to switch his mobile phone to quiet
mode (because of library policies) and recommends him two tasks: ‘Borrow a book’
and ‘Book a study-carrel’. He selects the first task. The Task Execution Engine
executes this task by guiding him through the borrowing process. Consequently, the
book he would like to borrow is located in the local library of the Computer Science
department. As he walks into the departmental library, the TASKREC recommends
him two tasks: ‘Borrow a book’ and ‘Borrow a projector’. He selects the first task.
Because he has never borrowed a book here, the borrowing policies as well as under-
lying technologies are unfamiliar with him. But he still feels very impressive because
the Task FExecution Engine has guided him through a consistent borrowing procedure.

At the end of the working day, Bob walks towards his car in the car park. He
recognises that the car has been damaged by someone’s car but they have gone away.
This is the first time he is in this situation. Thanks to the TASKREC on his mobile
phone, he is able to search for relevant tasks for this new situation. The search uses
context information provided by both him and the system itself. For a while, the
system recommends him the task ‘Report a car accident’. Once he selects this task,
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the system guides him to accomplish it.

1.6.2 Use Case 2

The following scenario extracted and modified from [17] highlights the challenges of
task recommendation in a pervasive computing environment.

Tommy attends a conference to present his paper. He’s unfamiliar with the facility
holding the conference. Fortunately, he can view a list of conference-related tasks in
his smart phone’s task recommender. He executes a task to register as a presenter
and make his presentation slides public. Tommy also finds a ‘Want to know about
the conference’ task that introduces the conference through a video delivered to his
smart phone. This task guides him to a shared high-quality display in the lounge.
He mowes to the lounge and watches the content on this display. While there, Dana,
a student who was recommended a task ‘Meet Tommy’, approaches to inquire about
his research.

During Tommy’s presentation, he is recommended for presentation-related tasks
such as ‘Print a document’. Dana as an audience member is also recommended
for the same task. Although executing the same printing task, Tommy’s task uses a
printer in the same room while Dana’s task uses another printer in the next room,
which has no job pending. After the presentation, Tommy and Dana meet to discuss
their research in the lounge. Tommy executes the ‘Print a document’ task to print
a document for Dana. This time, a printer in the lounge is used.

In the first part of this scenario, TASKREC recommended useful tasks for Tommy
automatically even though he was unaware of their feasibility. The tasks weren’t
just unknown to him, but were related to his context. In the second part of the
scenario, Tommy and Dana’s TASKRECs used contextual information and applied
different criteria to recommend the most relevant tasks.

1.6.3 Requirements of the Scenarios

Minimum assumption on mobile devices The mobile device doesn’t need to
install any specialised software or hardware in order to accomplish recom-
mended tasks in a certain environment.

Automatisation | Automatic discovery of relevant tasks in unfamiliar environ-
ments.

Task Composition Automatic composition of tasks based on the availability of
devices and services.

User context consideration To provide relevant tasks.

Context-aware user interface generation User interface generation based on
user and device capability should be supported.
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1.6.4 Expected Research Contribution

The main goal of this research is to address the complexity, invisibility, and incon-
sistency of the use of pervasive interactive systems in smart spaces. As shown in
the scenario mentioned above, our task-driven framework hides the complexity of
the system by recommending the user only relevant tasks according to the user’s
situation (e.g., location information). Then, the user interface will be tailored to
the selected tasks to guide him/her through task execution. This differs from a tra-
ditional system where all features of the system are shown on its user interface (e.g.,
hierarchical menus), and the user deals with the decision of selection or combination
of features to finish his/her intended tasks.

The use case also shows that the operation of the same task (e.g., ‘Borrow a book’)
can be consistently operated in two different environments. To do so, task models
should be specified independently from executing environments.

The task-driven framework will demonstrate the following key features:

e Task model description: The research will explore task modelling lan-
guages for describing task models. The task model description should provide
a mechanism for abstractly specifying task models so that task models are
independent of actual services, devices, and resources. It should allow to de-
scribe applicability conditions for tasks.

e Task recommendation and searching: The framework uses user’s location
information at various levels (e.g., room, building, area...) and devices near-by
for inferring relevant tasks. The user is also able to search for relevant tasks
by providing information about a particular situation.

e A task execution engine: The framework has a runtime Task Execution
Engine which executes tasks selected by users. The engine needs to perform a
crucial function that binds abstract services (described in task models) with
actual services and devices currently available in the environment. The en-
gine also organises resources and composes available services for a task to be
performed.

e Task-based user interfaces: The framework can actively help the user learn
how to operate tasks via task-based user interfaces.

e Programmability: Because task models are developed separately. Different
task models can be loaded and removed from the system easily. This makes
the pervasive environment programmable. So, the system is not be bogged
down by the numerous low-level details of a static set of functionalities, but
will allow to configure the environment to the specific requirements of the
inhabitants quickly.

Together with design and implementation of the task-driven framework, I will also
demonstrate the feasibility of this task-driven framework by developing a prototype
system. This system will be evaluated through experiments in simulated scenarios
as mentioned in Section [LL6.1
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1.7 Outline of the Research Proposal

The rest of this proposal is organised as follows:

e In Chapter 2, I will discuss the notion of task and task-driven computing
research.

e In Chapter 3, I will examine the research direction of task-driven computing
and review the related work.

e In Chapter 4, I will describe a detailed design of the Task-Driven Framework.
The discussion will cover how the framework describes, manages, and executes
task models in pervasive environments.

e In Chapter 5, I will summarise this document and present the preliminary
research approach. A feasibility study will be described for the purpose of
evaluating the framework. At the end, the milestones of the future research
will be presented.
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Chapter 2

Concepts and Background

This chapter presents concepts and background which constitute the task-driven
computing paradigm.

2.1 What is Task-Driven Computing?

According to [41,54], task-driven computing or task computing allows users to focus
on the tasks they want to accomplish rather than how to accomplish them.

To transfer users’ focus from the computer to the task at hand. In other words, to
help a person “forget he/she is using a computer while interacting with one” [55)].

2.1.1 Challenges
1. Task computing should support for task migration. That is a capability to

suspend task execution from one environment and resume it later in a different
environment.

2.2 What is a Task?

2.2.1 Definitions of Tasks

There are many definition of a task in the literature (e.g., |41, 44, 46, 567 ]) but
there is no a common definition of a task. We adopt a definition that “a task is a
goal or objective which is presented by a set of actions performed collaboratively by
humans and machines to achieve this goal”.

2.2.2 Tasks vs. Services

A task is different from a service. Services are means to accomplish tasks. A task is
a goal or objective while a service is the performance of tasks. Tasks are associated
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with what the user wants to accomplish, and services with environmental capabilities
to complete the tasks [? |.

“Task” is a high-level and user-oriented term, which is associated with user’s require-
ments, while “service” is a low-level and system-oriented term, which is associated
with system functionalities.

2.2.3 Tasks vs. Problems

A task is not the same concept as a problem.[57] This statement is justified by the
fact that one can say “perform a task” but would not say “perform a problem”,
which shows their inherent difference. A task is as a sequence of problem solving
steps. Therefore, the name of a task necessarily includes verbs representing problem
solving activities.

2.2.4 Characteristics of Tasks

Tasks vary widely in their time extent. They can last minutes, hours, or days. Some
are effectively instantaneous, for example, 'turn off the lights’; some never finish;
and some have an indeterminable time extent. They typically involve both human
participants-as requesters, beneficiaries, or performers of the tasks-and machines.
Some tasks can be performed only by a human being; others can be performed only
by a machine; and yet others can be performed by either. Tasks can span multiple
devices, places, and involve many people, services. They can range from a very
high abstraction level (such as ’contact someone’) to a concrete, action-oriented
level (such as ’enter phone number’. Very low-level tasks are closer to the primitive
controls of a particular device, for example, 'tap the Call button on the phone’.
Finally, tasks are often personalised for each user.

2.3 What is a Task Model?

A model of a task (called task model, task description, task specification, task
formalism, or task expression) is a formal description of the activities/actions/sub-
tasks involved in completing the tasks [44, 46]. A description of a task represents
the decomposition of the task into its subtasks/actions. When we reach (sub)tasks
which cannot be further decomposed we have basic (atomic or primitive) tasks. In
some cases, basic tasks require one single physical action to be performed.

In the past, a task model was a means to help designers, developers, managers,
customers, and experts understand how the task should be performed. Specifically,
it helps designers identify requirements which should be satisfied to perform the task
effectively. Tt also helps a machine understand how the task are performed [58].

Smart spaces are highly dynamic environments in terms of the availability and
heterogeneity of users, devices, and services. Therefore, the key requirements for
a language used to describing task models are to support for the abstraction of
task models, i.e., platform-independence. Task models would be abstract enough
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to avoid being bound to specific platforms. The abstraction of task models allows
tasks to be flexibly executed in different environments. So, this would increase the
reuse and scalability of task models.

2.4 Task-Driven Computing Framework

A task-driven computing framework or task computing framework is to deal with
mapping between tasks and services. For example, a lecture hall fitted with a task
computing framework can process typical tasks, such as showing presentations and
controlling lighting, by completing a set of underlying services [? |.

2.5 Taskable Spaces

A spaces fitted with a task computing framework are taskable space [? |.

2.6 Task Ontologies

“Roughly speaking, an ontology is composed of two parts, that is, taxonomy and
axioms. Taxonomy is a hierarchical system of concepts while axioms are established
rules, principles, or laws among the concepts. Axioms specify the competence of
an ontology. In other words, a class of the questions to which the answers can be
derived from the axiom specifies the competence of the ontology.” [59]

Tasks, which are commonly performed at a place or with particular appliances,
yields a vocabulary of typical task sets, called a task ontology [? ]. A task ontology
provides a common sense of the tasks which places or artifacts should support.
For examples, in a home theater room, a common task would likely be watching a
movie; in a lecture hall, a typical task is such as continue yesterday's lecture; consider
windows and drapes—typical tasks are open and close; typical tasks on lights are turn
on and turn off; and if a dimmer is present, darker or brighter. [? ]

A task ontology could be built on a situation ontology. A situation ontology is
built on a time ontology, a place ontology, an artefact ontology, a user ontology, an
environment condition ontology...

Mizoguchi [57] defines a task ontology as a system of vocabulary for describing
problem solving structure of all the existing tasks domain-independently. It is ob-
tained by analysing task structures of real world problems. The ultimate goal of
task ontology research includes to provide vocabulary necessary and sufficient for
building a model of human problem solving processes. When we view a problem
solving process based on such as a sentence of natural language, a task ontology is
a system of semantic vocabulary for representing meaning of the sentence. A task
ontology consists of the following four kinds of concepts:

1. Generic nouns representing objects reflecting their roles appearing in the prob-
lem solving process,

24



2. Generic verbs representing unit activities appearing in the problem solving
process,

3. Generic adjectives modifying the objects, and

4. Other concepts-specific to the task.

2.7 Task-Oriented User Interfaces

A task-oriented user interface (task-based user interface) of a smart space are a
user interface which are oriented (navigated) around the tasks that a user have for
the space. “For example, a reasonable goal for the user after opening the freezer
is to want to defrost something. Thus if a system can sense the door opening, the
microwave should suggest the defrosting function. If the devices cannot perform a
desired action, they should give the user an explanation of why the goal failed and
how to fix it. If the state of the device interferes with another action, it should inform
the user of the conflict and the actions necessary to resolve it (Self-describing). In
the normal process of manipulating the devices, the user may be required to make
choices in situations where he or she might not have a good understanding of the
consequences. In this case, the system should inform the user about the trade-
off of each choice. Informing the user of the consequences of trade-offs has the
following advantages: (a) it prevents the user from experiencing an undesirable and
potentially irreversible consequence of a system action; and (b) it helps the user back
trace to the right point if he or she wants to change the behaviour of the system
(Self-revealing). Fixing devices when things go wrong is one of the most frustrating
things about dealing with consumer electronics. A common reason for problems is
when the users use of the device is outside the designers anticipated scenario of use,
or there is a piece that it is not working as expected. Fixing this problem forces
the user to introspect about the systems internal state which might be hidden by
the device designer and to figure out what is wrong and devise a strategy to fix it
(Self-debugging).”

2.8 Task-Prediction

2.9 Task Prediction

What is task prediction? What are the main methods for predicting tasks?

Task prediction can be called goal prediction or user’s desires prediction.

2.9.1 Using History of User’s Actions
Isbell et al. [60] found that it is possible to predict the next probable task based

on the history of a user’s activity using Markovian models, and that it is easier to
predict the next task than the next device being used. They model a task as a
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set of related commands to devices, and the aim is to group those commands in a
meaningful way so that they can be easily used together as one task. The primary
disadvantage of the approach is that the inferred task models are not ware of the
changes of the environments.

[61] A Comparison of Two Hidden Markov Approaches to Task Identification in the
Home Environment

2.9.2 Using Commonsense Reasoning

Lieberman and Espinosa [31] described the use of commonsense knowledge base to
predict tasks automatically.

2.9.3 Using Case-Based Reasoning

l637)...

2.9.4 Using Sensor Data [1]

It presents a Markov-based approach for inferring high-level tasks from a set of
low-level sensor data.

2.10 Task-Prediction

2.11 Task-Driven Systems

2.11.1 Logitech Harmony Remote

A Logitech Harmony remotd] can control many devices at the same time. Its main
user interface shows the user a list of tasks such as “Watch TV” and “Listen to
Music”. Once the user selects a task, the remote automatically configures the en-
tertainment system to achieve the selected task. However, these universal remote
controls for the most part still need to be pre-configured with a certain set of tasks
that can be performed with the pre-known set of devices. They are not able to
discover new tasks as new devices join the network.

2.11.2 DiamondHelp

DiamondHelp[63, 64] combines a task-based dialog interface (or conservational in-
terface) with a direct manipulation interface. The task-based portions are auto-
matically generated from task models. It is a means for communication between
DiamondHelp and the user and includes a set of user utterances which have the

thttp://www.logitech.com/index.cfm/remotes/universal remotes/&cl=au,en
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same meaning in all applications. The utterances are “What next?”, “Never mind”,
“Oops”, “Done”, and “Help”. The direct manipulation interface is for the user to
enter variable data.

Limitations of DiamondHelp:

DiamondHelp was only designed for interfaces to individual appliances (e.g., washer-
dryer, thermostat, and DVD recorder). In other words, it did not aim for an interface
to a smart space (i.e., an interface to different combinations of multiple appliances).

DiamondHelp relies on designers to manually create the direct-manipulation por-
tions of the interface.

Another problem with DiamondHelp is its inability to deal with natural language.

2.11.3 Olympus

Ranganathan and Campbell [56], Ranganathan [65] propose an autonomic task ex-
ecution framework for ubiquitous computing environments. In the framework, flexi-
bility of task execution is achieved by parameterising tasks. Each task is associated
with one or more parameters that influence how it is performed. The parameters
may be devices, services, or applications to employ while performing the task or they
may be strategies or algorithms to use. When the task is executed, the middleware
obtains the values of the different parameters by either asking the end-user or by au-
tomatically deducing the best value of the parameter based on constraints specified
by the developer, the current state of the environment, context-sensitive policies,
and user preferences. It can also recover from failures of one or more actions by
using alternative resources. The framework also decides how best to interact with
the end-user automatically (e.g. using a handheld device or a touch-screen or by
speech, etc.).

Olympus [66] provides a high-level programming model to develop task-driven ap-
plications. Task-driven applications consist of high-level operators and operands.
High-level operands in Olympus include services, applications, devices, physical ob-
jects, locations, users, and Active Spaces. Each is associated with a hierarchy in
the ontology and developers can use any sub-concept of these basic types while pro-
gramming. High-level operators in Olympus operate on the high level operands to
do one of the following;:

1. Manage the life-cycle of entities: These include operators for starting, stop-
ping, suspending applications and other entities.

2. Query or change the state of entities: For example, the state of a light may be
on, off, or dim. High-level operators allow querying or changing the state of
the light. Another such high-level operator exists for notifying a user of some
information.

3. Query or change the relationships between entities: For example, operators
exist to query the relationship between a user and a location, or for changing
the relationship between a device and an application (e.g., move an application
to a different device), etc.
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Task-driven applications include instructions on how to enhance the performance
of the individual activities. Task-driven applications are written in a high-level
manner, in terms of abstract resources or parameters and are not strongly tied into
the characteristics of any particular environment. This enhances portability, and
the same task can run unchanged in different environments.

Task-driven applications are written in C++ or in a scripting language called
Lua [67]. Tasks may be initiated either by an end-user or automatically by the
framework in response to an event. A task is composed of three kinds of activities:
parameter-obtaining, state-gathering, and world-altering.

e Parameter-obtaining activities involve getting values of parameters by either
asking the end-user or by automatically deducing the best value. The descrip-
tions of these parameters are in a task parameter XML file. In the case of
parameters whose values must be deduced automatically, a Discovery Service
is queried to get the best value. The Discovery Service has access to different
ontologies and policies that specify properties of different entities and have
rules that constrain the values of different parameters.

e State-gathering activities involve querying other services or databases for the
current state of the environment.

e World-altering activities change the state of the environment by creating, re-
configuring, moving, or destroying other entities like applications and services.
World-altering and state-gathering activities are written in the form of C++
functions. These activities are developed using the high-level operands and
operators provided by the Olympus programming model.

Discussion

The authors have not evaluated their approach in term of usability and efficiency
from end-user’s perspectives.

2.11.4 InterPlay

Interplay [43] is a system that is claimed to allow users to use a simple pseudo-
English interface to issues home tasks without having to consider where a particular
content is located and how to achieve those tasks.

The minimal pseudo sentence representation for a task consists of a verb, a subject
(content-type or content) and target device(s). For example, “Play (verb), The
Matrix (subject), Living Room DTV (target device)” means “Play the DVD ‘The
Matrix' from the Bedroom DVD Player onto the DVT in the Living room”.

Interplay requires device specifications to work. A device specification provides
description about the device’ functionality and task(s) supported by the device.
During the process of task composition, the functional requirements of a task are
checked against the functionality advertised by the available devices in a home. If
for a particular task, the required functionality is available, then a task instance
is created. For example, if there are “audio/mpeg” contents in a home and there
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are devices that can take “audio/mpeg” as their inputs, then “Play Audio” tasks for
these devices are created.

The Interplay system has some advantages. It provides a simple and intuitive means
to help capturing user’s intent; it captures sufficient detail for mapping tasks to
service invocations. However, the need for a user to explicitly express his/her intent
in pseudo sentence could be the limitations of this approach.

2.11.5 Huddle

The Huddle system[68] lets end users connect devices together in a user interface
centered on content flows for their intended tasks.

2.11.6 Roadie

Roadie[31] is a goal-oriented user interface for non-expert users to interact with
appliances. Roadie requires knowledge about the goals of the user and the plans
to achieve those goals to work. The goals of the user are inferred by using the
Open-Mind Commonsense Knowledge Base[69], a knowledge base of 800,000 English
sentences describing everyday life. The plans are generated by using a semantic
network called EventNet|70]. EventNet links represent temporal and casual relations
between events.

The Roadie interface consists of dynamic dialog boxes that

e suggest goals,

e show actions involved to achieve a goal,

e provide control buttons for executing the steps,

e provide explanation,

e display alternatives for steps,

e provide facilities for help and giving feedback, and

e Provide a text box for the user to state goals or ask questions in a natural
language.

When the user picks one of the suggested goals, the planner calculates a plan to
reach the goal. The user can control the execution of the actions by using the button
“Perform this goal” (do all the actions at once), and the single-action “Do next step”
button. The “Tell me more” button provides more detailed explanation of why the
actions help accomplish the goal, and the “Oops, it does not work!” button launches
a debugging dialog. The text box is place where the user uses natural language to
communicate with the system.

Limitations of Roadie:
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Because Roadie relies on a database of commonsense knowledge to find possible user
goals and action sequences, the possible actions are restricted to the contents of the
commonsense database. Therefore, Roadie may not be able to support uncommon
actions, such as those related to an uncommon configuration of appliances or to a
new class of appliance that has just been added to the system.

2.11.7 Pervasive Menu & Interactive Wizards

A pervasive menu|71] presents the tasks that can be done with the currently available
resources in the environment (i.e., it provides a view on what the user can do in a
pervasive environment). The pervasive menu is generated at run-time based on the
dynamic environment model which describes the full context of use of the system
as a semantic graph. Interactive wizards are dialogs which are distributed to the
end-user’s personal device whenever user input (e.g., configuring a task) is required
for accomplishing a task.

How to describing tasks did not mention in this work.

2.11.8 Homebird

Homebird|[19] is a task-based user experience on a mobile phone. It automatically
discovers features of other mobile devices and suggests to the user that certain tasks
can be performed together with the discovered devices. This approach cuts down
the number of steps needed to perform common tasks, and also makes it easier for
users to find out what can be done in a particular environment.

In Homebird, the logics of tasks are encapsulated in modules called plug-ins which
describe what the tasks do (e.g., the “Show latest photos” task displays photos on a
nearby TV screen) and how to accomplish the tasks (e.g., the “Show latest photos”
task first (1) searches photos on the devices on the network, and second (2) searches
the TV screens capable of showing the photos). Homebird loads these plug-ins when
the phone is switched on, and lets them continuously perform condition checking in
the background, deciding whether to display a task for the user. All the plug-ins
use the UPnP protocol for communicating with networked devices.

Homebird does not consider the need of the user when suggesting tasks (i.e., it shows
all possible tasks which may not be relevant to the user). The implementation
architecture allows to add new tasks, but the authors did not mention how they
defined those tasks.
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2.12 Task-Prediction

2.13 Task-Focused Interfaces

2.13.1 Introduction

According Wikipedia@, a task-focused interface is a type of user interface which
extends the desktop metaphor of the graphical user interface to make tasks, not files
and folders, the primary unit of interaction. Instead of showing entire hierarchies
or lists of information, such as the contents document hierarchy, a task-focused
interface shows the subset of the content that is relevant to the task at hand. This
addresses the problem of information overload when dealing with large hierarchies,
such as those in software systems or large sets of documents. The task-focused
interface is composed of a mechanism which allows the user to specify the task
being worked on, a model of the task context such as a degree-of-interest (DOI)
ranking [72], and a mechanism to filter or highlight the relevant documents.

2.13.2 Methods

Based on the user’s interaction with information, each uniquely identifiable element
of information available to the user is assigned a degree-of-interest (DOI) ranking.
The more frequently and recently a user has interacted with an element of informa-
tion, the higher the DOI for that element for that task.

The DOI rankings for the information elements can be used within a task-focused
interface in four ways. FElements below a certain DOI threshold can be filtered
to reduce the number of elements presented. Elements can be ranked according
to their DOI; for instance, the elements of highest interest can be shown at the
top of a list. The elements can be decorated with colours to indicate ranges of
DOI. Finally, the display of structured information elements can be automatically
managed based on DOI; for instance, text corresponding to elements with low DOI
can be automatically elided.

The DOI value for each information element interacted with as part of a task can
be derived from a stored history of interaction events recorded as the user works
with the application. This approach requires a user to indicate the start of a task.
The collection of all interaction events that take place during a single task is called
a “task context”.

2.13.3 Prototypes

The Eclipse Mylyn projectﬁ is an implementation of the task-focused interface. My-
lyn filters, sorts, highlights, folds, and manages tree expansion for numerous views
within the Eclipse IDE based on the currently active task.

Zhttp://en.wikipedia.org/wiki/Task-focused.interface
3http:/ /www.eclipse.org/mylyn/index.php
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Tasktop Prd] is a full-featured supported product based on Mylyn with additional
productivity features.

Task-based service navigation[8, 9, [11), 20, [73-75].
Task-oriented user interface to a digital library[76, [77].
Articulating the Task at Hand and Making Information Relevant to It[42].

4http://tasktop.com
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Chapter 3

A Survey of Task Model
Description Languages

3.1 Task Model Description Languages

3.1.1 CEA-2018 Task Model Description—CE TASK

CE-TASK [49] is a standard language specifically designed for representing tasks
relevant to consumer electronics devices. CE-TASK represents tasks in terms of sub-
tasks and steps. Steps are can be grounded to actual device functions via JavaScript.
Other elements in a CE-TASK task representation are input and output parame-
ters, pre-conditions, post-conditions, grounding scripts, user intent concepts, data
flow between subtasks (data bindings), applicability conditions, and initialisation
scripts. An applicability condition helps the system choose an appropriate decom-
position when there is more than one. An initialisation script is not associated with
any tasks and is intended to be executed exactly once when the containing task is
loaded. User intent concepts can be specified in an OWL ontology which describes
semantic concepts and their relationships support for reasoning about types, values,
and functions declared within a task representation. To control steps sequencing,
CE-TASK provides temporal operators such as Ordered, Requires, Min-Occurs, and
Maz-Occurs. However, CE-TASK doesn’t provide a parallel operator and a mech-
anism for synchronisation between parallel tasks. Figure B.1] shows a CE-TASK
representation for the task of borrowing a book from the library.

A task description language provides a formal syntax and semantics for creating
task models. The constructed models can then be used to specify and communicate
interface designs, generate interfaces, predict the usability of interfaces, or enable
systems to monitor user activities.

There are many approaches on task modelling. Rich [44] points out the main dis-
advantage of the traditional approaches that task models are used only for user
interface design at design time, if at all, then discarded. The next disadvantage is
the device-dependance of task models. This limits the scalability of task models.

Most existing approaches focused on tasks which are either a desired modification
of the state of an application or an attempt to retrieve some information from an
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[fOntSize=,sa.mepage=true] [fOl’ltSize=,sa.mepage=fa1se]
<taskModel about="urn:computer.org:cetask:library" value="$search.book"/>
xmlns="http://ce.org/cea-2018" </subtasks>
<task id="Borrow"> </task>
<input name="book" type="Book"/>
<subtasks id="borrowing"> <task id="LookupInCatalog">
<step name="go" task="GoToLibrary"/> <input name="book" type="Book"/>
<step name="choose" task="ChooseBook"/> <output name="location" type="string"/>
<step name="check" task="CheckOut"/> <postcondition>
<binding slot="$choose.input" $this.location != undefined
value="$this.book"/> </postcondition>
<binding slot="$check.book" <script>
value="$choose.output"/> $this.location = lookup($this.book)
</subtasks> </script>
</task> </task>
<task id="GoToLibrary"/> <task id="TakeFromShelf">
<input name="book" type="Book"/>
<task id="ChooseBook"> <input name="location" type="string"/
<input name="input" type="Book"/> </task>
<output name="output" type="Book"/>
<subtasks id="initial"> <task id="UseSearchEngine">
<step name="lookup" <input name="query" type="string"/>
task="LookupInCatalog"/> <output name="book" type="Book"/>
<step name="take" task="TakeFromShelf"/> <output name="location" type="string"/>
<binding slot="$lookup.book" <postcondition>
value="$this.input"/> $this.book != undefined
<binding slot="$take.book" </postcondition>
value="$this.input"/> <script>
<binding slot="$take.location" $this.book = search($this.query);
value="$lookup.location"/> if ( $this.book != undefined )
<binding slot="$this.output" $this.location = lookup($this.book);
value="$this.input"/> </script>
</subtasks> </task>
<subtasks id="alternative">
<step name="search" <task id="CheckQOut">
task="UseSearchEngine"/> <input name="book" type="Book"/>
<step name="take" task="TakeFromShelf"/> <script>
<applicable> print (" ["+$this.book+" checked out!]");
$this.success == false </script>
</applicable> </task>
<binding slot="$take.book"
value="$search.book"/> <script init="true">
<binding slot="$take.location" <!- initialisation script ->
value="$search.location"/> </script>
<binding slot="$this.output" </taskModel>

Figure 3.1: A CE-TASK representation of a Borrowing Book task.

application (ex., Accessing a flight’s database to know what flights are available is a
task which does not require the modification of the state of the application, whereas
Accessing a flight’s database to add a new reservation requires a modification of the
state of the application). Now, we have a task which aims to change the state of
the environment.

3.1.2 Hierarchical Task Analysis

Hierarchical Task Analysis[78]: logical hierarchical structure
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GOAL: ACCESS ATM

GOAL: ENABLE ACCESS
INSERT CREDIT CARD
INSERT PASSWORD

GOAL: TAKE CASH
SELECT WITHDRAW SERVICE
SELECT AMOUNT OF MONEY
PRESS OKAY
TAKE MONEY
VERIFY AMOUNT OF MONEY

Figure 3.2: Example of a GOMS specification.

3.1.3 GOMS

“GOMS (Goals, Operators, Methods, Selection rules)|79] provides a hierarchical de-
scription to reach goals in terms of operators. Operators are elementary perceptual,
motor and cognitive acts. Methods are sequences of subgoals and operators used to
structure the description of how to reach a given goal. The selection rules indicate
when to use a method instead of another one.

In FigureB3.2] there is an example of a GOMS specification. It describes how a user
segments the larger goal of Access ATM into a sequence of small, discrete operators,
such as Select withdraw service or Select amount of money. In this example no
selection rule is used.”

as means for formally describing human problem solving behaviour.

3.1.4 Grammar-Based Approaches

Task Action Grammar|[80]. “In these grammars the logical structure is defined in the
production rules where high level tasks can be associated with non terminal symbols
whereas basic tasks are associated with the terminal symbols of the grammar.”

3.1.5 UAN

UAN (User Action Notation)|[81]’s main purpose is to communicate design. It allows
designers to describe the dynamic behaviour of graphical user interface. It is a
textual notation where asynchronous tasks are represented in a quasi-hierarchical
structure. A UAN specification is usually structured into two parts:

e One part describes task decomposition and the temporal relationships among
asynchronous tasks;

e The other part associates each basic task with one table. The table have
three columns indicating the user actions, the system feedback and the state
modifications requested to perform it.
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3.1.6 LOTOS[2? ]

3.1.7 ConcurTaskTrees

ConcurTaskTrees|82] is a graphical language for modelling tasks. It provides a
rich set of operators to describe the temporal relationships among tasks (enabling,
concurrency, disabling, interruption, optionality). For each task further information
can be given such as its type, the category (indicating how the performance is
allocated), the objects that it requires to be manipulated and attributes, such as
frequency of performance.This model has the following features:

e [t is a hierarchical structure and graphical syntax.

e [t allows to define temporal relationships between the tasks such as enabling,
concurrent performance, choice, parallel composition, disabling, suspend-resume,
order independence, independence concurrency, concurrency with information
exchange, order independence, and enabling with information passing.

e [t describes task allocation by indicating the category of the task including user
task, application tasks, interaction task, and abstract task (tasks that have
subtasks belonging to different categories). It also allows the specification of
who or what is performing the task, whether it be the user, the system, or an
interaction between the two.

e [t also describes the objects including user interface objects and application
domain objects that have to be manipulated to support their performance.

e [t allows to specify the properties of a task such as iteration, finite iteration,
optional task, and recurrence, preconditions, identifier, name, frequency of
use, access rights, and estimated time of performance.

e Moreover, it allows to indicate cooperative tasks where two or more users
are involved to perform the tasks. Using this model, a cooperative task is
decomposed until the sub-tasks are performed by single users.

A graphical tool called CTTE [58] was developed to support editing and analysis of
task models. The noticeable features of the tool are the follows:

e Editing task models;

e Checking completeness of task models;

Multiple interactive views of task models;
e Comparing task models;

Task model simulator which can be used for interactive simulation of a devel-
oped task model.

The limitations of this approach:
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e Task models using this approach only support for designing of applications
which are used in statically target environments with static goals and specific
devices. It is impossible to make changes to the task model at runtime to
adapt the task performance to specific circumstances.

e Objects associated with tasks are insignificantly abstract so that they are not
best suited in dynamic environments.

e This model does not allow the user to interrupt a task and then resume it later
in a different environment (task migration). In highly dynamic environments,
users would like the task follow them between different environments.

e does not have an operator defining the premature termination of a scenario
(whether it is due to human or system error).

[83] propose a set of extensions for these task models. extensions to the opera-
tor set (namely stop, instance iteration, non-deterministic choice, and deterministic
choice.); structural extensions (A task model is no longer defined as a monolithic
task tree but in a modular fashion where a task tree may include references to other
sub-ordinate task trees. define a specialisation relation between task models and
propose a high-level notation called “Task Model Diagram”.), and (3) extensions
in support of cooperative task models (addresses the creation of task models for
cooperative applications (e.g. multi-user smart environments). define a concept
of a cooperative task model. Within such a cooperative task model the execu-
tion of a task of one model may enable or disable the execution of a task in a
different task model, extend CCTT by taken into account that a role is typically
fulfilled by several users. For each user we create a copy (instance) of the corre-
sponding role task model. At runtime the various instances of the task model are
executed concurrently. Synchronisation points between instances are specified in
TCL (task constraint language). A coordinator task model, as specified in CCTT,
is not needed.).

In order to overcome CT'T’s inability to specify task failures and error cases Bastide
and Basnyat[84] introduce the concept of error patterns.

3.1.8 UIDL

The PUC’s Specification Language[85] (UIDL) is designed for modelling functional
models of individual appliances. UIDL does not include a task model.

3.1.9 UDIT

UDIT [86] is a graphical editor for useML.

3.1.10 The Room-Based Use Model

The Room-Based Use Model [87] is the extended Use Model.
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3.1.11 Tasks as Virtual Services

Garlan et al. [37], Wang and Garlan [41], Masuoka et al. [88] simply treated a task
as merely binding together a set of relevant computing applications (called services).
The fundamental problem with this approach is that it is too application-centric.
Since these applications are only a means to carry out a task, they are not suitable
to represent the task itself, or to capture user-related context information.

In Project Aura |37, 41], user tasks are represented as coalitions of abstract services
that are at runtime bound to actual services in the environment. By providing an
abstract characterisation of the services in a task, it is possible for a system to search
heterogeneous environments for appropriate actual services to supply those virtual
services. A task is simply a top-level virtual service that can be invoked directly
by a user. A unit of abstract functionality is represented by a virtual service. A
task is regarded as a top-level virtual service which may be decomposed into a set
of virtual services. Thus a task can be achieved by executing its virtual services
which are bound to physical services. The Aura project has no semantic modelling
of tasks which makes it difficult in context-adaptively matching services in an open
manner to continue a user task.

The interfaces of a virtual service include four elements: a functional interface,
a state interface, a configuration interface, and a dependency specification. The
functional interface defines how a client can access the service. It can be described
using an ordinary interface definition language (such as CORBA IDL) in the forms
of communicating messages, method invocations, and data pipes.

The state interface describes the state constituents of a virtual service. State is
defined using a structure schema (such as an XML schema) that specifies the state of
a service in terms of attributes and values. For example, the state schema of an email
service might include attributes such as current mailbox, current message_ID, email
address shortcuts, etc. The state schema of a document display service will include
the name of the document, the current position in the document, and possibly some
display options.

The configuration interface describes the configuration parameters of a virtual ser-
vice. It is also represented by a structure schema. For example, an email service
configuration interface might specify options, such as the mail server name; a doc-
ument editing service may include options such as the auto-save interval and tab
size.

The dependency specification can be used to specify other services required by a
virtual service in order to operate. For example, an email service may require that
a text editor be available.

Task Computing|88] is claimed to let end-users accomplish complex tasks easily in
environments rich with applications, devices, and services.

In Task Computing, the functionality of the user’s computing device (from applica-
tions and OS), of the devices in the environment, and of the available e-services on
the Internet is transformed into services. These services are described by semantic
web technologies such as OWL and OWL-S. Tasks are seen as composed services
(e.g., the “View on Project” + “My File” task is composed of the “View on Project”
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and “My File” services).

The system’s user interface presents the available basic services to the user and
allows him /her to either choose a basic service or compose a complex service using
multiple basic services. While this approach minimises the complexity in the un-
derlying middleware, it doesn’t provide a good user experience since the user has to
spend significant time and effort to understand the services to compose and achieve
the desired task. For example, one may not aware of that executing [Local File +
Bank (File)] will make the file available through the “Bank (File)” service in the
conference room for other attendees to copy.

3.1.12 Natural Languages

This approach uses performative of the speech act such as “I'd like you (i.e., machine)
to display, given a product, the products references, descriptions, and prices” [89] or
verb-object phrases such as “play video”, ““‘display slide-show”, “find route from A
to B”, “send a message to a user”, and “view photos on projector” [? | to represent
high-level user’s tasks. Although this approach allow end-users to easily to specify
their tasks, the system must have an ability of understanding natural languages.
This is a hard problem, or even impossible.

Interplay [43] is a system that is claimed to allow users to use a simple pseudo-
English interface to issues home tasks without having to consider where a particular
content is located and how to achieve those tasks.

The minimal pseudo sentence representation for a task consists of a verb, a subject
(content-type or content) and target device(s). For example, “Play (verb), The
Matrix (subject), Living Room DTV (target device)” means “Play the DVD ‘The
Matrix' from the Bedroom DVD Player onto the DVT in the Living room”.

3.1.13 ECO Language

explicit program-like representations: ECO Language [90] is able to represent com-
posite tasks composed of procedures, for example: “make coffee; turn lights dim;
wait for lights; download news; wait for news; show news on tv;”. An ECO procedure
consists of task statements and dependency statements. A task statement is actually
a particular command sent to a particular agent. A dependency statement specifies
that a response from a certain task statement is a prerequisite for the execution of
another task statement. the operator “;” indicates a parallel composition. In the
above example, the term coffee refers to the brewing agent in the coffee machine.
The coffee machine makes only a single style of coffee. If it could make multiple
styles of coffee, the coffee style would need to be an argument, for example, “make
Turkish coffee”.

Clearly, this approach is an structural extension of the approach of using natural
languages. So, it possesses the same problem of understanding natural languages.

39



3.1.14 Data-Action Pairs, verb-object phrases
A user requests a task by specifying a data file and action directive pair[91]. The
extension of the file is used as the mime type of the request. For example, to request

that the system play the movie “The Matrix”, the user would specify the directive
“play” and the data source “TheMatrix.mpeg”.

verb-object phrases|8§]

3.1.15 TERESAXML

TERESAXML[92] was the first XML language for task models where logical de-
scriptions of requirements are translated into user interface description languages.

3.1.16 UIML

UIML[93]

3.1.17 XIML

XIML[94]

These languages, however, are not intended to render the user interface, from the
task model, based on user needs or context but rather describe the structure of the
interface and the interactions of the interface elements.

However, most of such approaches focus on providing device-adaptation support
only in the design and authoring phase.

3.1.18 UMLIi

UMLI[05]

3.1.19 Diane-+

Diane+[96] Data Flow Diagrams may be used for the user interface task model.

3.1.20 JUST-UI

JUST-UI[97]

3.1.21 SUPPLE

SUPPLE[9g]
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3.1.22 Teallach

Teallach[99]

3.1.23 Wisdom

Wisdom|[100]

3.1.24 Executable ConcurTaskTrees

Executable ConcurTaskTrees [101] is an extension of task models using ConcurTask Trees[82]
(CTT) to allow dynamic execution of a task model. Firstly, task states and tran-
sitions between those states are appended to the CTT task model as shown in
Figure 3.3l Secondly, input and output ports of particular tasks which enable in-
formation exchange between tasks are not directly connected.

Enabled i Disable Start ‘

Activate !
Activate

Suspend
Resume l Disable Disable

Suspend
Suspended I Active
Resume

Figure 3.3: Task states and transitions in CTT

propose additional modelling constructs, namely input/output ports and object
dependencies, respectively

3.1.25 Collaborative ConcurTaskTrees

Collaborative ConcurTaskTrees[58] support the specification of collaborative (multi-
user) interactive systems. CCTT uses a role-based approach. A CCTT specification
consists of multiple task trees. One task tree for each involved user role and one
task tree that acts as a “coordinator” and specifies the collaboration and global
interaction between involved user roles. Main shortcoming of CCTT is that the
language does not provide means to model several actors, who simultaneously fulfill
the same role.

3.1.26 Graph-Based Task Modelling
A Task Graph [102] (TG) describes a high-level task. It is a graph with nodes and

edges. The nodes represent for abstract devices (or a group of devices) which offers
a single service needed by the task while the edges represent for the associations
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between the nodes. A edge describes orders, properties, conditions, and data com-
municated among the nodes. A tuple architecture is used for data flows between
the nodes.

Execution of a TG (a task) is actually a instantiation of the TG into a MANET.
This work present two optimal algorithms (centralised one and distributed one) for
instantiation a TG into a MANET. These algorithms allows the system rapidly
adapt to the disruption due to the environment changes by dynamic establishment
of the segment of the TG affected by this disruption. Context information used in
the progress of instantiation is proximity and devices specifications.

The centralised algorithm requires that the user device (where the task is origi-
nated) has to execute the algorithm and has the complete knowledge of the network
topology at runtime.

The distributed algorithm requires that every device in the network has to store
this algorithm and has an ability to execute the algorithm when needed. Moreover,
the user device (where the task is originated) needs to execute a specific algorithm.
This demands every devices has a copy of this algorithm if it would like to be a user
node.

The limitations of this approach:

e This work does not deal with sharing devices and conflict problem due to
concurrent task execution sharing the same devices in the environment;

e It does not mention about pre-context and post-context while executing a
task. Context information may be useful for the instantiation of a TG into a
MANET at runtime;

e The approach does not capture user’s feedbacks and user’s intents which can
be employed in order to provide the best support meeting user’s requirements;

e [t requires devices involved in a task having an ability for executing the in-
stantiation algorithms and having the complete knowledge of the network
topology at runtime. This further requires powerful computation capability
of the device. This is opposed to the device constrains.

3.1.27 Business Process Execution Language

One of the notable languages for describing tasks as business processes is Business
Process Execution Languagd] (BPEL or WS-BPEL). WS-BPEL is an XML-based
programming language to describe interactions between business processes and Web
Services. A business process is a collection of related, structured activities that
achieve a particular goal. The activities of the processes are Web services. Because
human and device interactions are not in its consideration, there is a significant gap
for many real-world business processes.

Thttp://docs.oasis-open.org/wsbpel /2.0 /wsbpel-v2.0.pdf
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In BPEL, the web services used and the pattern of interaction are pre-specified
statically and hence the BPEL specifications are difficult to adapt to different situ-
ations.

3.1.28 The Olympus Framework

In The Olympus Framework Ranganathan [65], a task specification is written either
in a C++ program or in a Lua [67] script that composes together different activities.
Activities are written in the form of C++ functions using a high-level programming
model called Olympus [66]. Olympus consists of two elements called high-level
operators and high-level operands. Examples of operators include starting, stopping
and moving components, notifying end-users, and changing the state of various
devices and applications. The operators are executed by using the specific libraries
deployed for the space. Examples of operands are services, applications, devices,
physical objects, locations, and users. Each type of operands corresponds to a
class in the ontology that describes different classes, their relationships, and their
properties.

3.1.29 PetriNet-Based Task Model, Semantic-based and Process-
based Task Model

[27] A Petri-net-based task model is proposed for modelling both task process and
internal states, describing a task as coalition of primitive tasks. model a task from
two aspects: task process and semantic description of primitive tasks. The task pro-
cess describes the processing flow of the primitive tasks in a task, which is modelled
based on Petri-net; the semantic description represents the semantic information of
a primitive task, which is modelled based on Ontology.

Petri-net has powerful ability to represent a concurrent process both mathematically
and conceptually. A Task Petri-Net (TPN) for the task process is represented by a
6-tuple:

TPN = (P,T,F,M,G,S), where

P is a finite set of primitive tasks in the TPN. There is a special primitive
task named “FEnd” which once being activated represents the end of the task,

e T represents different stages of the task (called transitions),

e F C (P xT)U(T x P) is the possible flow relation, which represents the
relationship between primitive tasks and different stages of the task;

e M is a function that associates 0 or 1 with each primitive task in the net in
realtime. The primitive task with 1 means it can be activated, namely, the
primitive task can be carried out by an actual service immediately;

e (G is a Guard function, mapping a Boolean expression to each stage of the
task, which is used to judge whether the next primitive tasks can be activated
or not;
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Figure 3.4: Task Petri-Net of the “Watch Movie” task.ﬂﬁ]

e S is a function that associates primitive tasks to the task-status set, which
represented status of the associated primitive tasks. The task-status set is
specified as: { Completed, Processing, Unstartted, Paused}.

In a TPN, the initial status of all the primitive tasks is “Unstartted”. When the
guard function is satisfied, which means that the next primitive task(s) can be
activated. If a primitive task is finished, its status will become “Completed” .

With the TPN model, the primitive tasks’ status can be tracked, which is useful to
achieve task continuity when users move across smart environments.

In addition, a TPN model has the capability to describe if a primitive task in a TPN
is optional or mandatory. A primitive task is optional in a TPN if it has no flow to
the “End” task. Figure[3.4] shows the realtime TPN of the “watching movie” task.
Assume that a user wants to migrate the task from car to home, green circles in the
figure indicate the “Completed” status of primitive tasks, white circles indicate the
“Unstartted” status of primitive tasks, and reds are “Paused”.

3.1.30 OWL-S Process
In Amigo projectm], a user task is described as an abstract OWL-S process with

no reference to existing services, and each environment’s service is described as a
semantic Web service with a conversation.

3.1.31 CTML

Collaborative task modelling language (CTML)@] define a collaborative task
model as a tuple consisting of:

A set of roles A role specifies a stereotypical user of the environment in the cur-
rent domain (e.g. Chairman and Presenter in a conference session);
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A set of collaborative task expressions (one for each role) A task expression
provides a behavioural description of the assigned role. It may contain task
dependencies to other task expression. Besides the hierarchical structure and
temporal operators, a collaborative task expression consists of a set of tasks,
each defined by an identifier, task type, a set of pre-conditions and effects.
There are four types of preconditions:

Simple Task Precondition It enhances temporal operator by adding ad-
ditional execution constraint within the collaborative task expression of
the role;

Cooperative Task Precondition It addresses tasks of other roles defined
in the CTML specifications. Because there may exist several actors ful-
filling the same role, these preconditions need to be quantified using the
alllnstance, nolnstance or onelnstance quantifier. They address multiple
tasks, namely of each actor fulfilling the role.

Domain Preconditions They are used to restrict the task execution with
regard to the domain model;

Location Preconditions They address the location of the actor performing
the task.

A set of external models (such as the domain model or location model)
They are used to specify dependencies to relevant entities whose state can be
used to define task execution constraints (such as the domain or location
model); and

A set of configurations A configuration specifies a runtime configuration of the
CTML specification. It defines the set of actors including the assigned roles as
well as the domain model instance (object model). Each actor belongs to one
or more roles. A runtime configuration is the handle to animate the CTML
specification.

Different types of relation between these entities exist: depend, use. A role may
depend on tasks of another role which means that the task performance of the
target role needs the execution of certain tasks from the source role. The use
relation specifies that certain modelled objects are needed to accomplish the task
set of the target role. Additionally, the referenced objects can be manipulated via
task execution.
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Chapter 4

A Survey on Context-Aware
Recommendation Systems

Recommender systems have become an important approach to help users deal with
information overload and provide personalised suggestions and have been success-
fully applied in both industry and academia. Recommender systems support users
by identifying interesting products and services, when the number and diversity of
choices outstrips the user’s capability of making good decisions. One of the most
promising recommending technologies is collaborative filtering [104, [105]. Essen-
tially a nearest-neighbour method is applied to a user’s ratings, and provides the
user with recommendations based on how her likes and dislikes relate to a large user
community.

Little research has been conducted to help users learn and explore a complicated
pervasive interactive system using a recommender system. Typical approaches to
proactively introducing functionality to a user include “Tip of the day”, and “Did
you know” [106], but these are often irrelevant to the user and are presented in a
decontextualised way [107].

Personalised recommendation service aims to provide products, content, and ser-
vices tailored to individuals, satisfying their needs in a given context based on
knowledge of their preferences and behaviour [108]. The personalised services are
usually realised by the form of recommender systems. Recommender systems ap-
peared as an independent research field in the mid-1990s [108]. They help users
deal with information overload by providing personalised recommendations related
to products, content, and services, usually accomplished by the use of personal pro-
file information and item attributes. In the past decade, most works focused on
modifying algorithms for greater effectiveness and correct recommendations [109].
They used methods from disciplines such as human-computer interaction, statis-
tics, data mining, machine learning, and information retrieval [108]. Recommender
systems can be classified into three types according to how recommendations are
made [108]:

Content-based Recommendation It recommends items to users that are similar
to those they preferred previously. The analysis of similarity is based on the
items attributes.
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Collaborative Recommendation It recommends items to users according to the
item ratings of other people who have characteristics similar to their own. The
analysis of similarity is based on the users tastes and preferences.

Hybrid Recommendation It is a combination of content-based and collaborative
recommendations.

Traditionally, recommender systems usually compute the similarity using two-dimensional
user-item information. They failed to take into consideration contextual informa-

tion which might affect users’ decision making behaviour, such as time, location,
companions, weather, and so on. Including human-in-context information as one
system design factor is necessary for producing more accurate recommendations.

Adomavicius and Tuzhilin proposed a multidimensional approach to incorporate
contextual information into the design of recommender systems [109]. They also
proposed a multidimensional rating estimation method based on the reduction-based
approach, and tested their methods on a movie recommendation application that
took time, place, and companion contextual information into consideration. Here,
recommendations are generated using only the ratings made in the same context
of the target prediction. However, in fact, it is rarely the same context occurs in
the future but instead the similar context. The disadvantage of that method is the
increase of data sparsity.

Alternatively, Yap et al. [110] exploit a different way of incorporating contextual
information and tries to improve prediction accuracy using a Content Based (CB)
approach. The authors model the context as additional descriptive features of the
user and build a Bayesian Network to make a prediction. They increase the accuracy
even with noisy and incomplete contextual information.

4.1 Media Recommendation

4.1.1 xPod [3]

xPod keeps track of the music a user is listening along with their mood and activities,
and uses machine-learning algorithms for recommending music based on the user’s
current activity.

4.1.2 CoMeR [4]

The CoMeR system uses a hybrid approach comprising a Bayesian classifier and
a rule based method to recommend media on mobile phones. The Naive Bayes
classifier is to determine an item’s relevance to the situation context and the rule
based scheme is to check the presentation suitability of a media item against device-
capability context.
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4.1.3 SCAMREF [5]

Context is classified into three categories: Preference Context, the context about
user’s taste or interests for media content, e.g. user requirements, user preference;
Situation Context, the context about a user’s spatio-temporal and social situa-
tion, e.g. location, time; and Capability Context, the context of physical running
infrastructure, e.g. terminal capability, network condition.

They define user preference, terminal capability, location, time, etc., as context
dimensions, and define modality, format, frame rate, frame size, score (similar to
rating), etc., as QoS (Quality of Service) dimensions, which constitute the recom-
mendation output.

Let CD1,CDs,,...,CDy_q be context dimensions, QDy,QDs, ..., Q0 D, be output
QoS dimensions, the recommendation model is defined as:

R : Medialtem x CDl X CD2 X ... X CDN_l — QDl X QDQ X ... X QDM

The recommendation process consists of four steps:

1. They model both the media item and preference context as vectors. The cosine
value of the angle between the two vectors is adopted as similarity measure
between media item and preference context. The larger the similarity is, the
more relevant between the media item and preference context.

2. They group the values of each situation context dimension into classes. For
example, a user’s home location can be divided into three classes: Living room,
Bed room, and Dining room; social activities into four classes: At party, At
date, Accompanying with parents, and Alone. They evaluate the probability
of a media item belonging to a class of a context dimension or a combined
situation context, e.g. how much probability of the movie Gone With the
Wind is viewed by the user in Bed room, P(Bed room|Gone With the Wind).
Suppose C,Cs,...,C5,...,Cy are k classes of situation context considered,
the probability of media item 2 belonging to class C};, that is, P(C'j|7), can
be calculated through statistical analysis of user viewing history. Given a
class C;, only the media items that have a high degree of P(C;|7’) would be
recommended.

3. The modality, format, frame rate, frame size, etc., of the recommended item
must satisfy the capability context. They use rule-base approach to infer
appropriate form from capability context.

4. The recommendation output consists of two parts: appropriate form and score.
The score is composed of the similarity between a media item and the prefer-
ence context and the probability of the media item belonging to the situation
context P(C;|7’). They use a weighted linear combination of these two sub-
scores to calculate the overall score as:

Score = W, x Similarity + W, * P(C}|7),

where W, and Wy are weighting factors reflecting the relative importance of
preference context and situation context.

48



Although the evaluation of this approach is rubbish but the method may be reason-
able.

4.2 Context-Aware Information/Content Provi-
sioning

4.2.1 Contextually Aware Information Delivery|[6]

The authors adopt a semantic model for context sensitive message delivery. They
model task, domain, location and devices using semantic language. The use of
semantic based language gives their system inferencing capability, which is useful
to understand the user’s task context in a logical manner.

4.2.2 Context-Aware Content Provisioning [7]

The approach provides the right educational content in the right form to the right
student, based on a variety of contexts and QoS requirements. They use knowledge-
based semantic recommendation to determine which content the user really wants
and needs to learn. Then They apply fuzzy logic theory and dynamic QoS mapping
to determine the appropriate presentation according to the user’s QoS requirements
and device/network capability.

They designed three ontologies: a context ontology, a learning content ontology, and
a domain ontology. The context ontology depicts the content already mastered by
the student, along with his or her learning goals, available learning time, location,
learning style, and interests. It also describes the hardware/software characteris-
tics and network condition of the student’s client devices. The learning content
ontology defines educational content properties as well as the relationships between
them. The relation hasPrerequisite describes content dependency information—that
is, content required for study before learning the target content. The domain ontol-
ogy is to integrate existing consensus domain ontologies such as computer science,
mathematics, and chemistry. The domain ontologies are organised as a hierarchy to
reflect the topic classification.

The content recommendation procedure consists of four steps:

Calculating Semantic Relevance Rank content according to how much it satis-
fies the student’s context. The semantic relevance between the student’s goal
and content is the ranking criteria. Semantic relevance is calculated via the
following steps:

1. Map the student’s learning goal to the domain ontology.

2. Locate the content’s subject in the domain ontology.

3. Estimate the conceptual proximity between the mapped element and the
content’s subject node. The conceptual proximity S(e;,e2) is defined
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Figure 4.1: Computer Science Domain Ontology

according to the following rules (e; and ey are two elements in the hier-
archical domain ontology):

Rule 1: The conceptual proximity is always a positive number.

Rule 2: The conceptual proximity has the property of symmetry—that is,
8(61, 62) = 8(62, 61).

Rule 3: If e; is the same as eq, then S(eq, es) = Dep(ey)/M. M denotes
the total depth of the domain ontology hierarchy; Dep(e) is the depth of
node e in the hierarchy (the root node always has the least depth, say,
1).

Rule 4: If ey is the ancestor or descendant node of es, then S(ey,ey) =
Dep(e)/M, where

{61 if e7 is the ancestor node of e,
e =

ey 1f ey is the descendant node of es.

Rule 5: 1f ey is different from e, and there is no ancestor/descendant rela-
tionship between them, then S(ey, e2) = Dep(LC A(ey, e2))/M. LCA(x,y)
means the least common ancestor node for nodes x and y.

Figure 4.1l shows the computer science domain ontology.
M = b5;
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LCA(MISD,SISD) = SingleDataStreamArchitecture;
Dep(LCA(MISD, S1SD)) = 4; hence,

S(MI1SD,SISD) = Dep(LCA(MISD,SISD))=4/5=0.8.

It is intuitive that two subjects with more detailed contents and closer
ancestors are more relevant to each other—for example, two subjects under
“SingleDataStreamArchitecture” are known to be more relevant than two
subjects under “ProcessorOrArchitecture”.

Refined Recommendations Students can refine recommendation results accord-
ing to the specialty or difficulty of contents.

Specialty If the recommendation contains few items and the student wants
more generalised content, the system can provide all contents whose sub-
ject is one level higher than the LCA in the hierarchy. Similarly, if the
recommendation includes many items and the student wants more spe-
cialised ones, the system can return those contents whose subject is one
level lower than the LCA in the hierarchy.

Difficulty Students can refine the recommendation by choosing easier or
more difficult contents through the hasDifficulty property applying to
each content. Each content segment is assigned a difficulty level when
authored, such as “very easy”, “easy”, “medium”, “difficult”, and “very
difficult”.

Generating Learning Paths Learning paths are to guide the learning process
and suggest prerequisites that a student must complete before tackling the
target content. When the student selects an item from the recommendation
list, the system generates a learning path that connects prerequisite contents
with the target content. It does this by recursively adding prerequisite content
until the path reaches the content that has no prerequisites, and then it prunes
the path based on the student’s prior knowledge. The hasPrerequisite relation
of a particular content provides the prerequisite course information.

Augmenting Recommendations Recommendation Augmentation is references
to examples, exercises, quizzes, and examinations related to the main course
the student is studying. It does this by aggregating the course contents
through “hasFExample”, “hasFxercise”, “hasQuiz”, and “hasFxamination”.

4.3 Service/Application Recommendation

4.3.1 Domain-, place-, and generic task-based methods [8,
9]

Tasks are categorised based on domain ontology, place ontology, and generic task
ontology. Generic tasks are actions such as watch, view, drink, and so on. The users
needs to provide information about where they currently are (e.g. at home), what
the action (abstract task) they want to do (e.g. watch), what the object on which
they will action (e.g. movie), and where they want the task happen (e.g. theatre).
For example, “l am at home, | want to watch movie at a theatre”.
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The approaches requires that domains and generic tasks are pre-defined. Moreover,
the selected tasks is assumed to be feasible. The users need to explicitly express
their intents. The approach does not resolve with the issue of task feasibility and
the user’s situations.

4.3.2 Context-aware service discovery[10]

Matching context requirements of user tasks against context requirements of ser-
vices. Semantic-aware service discovery is based on the matching algorithm pro-
posed by [111].

4.3.3 Task-Oriented Navigation of Services [11]

In the task-oriented service navigator, the users seek for services by specifying a task
they are involved, for example, “Move to station X”, “Draw cash to buy a ticket”,
“Get on the next bus”. The services which are associated which a task are offered
to the users. Tasks are organised in a task ontology.

4.3.4 Gain-based Selection of Media Services [12]

Gain refers to the extent a media service is satisfying to a user in a particular context.
The gain is computed by adopting user’s context, profile, interaction history, and
the reputation of a service. The computed gain is used in conjunction with the cost
of using a service (e.g., subscription and energy consumption cost) to derive the
service selection mechanism. A combination of greedy and dynamic programming
based solution is adopted to obtain a set of services that would maximise the user’s
overall gain in the ambient environment by minimising the cost constraint.

The objective is to dynamically compute the gain from the media services in different
contexts and to obtain a subset of services such that the overall gain of a user is
maximised subject to the total cost constraint specified by the user.

User’s context A particular context can be defined in terms of the user’s loca-
tion (where), the time of presence (when), the current activity of the user
(what), the companion of the user (with whom) and the mood of the user
(psychological status).

User’s profile The user’s profile stores some static user-specific information (e.g., sex,
age), as well as their preferences for different media-related attributes (e.g. movie
genre, actor, actress, preferred news types, sources, singer, and subject prefer-
ence). The user’s media-related preference attributes is a set of (media type,
attribute, score) tuple, which is called AMP. The media type in AMP refers
to the type of media, for example, movie, music, and news feed. The at-
tribute refers to the metadata of the particular media type. The score refers
how much a user likes the media service corresponding to the attribute’s data
item. For example, if (movie, genre, score) refers to a movie attribute that
has two data items as (movie, action, 70%) and (movie, comedy, 30%), this
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Figure 4.2: The different context parameters

reflects the fact that the user likes action movie more than that of comedy
movie. These preferences can be either explicitly provided by the user or im-
plicitly collected by the system. During the system initialisation phase, the
user may choose to provide few entries of these preference attributes while
the system can later use their interaction history to automatically update the
initial scores provided by the user.

Interaction history It is used to update the scores of the data items for different
attributes in the AMP. Additionally, it is used to obtain different patterns
of service usage. For example, frequent service sets can be obtained from
the historical data [112]. The frequent service sets may provide the recurrent
patterns of service usage information where two or more services co-occur
together frequently.

Media reputation It often refers to how good or bad a service is in terms of
content, delivery and other factors.

But finally, this paper is rubbish.

4.3.5 Location-Aware Service Selection Mechanism [13]

In this approach, the geographical area of a target environment is divided among
several service domains, where a set of services can be bounded with a service
domain, such as specific library services while within a library. Service domains can
be overlapping. The service selection mechanism is based on considering similarity,
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precedence, and restrictions among the services and on defining some aggregation
rules.

4.3.6 MoBe [14]

MoBe allows the most relevant applications are selected by matching context and
application descriptors. The applications, called MoBeLets, reside on the MoBe
MoBeLet Server. Each MoBeLet is described by a MoBeLet descriptor that holds
information related to the application (e.g., the type of task carried out, informa-
tion about the minimal CPU/memory requirements, the kind of needed peripher-
als/communication media).

4.3.7 Spontaneous Service Provision [15]

The authors are based on the similarity degrees between the current user profiles and
situation contexts with services’ contexts to rank services. For computing similarity,
they use Pearson’s correlation coefficient.

Context Modelling The authors build an ontology-based context model using
Resource Description Framework and Web Ontology Language. In the model,
the context ontology is divided into two sets: core context ontology for general
conceptual entities in smart environment and extended context ontology for
domain-specific environment. The core context ontology investigate seven
basic concepts of User, Location, Time, Activity, Service, Environment, and
Platform. Figure [4.3] shows a partial context ontology.

They define context (including user profile, situation context, and service) as
a n-dimension vector: C' = (cy,¢a,...,¢,), where ¢;, (i € 1..n) is quantified
as a context attribute (e.g., Activity, Location) ranging from -1 to 1. The
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similarity of context C7 and C5 is defined as,

o Cl1-C2 . Z?:l aiﬁi
ICLIxlC2]] /ST a2, B2
where C = (o), Cy = (5;), (i € 1..n).

Similarity(Cy, C)

Service Description The service description includes a important set of Depen-
dency attributes. Each Dependency has two properties Feature and Value.
The former is to describe a context attribute, and the latter one is to measure
the semantics relevance degree of that context attribute to the service.

This work has not provided an evaluation the system usability.

4.3.8 CASUP [16]

CASUP can provide users with personalised services using context history. Fach
instance in context history database consists of user’ profile, high-level context and
the service selected by the user in the given context (e.g., Smith, Male, 25, Din-
ner Context, Family restaurant Service). Context history is used to extract user
preferences using classification such as decision tree algorithm. Association rules
representing the relationship among the services or service sequences are extracted
for recommending the next service. They apply the Apriori algorithm [113] to locate
association rules.

4.3.9 Personalised Service Discovery [17]

This aims to provide mobile users only services that fit their preferences and are
appropriate to their context. Their framework was based on Virtual Personal Space
(VPS)-a virtual administrative domain of services managed for each user.

The framework operates as follows. Services automatically send their advertise-
ments to an appropriate directory (how to discover an appropriate directory?). The
advertisements carry services’ contextual attributes such as name, category, physi-
cal position, popularity, quality, service load, and required services. Directories can
propagate queries to adjacent directories if they don’t have appropriate services for
the queries.

When a user moves into a new place, a service crawler automatically finds available
directories and retrieves service advertisements. Then the services that suit the
user’s context and preference are added into the VPS. The services that do not suit
the user’s context and preference are dropped from the VPS. When a user inputs a
service query, the system first searches the VPS. If it fails to find any appropriate
services, it sends the query to a local service directory.

To find personalised services, they employed the adaptive-network-based fuzzy in-
ference system [114]. Each service is represented by a service vector that includes
location, distance, necessity, popularity, quality, service load, and user rate. These
parameters are directly obtained from the service advertisement or calculated using
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Input service vector Output

“Distance  Necessity  Popularity  Quality  Serviceload  Userate Contextual distance
Close High Middle High Low Middle Very close
Far Low Middile Low High Middie Very far
Middle High Middle Middle Middle High Close
Middle Middle Low Low High Middle Far
Middle High High Middte Middle Middle Close
Far Low High High Middle Middle Far
Middle High Middle High Low High Close
Close Low Middle Low Middie Low Far

Table 4.1: Fuzzy-variable-based rules

service information and user context. Necessity is the number of services in the VPS
that require the service. Use rate represents how often the user employs this class
of services.

The service vector is used to calculate a value denoting the contextual distance,
which describes the service’s contextual proximity to the user. The system uses a
set of fuzzy rules, as Table 4.1l shows, and makes a decision by applying these rules
on a service vector.

To accommodate the differences of users’ preferences, the system uses feedbacks to
reflect user preferences. When the user employs a suggested service, the feedback
is immediate; if the service is already included in the VPS, the feedback is positive;
if the service isn’t included in the VPS, the feedback is negative; if the service
is not used, the feedback is negative. The learning affects each fuzzy variable’s
membership function. The system can learn the fuzzy meanings as it repeatedly
performs personalisation and receives feedbacks. Thus, the system starts with a set
of general rules defined by system developers, but it gradually reflects the user’s
personal preferences.

To evaluate, they compared their system to other management models such as the
location model, the quality model, the least recently used model, the rule-based
model (which manages services that satisfy the rules). They compared their hit
ratios. In the their model, 70% of the discovery queries found an appropriate service,
but other models had only 30% to 50% hit ratios.

4.3.10 Situation-Aware Applications Recommendation on
Mbobile Devices

In[115], the authors use unsupervised learning (Minimum-Sum Squared Residue
Co-clustering [116]) to extract patterns from user usage history. A pattern contains
a situation and applications frequently performed in the situation. The system pe-
riodically senses the user’s current situation, finds similar situations it has learned
from the history, ranks the applications typically performed in the similar situations,
and recommends applications by their ranks. Situation similarities are identified by
computing the Euclidean distances between the current situation and the situa-
tion part of every co-cluster centroid. The application part of the centroids of the
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identified similar situations are then ranked for recommendation.

This approach using the unsupervised learning technique, specifically co-clustering,
to derive latent situation-based patterns from usage logs of user interactions with
the device and environments and use the patterns for task and communication mode
recommendations.

Some advantages

e No need for predefined situations;

No need for user-defined profiles;

Do not require users to proactively train the system:;

Able to adapt to user habit changes;

Accounts for many context variables.

Definition of “situation” Situation is a set of relevant context values that are
frequently associated with a pattern of user usages of a mobile device.

Patterns of usage Patterns of usage are patterns from user usage history. The
history contains interactions between user and his/her mobile device along with the
context in which the interactions occurred. A pattern contains a latent situation
and tasks frequently performed in the situation.

The operation of the system

1. Periodically recognises the user’s current situation;
2. Finds similar situations it has learned from the history;
3. Ranks the tasks typically performed in the similar situations;

4. Recommends matching tasks by their ranks when the user asks for recommen-
dations.

Some limitations

e Requires the user usage history data. Hence, for the first time of use, the
system may behave inappropriately because it has not enough history data
for recognising situations.

e Memory restriction may limit the usability of the system which requires a
large of history data.

e Do not verify the feasibility of the tasks.
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4.4 Task Recommendation

4.4.1 Why do we need task recommendation systems?

e Help users to find services which they may not know in advances;

e Help users to carry out their tasks effectively, automatically, or semi-automatically

thanks to support from the computation-embedded surroundings;

e Suggest users tasks they are intent to do and help them to do the selected
tasks.

4.4.2 Context-dependent task discovery [18]

The authors introduces a concept of active task which is exactly determined by the
current context. A task is described by a 5-tuple

(Task—ID,Task—Name, Condition, Priority, Task—Contract)

In order to discover an active task in a particular context, an active task discovery
mechanism is proposed. The idea is to match the Conditions of individual tasks T
with the current context values using Condition’s similarity:

dis(T(c),T’(c)) - iwj . dz‘s(v(cj),v’(cj))

where ¢;,j = 1l.n is a context attribute of the Condition and v(c;) is its ex-
pected value while v'(¢;) is its current value. w; is the attribute weight of ¢; where
22:1 w; = 1. The attribute weights are explicitly specified in task descriptions.

And
[v(e) — ()]
dom(c;)

dis(v(e;), v'(c) ) =
where dom(c;) means the maximal difference of two values v(c;) and v'(c;).

The range of dis (T(c), T’(c)) is [0, 1], a value of zero means perfect match and 1

meaning complete mismatch.

Some limitations

e Fixedly assigning task priority may be unappropriate in PCEs because the
priority of tasks is often dynamic time by time and user by user depending on
user’s intention. Moreover, user’s intention may change over time depending
on their situation.

e The work provides a method for negotiation between condition of individual
task and context information. But they do not mention about discovery of
concurrent tasks. In fact, there may be multiple tasks needed to be concur-
rently performed in a context in which they may sharing some resources.
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e In reality, when the Condition’s similarity is often not a zero value, how the
system should behave to help the user instead of saying the system cannot
do the tasks. Moreover, in the case that the Condition’s similarity is ideally
a zero value (e.g. perfectly matching), but the task does not meet the user’s
intention, how the system trade-off between the relevance and the possibility
of tasks?

4.4.3 Homebird [19]

Homebird can discover features of other devices automatically and suggests to the
user that certain tasks can be performed together with those devices. The set of
available tasks can be triggered to change by arbitrary events—for example, a newly
discovered network device. The logic of tasks is encapsulated in modules called plug-
ins that can be written separately. Homebird automatically loads plug-ins found
in the environment. When a task is selected, the control is handed back to the
respective plug-in that can then show its own UI customised for that task. All the
plug-ins use the UPnP protocol for communicating with other networked devices.
the user study shows that users wanted to be able to customise which tasks appear.

4.4.4 Situation-Based Task Recommendation |20, 21]

The system reasons about a user’s current situation based on a predefined situation
ontology. Tasks which are associated with the inferred situation (found in a pre-
specified task ontology) are retrieved. Then, the corresponding services that may
be helpful for the retrieved task are recommended.

This work introduces a situation-sensitive task navigation system which expose only
those tasks that are relevant to user’s inferred situation. To do so, situational rea-
soning, which applies classification-based inference to qualitative context elements,
is integrated in to the system. High-level qualitative context elements are formulated
in the Web Ontology Language (OWL).

The system operates as follows. The current situation is inferred from the current
context information and the situation ontology (see an example in Figure [L4]). A
list of abstract tasks inferred from this situation using ontology-based task cate-
gorisation is shown to the user. Now, the user can select their desired task, then
a corresponding sub-task list is displayed. Repeatedly, in a final step, associated
services can be invoked to carry out the selected task.

The task ontology is hence required. A part of the task ontology is shown in Fig-
ure .5l Tasks are categorised according to the high-level situation concepts such
as ‘Business_meeting’, defined within the situation ontology. The enabling context
conditions are encoded as corresponding OWL-S service profiles.

Some limitations

e Requires that the situation ontology and the situation ontology-based task
ontology are pre-defined. However, what defines each situation and what
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Figure 4.4: Situation ontology fragment

services are preferred in the inferred situation not only vary from user to user
but also change over time. Therefore, this assumptions are impractical for
ordinary consumers.

e Do not verify the feasibility of the tasks. It may assume that all required
services and resources are somehow available for the tasks to be completed.
However, in an ever-changed and dynamic pervasive environments, this as-
sumption is not suitable.

4.5 Activity Recommendation

Chen [117] presents a context-aware collaborative filtering system which could rec-
ommend activities customised for a user for the given context (e.g., weather, loca-
tion, and travelling companion(s), based on what other people like him/her have
done in a similar context. To incorporate context into the recommendation process,
the approach weights the current context of the active user against the context of
each rating with respect to their relevance in order to locate ratings given in a sim-
ilar context. One major problem of this approach is the availability of ratings in
comparable contexts. The sparseness of ratings is an issue in collaborative filtering
in general and further aggravated when integrating context.

4.5.1 Personalised Daily-Life Activity Recommendation [22]

By using a flexible concept hierarchy and a dynamic clustering method, the authors
provide a recommendation service highly related to the users’ context, based on
the multidimensional recommendation model. Users can request for activity rec-
ommendations by providing their personal profile data and contextual information
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Figure 4.5: Task ontology fragment

through access devices. Name, age, gender, single/married, location, and some reg-
istered information are used as users’ original profile data. Users are dynamically
clustered based on contextual information, before making activity recommendations
to users. At the same time, users can rate the recommendations and help to modify
the accuracy of recommendations.

The approach uses the multidimensional model (MD model) proposed by Adomavi-
cius and Tuzhilin [109] to store the information related to user, activity, and context
factors, where each factor can be represented as a concept hierarchy. The MD model
extends the concept of data warehousing and OLAP application in databases. This
approach uses time, location, weather, and companions as the contextual informa-
tion dimensions, and the recommendation space is defined as:

S = User x Activity x Time x Location x Weather x Companion

In the MD model, a dimension D; is the Cartesian product of attributes and can
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Figure 4.6: Time Concept Hierarchy

be expressed as D; € A;; x Ajp x ... x A;;. Each attribute A;; defines a set of
attribute values of one particular dimension. For example, the User dimension is
defined as: User C Name x Age x Gender x IsMarried. Similarly, the Location
dimension is defined as: Location C Country x City x Place. For each dimension,
the attributes can be represented as a concept hierarchy which consists of several
levels of concepts. The top-down view of a concept hierarchy is organised from
generalisation to specialisation; i.e., the higher the layer, the more generalised the
layer. Take Time for example, its concept hierarchy can be expressed as Figure

Given dimensions: Dy, D», ..., D, ratings are the Ratings domain which represents
the set of all possible rating values under the recommendation space Dy x Dy X
... x D,. The rating function R is defined as: R: Dy X Dy X ... x D,, — Ratings.
Based on the recommendation space User x Activity X Time x Location x Weather x
Companion, the rating prediction function R(u,a,t, [, w,c) specifies how much user
u likes activity a, accompanied by ¢ at location [ and time ¢ under weather w, where
u € User,a € Activity,t € Time,l € Location,w € Weather, and ¢ € Companion.
The ratings are stored in a multidimensional cube and the recommendation problem
is to select the maximum or top-N ratings of R(u,a,t,l,w,c).

The computation of recommendations grows exponentially with the number of di-
mensions. The reduction-based approach can reduce the multidimensional recom-
mendation space to the traditional two-dimensional recommendation space by fixing
the values of context dimensions, and improve the scalability problem [109]. Assume
that RF,., ActivityxTime - U X A X T — Ratings is a three-dimensional rating esti-
mation function supporting Time and D contains the user-specified rating records
(user, activity, time, rating). It can be expressed as a two-dimensional rating esti-
mation function:

\V/(U a t) cUXAXT RD (u a t) _ RD[Time:t](UsehActiUity,Rating)(u a)

Userx Activityx Time U ser x Activity

where D[Time = t|(User, Activity, Rating) is a set of rating records by selecting
Time dimension which has value ¢ and keeping the values of User and Activity
dimensions.

Another problem is rating estimation that D[ Time = t|( User, Activity, Rating) may
not contain enough ratings for recommendation computation. This approach uses
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the rating aggregations of time segment S; that expresses the superset of the time ¢
when insufficient ratings are found in a given time value ¢. The rating of R(u,a,t)
is expressed as:
D D[TimeeS;)(User, Activity, AGGR(Rating)
RUserXActiUityXTime (U, a, t) = RU£@ZTthiﬂi(tyser o (Hating )(U, a)a

where AGG R(rating) is the rating aggregations of time segment S;. For example,
the rating prediction function for weekend afternoon might be presented as the
formula:

D _ pD[Timecweekend](U ser,Activity, AGGR(Rating))
RUser x ActivityxTime (U, a, t) - RUser x Activity (U, (1,)

For evaluating the quality of the recommender system, they use predictive accuracy
metrics to examine the prediction accuracy of recommendations. Predictive accu-
racy metrics are usually used to evaluate the system by comparing the recommender
system’s predicted ratings against the actual user ratings. Generally, Mean Abso-
lute Error (MAE) is a frequently used measure for calculating the average absolute
difference between a predicted rating and the actual rating. In addition, Normalised
Mean Absolute Error (NMAE) represents the normalisation of MAE which can bal-
ance the range of rating values, and can be used to compare the prediction results
from different data sets. According to related research, the predictive accuracy of
a recommender system will be acceptable when the value of NMAE is below 18%.
The approach uses the AllButOne method [118] as the data set selection strategy.

4.6 Recommending Mobile Applications

The recommender system [119] recommends mobile applications to users derived
from what other users have installed and rated positively in a similar context (lo-
cation, currently used type of device, etc.). When making a recommendation, the
system retrieves the current user position, determines POIs in the vicinity and gen-
erates a recommendation based on this context information. The approach uses
collaborative filtering to rank found items according to user ratings of applications
in a second step. User ratings are collected implicitly by automatically recording
when a user installs an application. The ratings are stored together with context
information (time, location, used device etc.) to capture the situation when a rating
was made.

4.7 Others

CityVoyager [120] can find and recommend shops that match each user’s prefer-
ences. The procedure for finding shops that match user preferences is based
on a place learning algorithm that can detect users’ frequented shops. They
use the unavailability in 5 minutes of GPS signals as evidence that the user
has gone indoors.

Gas Stations Recommendation [121] uses a hybrid, multidimensional recom-
mender system which takes driver preferences (user-specified), ratings of other
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users, the current location, and fuel level of a car into account. The approach
first filters items based on preferences and context, and takes ratings of other
users and additional information into account.

4.8 Best Recommendation for the whole group

4.8.1 Let’s Browse [23]

Let’s Browse recommends web pages to a group of users who are browsing the web.

4.8.2 MusicFX [24]

MusicFX used in a fitness center to adjust the selection of background music to
best suit the preferences of people working out at any given time. A special feature
found in this system is that a group is composed by people who happen to be in
the place at the same time. MusicFX uses explicit preferences of all participants to
make a music selection that will be listen by everyone who is present. In this case,
the group is composed by strangers rather than family members or friends.

4.8.3 Intrigue [25]

Intrigue recommends attractions and itineraries by taking into account preferences
of heterogeneous groups of tourists (such as families with children) and explains
the recommendations by addressing the requirements of the group members. At-
tractions are separately ranked by first partitioning a user group into a number of
homogeneous subgroups with the same characteristics. Then each subgroup may
fit one or more stereotypes and the subgroups are combined to obtain the overall
preference, in terms of which attractions to visit for the whole group.

4.8.4 Travel Group Recommendation [26]

The recommender system performs the travel group recommendation task based on
the formalism of distributed constraint optimisation problem.
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Chapter 5

Proposal: Task Computing
Framework

Pervasive computing systems can offer a plenty of features for users but also over-
whelm them by the complexity and inconsistency in terms of how to operate these
systems. This leads to reduction of the scalability and acceptance of new perva-
sive systems for everyday users. In order to address these issues, the user-centric
approach to developing and operating pervasive systems appears to be a potential
solution. This research develops a task-based framework which aims to eliminate
the complexity and inconsistency of using pervasive systems. The ultimate goal
is to provide the user a task-driven unified user interfaces based on user’s situa-
tional context and needs. In this chapter, I will describe the design of the proposed
task-driven framework.

In the next section, we will present our proposed architecture. Indeed, we will
describe how the set of tasks to be generated based on the current context; how to
express these tasks on user interfaces; and how a task to be accomplished.

5.1 The proposed architecture

5.1.1 Overview

5.1.2 Context-aware task selection

5.2 Objectives of the Framework

The overall design objective of the proposed task-driven framework is to reduce
the complexity and inconsistency of using pervasive systems. The design of this
framework will demonstrate the following key features:

e Allow task models to be abstractly described at design time;

e Base on user’s situational context (such as location, devices near by), tasks
are recommended for the user;

65



System

i Task Selector Task Organiser |
i Task Execution Manager |-
Users

/ -

1
Update

Context Manager Task Manager Plug-ins Editor |-

Exparts

Figure 5.1: A proposed architecture of context-aware task selection
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Figure 5.2: Diagram of the algorithm for context-aware task selection

e Allow users to search for tasks which are not listed in the recommendation;

e On the user’s selection of tasks, the model of the selected task will be loaded
and executed;

e Allow the currently executing task to be suspended and resumed on another
environment if the conditions for resumed are satisfied;

e Able to manage available resources and services.
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5.3 How to Describe Task Models?

I propose to use ANSI/CEA-2018 [49] for task model descriptions. I will extent this
standard so that it can capture context information and support for searching task
models.

5.4 How to Get User’s Situational Context?

I will examine several context management systems and choose the most suitable one
for this framework. I focus on contextual information of location and devices near
by the user. So, a context management system would be accepted if it can provide
user’s current location information and available devices in the current environment.

5.5 The Design of the Framework

The framework should include the following modules:

Task Modelling Tool This tool provides an graphical user interface for the user
to describe task models;

TaskRec This is a software system which is able to run on devices carried by the
user. It recommends the user relevant tasks as well as allows the users to
search for tasks by providing some searching conditions.

Task Execution Engine This important module is responsive for loading and ex-
ecuting selected tasks.

Context Management System This system is to acquire context of the user and
the environment.

Resource, Device, and Service Management System This module discover avail-
able resources, devices, and services in the current environment.

In Figure 777, the proposed framework is shown. Here, the rectangular boxes rep-
resent system components and each arrow indicates information flow.

Context Providers track changes of contextual variables. They contact appro-
priate context services and stores all context states in a local database. When
requested by the Context Manager, they provide information about known
contextual variables for a user or a task of a specific time point.

Context Manager performs all the reasoning related to the context. It deter-
mines if a contextual variable is important for a task prediction, removes
noisy context data and makes predictions for missing contextual variables.

User Model/User Profile Manager represents user information in the system.
A wuser is modelled with his/her preferences. In collaborative filtering ap-
proach, this is a vector of task ratings.

67



Task Model/Task Manager represents task information in the system. It cap-
tures relevant knowledge in the application domain.

Model Adapter is responsible for integrating contextual data into the prediction
algorithm. It takes information provided by the Context Manager and
enhances the representation of the user/task model with context. This adds
relevant contextual variables to the user/task model.

Recommendation Engine takes the enhanced data model and generates a list of
rating predictions.

Explanation Engine takes the recommendations and provides the explanations
for each of them. It could also use the Context Manager to find out needed
information to motivate a recommendation because of the particular contex-
tual conditions. The feedback of the user is recorded and is used to influence
the Model Adapter.

Active situation: It is a situation within which the active user currently presents.
It is also called current situation.

5.6 Task Repository

A task repository contains a set of task model descriptions. There are many strate-
gies for building task repositories. They include domain-based, place-based, device-
based, and situation-based. For example, common tasks in a home may be ‘prepare
food’, ‘listen to music’, ‘watch movies’, and ‘lock or unlock doors’. Common tasks in a
conference room may include ‘display slideshows’ and ‘give speeches’. Common tasks
in car park may be ‘find a parking space’ and ‘report a car accident’. Common tasks
in a library may be ‘book a study-carrel” and ‘borrow a book’.

5.7 Resource Management

5.7.1 Environment Model

A pervasive environment arises from a set of connected resources such as an office
space. From this set of resources, we consider three types of resources [33]: users,
devices, and services.

Device We consider a resource to be a device if it runs a Resource Manager: a
middleware software that supports a predefined set of events and operations
to query and configure the environment.

Service A service provides specific functionalities (application logic) for interacting
with a hardware resource (e.g. an interaction resource) or a computer program.
Besides, it can offer embedded user interfaces that leverage its application
logic.
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User A user corresponds to a human who can interact with the surroundings
through tasks and services.

The Resource Manager integrates the software services on a device and the hardware
resources attached to the device such as a keyboard or display panel and publishes
them in the pervasive environment as services. Devices can fulfill different roles:
they can run in the background and host resources for hardware resources that have
no computing power (e.g. a residential gateway, hosting the software services for
the room lights) or act as interaction devices (e.g. personal devices carried by the
end-user such as a laptop or a smart phone).

The Resource Manager queries the available services in the pervasive environment.
Each service runs on a device and can be shared amongst other devices from where
it can be accessed remotely through a proxy interface (described in some interface
description languages (IDLs), e.g. WSD) or an end-user interface embedded in
the service (described in some user interface description languages (UIDLs), e.g.
HTML or XML User Interface Language@) or realised as mobile code (e.g. an
approach adopted by J iniﬁ).

The selection or generation of an appropriate user interface for a task may use exist-
ing user interface toolkits, modalities (graphical, speech) and adaptation strategies
to present the interface. This can be realised by providing appropriate groundings
for the IDL and UIDL descriptions.

5.7.2 Functional Requirements

First, the system needs to be aware of changes that occur in the environment’s
configuration and reflect these in its view. Therefore, it monitors the environment
model in order to get notified of events that are triggered when resources enter or
leave the environment. Apart from updating its view, the system may proactively
propose rewiring strategies, e.g. if a new device becomes available that is better
suited to execute a task.

Second, a basic set of operators is required to interact with resources:

e Present a task on a device by means of a user interface. A compatible user
interface is distributed and rendered on the target device, e.g. a graphical
user interface or a speech-based interface. If no target device is specified, the
device running TASKREC that triggered the operator is considered the target
device.

e Suspend a task and resume it afterwards. The state of the task and/or the
user interface presenting it is stored until the task is resumed.

e Migrate a task from one device to another. The task is suspended on the
source device and its context is transferred to the target device where the task
is resumed.

thttp://www.w3.org/TR/wsdl/
http:/ /www.mozilla.org/projects/xul/
3http:/ /java.sun.com/products/jini/
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e Invite a user to execute a task, for instance a task that is associated with a
collaborative application. An invite is sent to the user’s (default) device which
is extracted from the environment model.

If we consider tasks as the building blocks of a pervasive application, end-users
must be able to start and manage them (present task, suspend task, resume task).
Besides, in order to exploit the heterogeneous nature of a pervasive computing
environment, end-users must be able to traverse tasks to those devices best suited
for executing the task (migrate a task to a device) and collaborate with other users
(invite a user to execute a task).

5.7.3 Integrate and Configure Resources

Plug and play is often considered the default strategy to integrate devices in a
pervasive environment. If a device is turned on or brought into a pervasive environ-
ment, it announces its availability and the list of services it supports in a broadcast
message over the network. The Resource Manager takes care of the discovery of
computing devices and builds up an environment model at runtime.

To avoid an explosion of resources, spatial information could be taken into account
to display only those services and tasks in the user’s vicinity.

Information about the coupling of tasks and their supported presentations and soft-
ware dependencies is stored in ’groundings’. A grounding - the concept is adopted
from OWL-S - dictates how a resource (e.g. a web service) can be accessed.

5.7.4 Case Study

improve the everyday life of a family by addressing vital aspects such as home
care and safety, comfort, entertainment, etc. Mainly, this case study provides the
following services (which were shown in Fig. 4):

e Multimedia management: allows inhabitants to store, manage and reproduce
multimedia archives.

e Intelligent lighting management: controls the lighting according to both user
presence and light intensity.

e Security management: when activated, if it detects presence inside or detects
that a door or window has been opened, the system goes off the alarm, starts
to record and sends a warning to users.

e Heating and Air conditioning management: keeps the temperature optimum
in the room where the user is, keeps a temperature close to optimum in the
locations where the user can go and puts the Heating and Air conditioning in
saving energy mode in the rest of the house.

e Blind Management: allows inhabitants to control the blinds of the home.
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5.8 Design Considerations for Task Recommen-
dations

5.8.1 User Interface Considerations

Unobtrusive The user interface of task recommendations should stay out of the
user’s way. We avoid a system that pops-up or forces the user to respond
to the recommendation before continuing to work, since this type of system
could be frustrating [122].

Self Paced The user should be able to act on the recommendations when it is
convenient for them.

5.8.2 Recommender System Considerations

Novel Recommendations The recommendations should be tasks that the user
is unfamiliar with or unknown to.

Relevant Recommendations The recommended tasks also need to be relevant
to the user’s situation. This could mean that the task is relevant immediately,
or relevant at some point in the future given the type of work the user does.

Global and Opportunistic Suggestions The system should be able to provide
global suggestions. However, the system could also have some knowledge
about what the user is doing at the current moment so it is able to highlight
suggestions which may be particularly relevant in the current context.

Support Different User Communities The recommender system should be able
to base its recommendations on different collections of users. Users may want
to see recommendations generated from known expert users, a group of co-
workers, or the entire user community of the pervasive interactive system.

The combination of novel and relevant recommendations leads to a two-dimensional
space. We consider a good recommendation to be a task that is both relevant and
novel to the user. A poor recommendation is a task that is not relevant to the user.
An unnecessary recommendation is a task which is relevant to the user, but the user
was already familiar with. Unnecessary recommendations can actually be helpful
in improving the user’s confidence in the system, but this is very dependent on the
user’s expectations. If the expectation is that the system will be suggesting “new”
tasks which may be relevant, tasks with which the user is already familiar may be
seen as poor suggestions.

5.9 Task Recommendation System

We now describe TASKREC, a new system that provides personalised task recom-
mendations using collaborative filtering algorithms. The general idea is to first
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compare a user’s task frequencies to the entire user population. Our system then
generates a top 10 list (although the list size could vary) of recommendations for
that user. This top 10 list is presented within the user interface on the master device
that the user can refer to when convenient.

5.9.1 Target Application

TASKREC is implemented within a smart house, a widely used pervasive interactive
environment. A smart house would be an excellent environment to work with since
it not only has hundreds of tasks, but also numerous domains of usages. While
our work is implemented within a smart house, the concepts map to any pervasive
interactive systems where feature awareness may be an issue, and its usage varies
across users.

5.9.2 Task Repository/Task Database

TASKREC requires usage data for its users to provide personalised tasks. In a smart
house, how to collect task accomplishment histories? A tuple can be as {User, Task,
Situation}...

5.9.3 The “Ratings”

Typical recommender systems depend on a rating system for the items which it
recommends. For example, a recommender system for movies may base its rec-
ommendations on the number of stars that user’s have assigned to various titles.
These ratings can be used to find similar users, identify similar items, and ulti-
mately, make recommendations based on what it predicts would be highly rated by
a user. Unfortunately, in our domain, no such explicit rating system exists. Instead,
we implicitly base a user’s “rating” for any task on the frequency for which that
task is executed. Our collaborative filtering algorithm then predicts how the user
would “rate” the tasks which they do not execute. In other words, we take a user’s
observed task-frequency table as input, and produce an expected task-frequency
table as output.

We explored two of the most commonly used collaborative filtering techniques: user-
based [123] and item-based [124]. Both of the algorithms discussed have two inputs:
the task history for each user in the community, and the task history for the user
we are generating a recommendation, which we refer to as the active user.

5.9.4 User-Based Collaborative Filtering

User-based collaborative filtering generates recommendations for an active user
based on the group of individuals from the community that he/she is most similar
to. The algorithm averages this group’s task frequencies, to generate an expected
task-frequency table for the active user. The algorithm details are described below.
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Defining Task Vectors

For user-based collaborative filtering, we require a method to measure the similarity
between two users. A common approach for doing this is to first define a represen-
tative vector for each user, and then compare the vectors. A basic method is to
define the task vector V; such that each element, V;(7), contains the frequency for
which the user u; has executed the task ¢;. A limitation of using this approach
is that in general, a small number of tasks will be frequently executed by almost
everyone [108]. Thus, when comparing the vectors, each pair of users will tend to
have high similarity because they will all share these popular high frequency tasks.

We need to suppress the overriding influence of tasks that are being executed fre-
quently and by many users. Document retrieval algorithms actually face a similar
challenge. For example, an Internet search engine should not consider two webpages
similar because they both share high frequencies of the words “a”, “to”, and “the”.
Such systems use a “term frequency inverse document frequency” (tf-idf) technique
to determine how important a word is to a particular document in a collection. For
our purposes, we adapt this technique into a task frequency, inverse user frequency
(tf-iuf) weighting function, by considering how important a task is to a particular
user within a community. To do so, we first take the task frequency (if) to give a
measure of the importance of the task t; to the particular user ;.

nl-j
> kMg

where n;; is the number of occurrences of the considered task of user u;, and the
denominator is the number of occurrences of all tasks of user u;.

tfij =

The inverse user frequency (iuf), a measure of the general importance of the task,
is based on the percentage of total users who execute it:
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where |S| is the total number of users in the community; |[{u; : t; € u;}| is the
number of users who execute t;.

With those two metrics, we can compute the tf-iuf as

tf'iufij =Q- tfij - auf
where « is a tuning parameter.

A high weight in tfiuf is obtained when a task is executed frequently by a particular
user, but is executed by a relatively small portion of the overall population. For
each user u;, we populate the task vector V; such that each element, V;(i), contains
the tf-iuf value for each task ¢;, and use these vectors to compute user similarity.

Finding Similar Users

As with many traditional recommender systems, we measure the similarity between
users by calculating the cosine of the angle between the users’ vectors. In our case,
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we use the task vectors, as described above. Considering two users u4 and upg with
task vectors V, and Vp,

Vi Vi
[Vall # 1Vl

simialarity(ua, up) = cos(y, v,) =

Thus, when similarity is near 0, the vectors V4 and Vp are substantially orthogonal
(and the users are determined to be not very similar) and when similarity is close to
1 they are nearly collinear (and the users are then determined to be quite similar).
As can be seen in Figure 77, using the cosine works nicely with our rating system
based on frequencies, since it does not take into account the total number of times
a user has executed a task, but only its frequency.

We compare the active user to all other user in the community, to find the n most
similar users, where n is another tuning parameter.

Calculating Expected Frequencies
To calculate an expected frequency for each task, we take a weighted average of

the task frequencies for the active user’s n similar users. We define the expected

frequency, ef;; , for task ¢; and user u;:

n
efij = Z Wikt i,
k=1

where wj, is any weighting function (which can be tuned) and tf;;, is the frequency
of task ¢; and user uy.

Removing Previously Used Tasks

Once we create a list of all the task frequencies, we remove any tasks which the user
has been observed to execute, preventing no known tasks from being suggested.

Returning Top 10 List

The final step is to sort the remaining tasks by their expected frequencies. The
highest 10 tasks will appear in the user’s recommendation list.

5.9.5 Item-Based Collaborative Filtering

Rather than matching users based on their task accomplishment, our item-based
collaborative filtering algorithm matches the active user’s tasks to similar tasks.
The steps of the algorithms are described below.
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Defining User Vectors
We first define a vector V; for each task ¢; in the n dimensional user-space. Similar

to user-based approach, each element, V;(j), contains the tf-iuf value for each user

Uj.

Building a Task-to-Task Similarity Matrix

Next, we generate a task-to-task similarity matrix, M, where each element m; is
defined for each pair of tasks 7 and k as:

mir = cos(by; v, )-

Creating an “Active List”

For the active user, u;, we create an “active list” L;, which contains all of the tasks
that the active user has used:

L; = {t|tf;; > 0}.

Find Similar Unexecuted Tasks

Next, we define a similarity score, s;, for each task ¢; which is not in the active user’s
active list:
s; = average(myg, Vi € Lj).

Generating Top 10 List

The last step is to sort the unused tasks by their similarity scores s;, and to provide
the top ten tasks in the user’s recommendation list.

5.9.6 Domain-Specific Rules

The above techniques work without any specific knowledge about the application
domain. This could lead to some poor recommendations which should be avoided.
Thus, we created two types of rules to inject some basic domain knowledge into the
system.

Upgrades (A # B)

An upgrade is a situation where if you execute task A, there is no need for you
to execute task B. For example, if a user executes “Make tea”, we would not
recommend the “Make coffee” task, since it is a less efficient mechanism to activate
the similar task.
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Equivalencies (A < B)

We consider two tasks to be “equivalent” when it makes sense for a user to execute
one of the two tasks, but not both. For example, ...

5.10 Simulation and Evaluation

Evaluating context-aware recommender systems is difficult in principle, because ev-
ery recommendation is only valid in a particular context. In addition, standard rec-
ommender evaluation methods do not account for context information. Therefore,
the methods like mean average errors of precision and recall metrics [125] cannot
easily be applied. Therefore, we decided to implement a simulation environment in
order to test the approach with real world data.

So far, we haven’t had the resources to conduct real-world usage studies to confirm
our simulation results outside the laboratory. We hope to conduct such studies in
the future as a means to increase our simulation’s accuracy and to obtain feedback
on how we could adjust the system to work better for real-world users. We are
currently constructing a realistic test-bed and developing a task execution engine
for smart phones in cooperation with commercial vendors. Our goal is to begin
helping mobile phone users find relevant tasks according to their preferences and
contexts in the near future.

5.10.1 Off-line Algorithm Evaluation

Here, we present an automated method to evaluate our recommendation algorithms
using our existing off-line data. Although off-line evaluation cannot replace online
evaluation, it is a necessary and important step to tune the algorithms and verify
our design decisions before the recommender system is deployed to real users.

The development of the algorithm was a challenging task since we required a metric
that would indicate if a recommended task, which had never been observed, would
be relevant/useful to a user. To do so, we developed a new k-tail evaluation where
we use the first part of a user’s task history as a training set, and the rest of the
history (the most recently executed tasks) as a testing set.

Consider a user u; with a series of tasks S. k-tail evaluation divides this task
sequence into a training sequence Sy, and a testing sequence Syegt, S0 that there
are k unique tasks in Sy, Which are not in Syeg;. For example, the task sequence
in Figure 77 is a 2-tail series since there are two tasks, ABC and DEF, which have
never appeared in the training set.

To evaluate an algorithm, we find the average number of tasks which are in both
the user u;’s recommendation list R;, and his/her testing set Syegt ;. We define the
evaluation result of k-tail as hity:

22;1 |Rj N Stest,j|

hity, = ,
n

where n is the size of user community.
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Two algorithms were evaluated using the k-tail method. The task sequence of each
user is divided into a training set and a k-tail. Figure 7?7 shows that when k£ = 1,
the item-based algorithm predicts the next new task correctly for x users.

5.10.2 On-line Algorithm Evaluation

While our off-line evaluation showed promise for our new techniques, the results
may not be fully indicative of how our algorithms would work in practice. As such,
we conducted an online “live” study with real users. We collected data for a set of
real users, generated personalised recommendations for each of them, and had them
evaluate their recommendations in a web-based survey.

Participants

We recruited n users (z female, y male) of our Staff Common Room (SCR) at our
department to participate in the study. To be considered for the study, users were
required to use the SCR a minimum of 20 hours per week. Participants were aged
m to [ and worked in varying fields including maths, computer sciences, physics,
and education, coming from varying countries.

5.11 Implementation

It is difficult to capture raw context data or sensor data due to the constraints
of tools and time. The researches for inference of high-level context such as users’
current activity from raw context or sensor data also have been carried out by many
researchers. So, we assume that the high-level situations is already inferred in this
research.

Roughly speaking, the task recommendation problem (7TRP) is an optimisation
problem its solution is the most relevant task offered to the user (or a group of users)
located in a given environment. The most relevant task maximally meets/satisfy
the user’s intention while it should trade-off between its feasibility, autonomy, and
relevance with the user intention.

Notations

We define that the environment is determined by a sequences of its context which is
captured over the time of the existence of the environment. We denote the related
notations as shown in Table 5.1

Following, we formally define the concepts and functions which used in our approach
of solving the problem of task recommendation.
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A given pervasive computing environment. The current state of F

E is determined by its current context

c The current context of the environment, ¢ € F

T The task space which contains all tasks in the environment
+ A candidate task, t € T

T The user’s intentions

The user’s current intention, ¢ € Z

~.

Table 5.1: Notations in the task recommendation problem

Feasibility function

The purpose of this function is to find out what is missing in order to accomplish
the task. If the task is selected to be performed, the system will suggest him what
needs to be available for the task to be successfully performed.

Definition 1 (Feasibility function). The feasibility function, fr, computes the fea-
sibility degree of a task, t € T, in a given context c € C,

prXE—)[O,l]

For example, fr(t,c) = 80%, that is, the current environment, ¢, meets 80% of the
requirements to achieve the task, ¢. If the user wants to perform the task, he needs
to rearrange or setup the environment to fulfill the 20% left.

Challenges

e We need to build the task space. The requirements (pre-conditions) of each
task in the task space needs to be specified.

e The capabilities of the environment (such as available resources) needs to be
captured and modelled. The capabilities are derived from the current context
information which is sensed and provided by a context management system.

e A mechanism for measuring the feasibility degree between the task require-
ments and the environment capabilities.

Autonomy function

The purpose of this function is to determine the automatic parts and the manual
parts in the performance of a task in a given environment. This result will be used
for ranking tasks in order of priority.

Definition 2 (Autonomy function). The autonomy function (fa) measures the au-
tonomy degree of the task performance provided by the environment (E) at the cur-
rent context c,

fa:T x E—10,1].
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For example, fa(t,c) = 90%, that is, 90% of the performance of the task, ¢, is
automatically carried out by the capabilities of the current environment, c¢. Hence,
the user needs to manually complete the 10% left.

Challenges

e Each task in the task space consists of set of actions. The requirements of these
actions needs to be specified. The requirements should describe which actions
need to be carried out by only automatic computation, which actions are only
carried out by human, which actions need computer-human interaction, and
which actions cab be done by either.

e There is a need for a method to measure the autonomy degree of the task
performance based on the task specification and the capabilities of a given
environment.

Relevance function

The purpose of this function is to measure how much a task can fulfill the user’s
needs. Its result is then employed for prioritising tasks.

Definition 3 (Relevance function). The relevance function (fr) measures the rel-
evance degree of a task (t) with the user’s current intention (i),

fr: T xT—10,1].

Challenges

e A task has its objectives and its influences on the environment. These should
be primarily considered in measurement of the relevance of a task with the
user’s current intention. Therefore, task’s objectives and its influences on the
environment need to be specified.

e Task objectives are matched with user’s intention to calculate the relevance
degree mentioned above. Capturing, modelling, and inferring user’s intention
are great challenges remaining.

e Given user’s intention and task objectives, we need a component for figuring
out the most relevant task with which the user’s intention best match.

The priority of a task

To give a method for solving the task recommendation problem, we make the fol-
lowing assumptions:

1. Users prefer the most relevant task to other tasks in any case;
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2. If there are many tasks which have the same relevance degrees, the more
autonomic the task performance is, the more preferred the task is;

3. For the tasks, the autonomy degrees of their performances are the same, then
the task which is more feasible is more prioritised.

Formally, we define the priority of a task is as follow.

Definition 4. Lett andt' be two tasks in the task space, T, and let fp(t) and fp(t')
be the priorities of these tasks. We say that

fr(t) > fr(Y) or
fe(t) > fp(t) <« fr(t) = fr(t') A fa(t) > fat') or
fr(t) = frR') A fa(t) = fa(t') A fr(t) = fr(t).

In the above formula, the relation >’ stands for “equivalent to or greater than”.

Definition of task recommendation problem

We are now going to formally define the task recommendation problem.

Definition 5 (Task recommendation problem — TRP). Given a triplet (c,i,T),
where ¢ € E,i € Z, find a task t (so called the optimal solution or the most relevant
task), t € T, such that

fo(t) = max { fp(t) | # € T}.

5.11.1 System architectural decomposition

The main purpose of the task recommendation system described here is to solve
the task recommendation problem. That is, the system has to figure out the most
relevant task for the user. This task, if the user accept the task to be performed,
will be an input of a Task Ezxecution Management System. In this work, we adopt
the previous solutions of such the Task Execution Management System.

Architecture of Task Recommendation System

As indicated in Figure 5.3l there are three sub-systems making up the task recom-
mendation system. The general purpose of these sub-systems is to provide infor-
mation (e.g. context information, user’s intention, task specification) for further
processes. There are four processes which are responsible for finding the most rele-
vant task based on the information provided by the three sub-systems.

Context Management System

e Manage context information of the environment and infer the current capa-
bilities of the environment;

80



Context Sources

—_————— e e ——

Resource Context Exliz:(io -
Manager Manager
ge Manager
Context Histon A
Task Recommendation automates
Engine
Task Reposito
recommends

P 4 T~
- e
feedbacks selects b
7 N
User Profiles = \
( v i g |
\ % Master Device @ /

b
=< [ —
~ %0 ) TASKREC Clients . —~

= e . - — -

Figure 5.3: Architecture of Task Recommendation System

e Provide information of environment capabilities to other processes when needed;

e Throw an event called “Context_Change” every time the context has been
changed. Other processes can listen to the Context_Change event to re-execute
their functions which are related to the current context.

Task Management System

e Manage specifications of tasks;
e Provide task specifications to other processes when needed;

e Throw an event called “Task_Change” every time a task specification has been
changed. Other processes can listen to the Task_Change event to re-execute
their functions which are using this task specification.

User Intention Inference System

e Manage users’ intentions;
e Provide users’ intentions to other processes when needed;

e Throw an event called “Intention_-Change” every time the user’s intention has
been changed. Other processes can listen to the Intention_Change event to
re-execute their functions related to this user’s intention.

Feasibility measurement process

Function
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e Compute the feasibility degree of each task in the task space;
e Ranking tasks based on their feasibility;

e Provide the ranked list of tasks to the task prioritisation process.

Operation

Environment capabilities

Feasibility

measurement

Task specifications

The process takes the current capabilities of the environment and the task specifi-
cations as its two inputs. The output is the ranked list of tasks.

Autonomy measurement

Function

e Compute the autonomy degree of each task in the task space;
e Ranking tasks based on their autonomy degree;

e Provide the ranked list of tasks to the task prioritisation process.

Operation

Environment capabilities
Autonomy

measurement

Task specifications

The process takes the current capabilities of the environment and the task specifi-
cations as its two inputs. The output is the ranked list of tasks.

Relevance measurement

Function

e Compute the relevance degree of each task in the task space;
e Ranking tasks based on their relevance degree;

e Provide the ranked list of tasks to the task prioritisation process.
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Operation

User’s intention
Relevance

measurement

Task specifications

The process takes the user’s intention and the task specifications as its two inputs.
The output is the ranked list of tasks.

Task prioritisation

Function

e Compute the priority of each task in the task space;
e Ranking tasks based on their priority;

e Provide the most prioritised task (e.g. the most relevant task) to the user.

Operation

l
R Task The most relevant task

la prioritisation
lp

The process accepts three inputs including g, [ 4, and [ which are desired from the
three previous processes. The output is the most relevant task.

Context-aware task generation:

In order to model our proposed architecture, firstly, we formalise two key elements
in our architecture which are context and task.

5.11.2 Definition of context

Definition 6 (Context). Let Coypr be current context, Ceyrr is a set of attribute-
value pairs. FEach attribute-value pair expresses a certain aspect of the context at
the current time or in the relevant past (i.e., context history).

For example, in our scenario, Context #4 would be expressed as follows:
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| User interfaces - Task expression

Organise/express

| Set of contextual tasksl

Out

REASONING /MATCHING

In In
| Current context I | Set of available tasksl
Discover /Compose Add/Remove
| Services, Devices,Users, . .. | Pluginy, Plugine, Plugins, . ..

Figure 5.4: Diagram of the algorithm for context-aware task selection

Ceurr = { Location = “Home”,
Day of week = “Monday”,
Time = “Early morning”,
User = “Husband”,
Next activity = “Appointment with friend”,
Weather = “Bad”,
Breakfast = “Finished”,

)

5.11.3 Definition of tasks

Tasks are specified in plugins. We mainly examine a task in the combination of its
important parts including required contexts, impacts on the context, and execution
plan of the task. There are other properties of a task such as name, objective,
identification, and type of a task. We are going to describe them in the following
subsections.

Required contexts of a task
A required context (denoted by ¢,,) of a task is seen as the condition of the task
exposed to the user. It addresses two problems. Firstly, it ensures that the task

being offered to the user is the appropriate task to the current context and the user
intention. Secondly, it guarantees that the task can be successfully accomplished.

A required context of a task is a set of attribute-value pairs. For example, one of
the required contexts of the task “turn the light off” can be expressed as

Creq = {user = “empty”, 1light = “on”

84



Naturally, one task may have many required contexts which satisfy it. For exam-
ple, there may be another required context of the task “turn the light off”, it
can be

Creq = {user = “someone”, light = “on”, user activity = “sleeping”}.

Impact on context of a task

The execution of a task would affect on the context in which the task is carried
out. Hence, the impact on context of a task (denoted by ¢;y,) described in the
plan can help the system to predict the context after the task is accomplished. The
context prediction can be used to offer further appropriate tasks to users. Similarly,
the impact on context of a task is expressed by attribute-value pairs. For example,
the impact on context of a task “turn light off” is (light = “oft”).

Statuses of a task

In order to consistently manage the execution of a task, we need to formalise
statuses of the task. As shown in Figure B0l at a particular point of time, a
task should be in one of the following statuses: READY, PENDING, IN PROGRESS,
SUCCESSFUL, ABORTED, and FAILED.

RS Queue

~N

~
.7 Execute S~
. J/ N RN
\
/ N
/ N A

/ \\ AN
/ IN PROGRESS \ R
/ <—\— Execute >
/ AN
N
AN

/ Finish \\

K Finish \ .
\ N J/
' / \\ BN
m CFAILED ) CABORTED )

Figure 5.5: The status circle of a task

The status circle of a task starts from READY status when the task is ready to be
carried out. In the during of its execution, the task is IN PROGRESS status. That is,
other invocations of this task may be pended (i.e., PENDING status) until the task
get into READY status again. If a task is aborted from the queue of pending tasks, its
status will get into ABORTED. A aborted task will be ready for re-execution. After
the execution, the task will be in one of the following statuses. It is SUCCESSFUL
if the execution is successfully completed. Otherwise, the task status is FAILED. In
both these statuses, the service then is changed to READY status for re-execution.
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Execution plan of a task

For a task to be accomplished, the system must know how to carried out it. A
execution plan of a task described in, e.g. a script file or a program, is for this
purpose. For example. a execution plan can specify what the sub-tasks to be
executed and their execution orders are.

One task may be completed by many ways to obtain its goal. Therefore, a task
has a set of execution plans, called P, one of which can be chosen to be executed
by the system when the task is selected to accomplished. If a plan is unsuccessfully
executed, the system still has a chance to choose another plan to execute. It is also
important that the system should have a mechanism to identify the best execution
plan in the set of plans to do. Obviously, a task must have at least one execution
plan, i.e. P # (0. We will specify execution plans in details in sections of the next
chapter. Following, we give the definition of a task in our viewpoint.

Definition 7 (Task). A task, denoted t, is a tuple of four (Creq, Cimps Py Stewrr),
where

o C,.q 15 the set of required context of t,
® Cimp U5 the impact context of t,
o P, P £ is the set of execution plans of t, and

® Sty 1S the current status of t.

At a specific context and conditions of a pervasive computing environment, it is a
question that what tasks can be done manually or automatically? What is a factor
of context and conditions: user’s location, time, who, available services, available
resources, user’s preferences,...

Let C is all factors of possible context and conditions, C* is the set of all subsets
of C', and C,,,, € C* is the current factors. Additionally, let T is a universe of the
possible (well-defined) tasks, 7™ is the set of all subsets of T', and Ty, € T is a
set of tasks which can be done in the current context and conditions. We construct
a mapping (function) f as follows:

FC— T
Ccurr — Tcurr = f(Ccurr>

Problems: How to model C' (ontology, reasoning)? How to get C.. (censoring,
perception, service and resource discovery)? how to describe T' (workflow, semantic,
ontology)? What is function f and how does it works (algorithms)?

5.11.4 Plurality of task execution

There would be many differently possible execution paths which can be used to
accomplish the same task. We call E to be a set of such these execution paths and
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call €' is the one in the set E. We have
E={e' e ..,e" m>1 (5.1)

where
e = Execution(s¥ s, ....s"), n>1; 1<k<m (5.2)

Sy
In order to accomplish a task, an execution e* can be selectively chosen. If the
execution fail, there are some strategies to accomplish the task successfully:

e Try again the service which has caused the failure; or

e Go back to the nearest service on the execution path from which the service
is successfully executed and there is a linking service to another execution; or

e Choose another execution path from the beginning.
There are some issues arising here relating to

e how F can be formation,

what e’ to be choose to execute so that it is the most optimal,

e how ¢’ can be evaluated optimal or worst and what evaluation conditions are,
and

how to deal with failures of task execution.

In the following sections, we will try to carry out the solutions to these issues.

5.11.5 Graphical representation of task execution

We are intend to use graph theory to deal with the problems of the plurality of task
execution. So, we employ the graph representation for our approach to represent
task execution paths. As shown in the Figure [5.6] which illustrates an example of
two possible execution paths for the same task, each black soiled node symbolises
for a service while each soiled arrow linking two nodes symbolises for the order of
the corresponding services in the chosen execution path. Whilst, the dash arrows
are an alternative solution for accomplishing the same task. It can be very useful
in the case that the current execution path is unsuccessfully completed.

5.11.6 Task hierarchy

Definition 8 (Subtask). Subtask

5.11.7 Mapping tasks to services
Underlying service invocations is done via a translator from eco to BPEL programs
and then an engine executes these BPEL programs, invoking the services and man-

aging failures [? |.
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Figure 5.6: Two possible execution paths for the same task

5.11.8 Task Execution

For an atomic task, the procedure field within the task contract will contain one or
more discrete action steps. These steps specify the sequential actions to be taken
during task execution, along with a number of discrete events that may happen
during the execution.

5.11.9 Contextual application or context-aware system

We define a contextual application be a dynamic set of contextual tasks. That
is, the functionalities of the application can be dynamic depending on the context.
The dynamic has two meanings: the dynamic of the order, the amount, and the
availability of the functionalities; and the dynamic of the behaviours of the func-
tionalities.

Context-aware systems are able to adapt their operations to the current context
without explicit user intervention and thus aim at increasing usability and effective-
ness by taking environmental context into account [126].

The history of context-aware systems started when Want et al. [127] introduced
their Active Badge Location System which is considered to be one of the first
context-aware applications [126].

Sub-tasks and underlying service of a task

A task can be classified as a atomic task or composite task.
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Figure 5.7: An example of task decomposition tree (TDT)

Accomplishment of a composite task needs one or more other tasks (referred as
sub-tasks) to be accomplished. For example as illustrated in Figure 0.7, the task
“make breakfast for husband” has its sub-tasks as “make coffee” and “make
roast beef” while the task “make coffee” consists of some sub-tasks such as
“switch the kettle on”, “add coffee to the coffee cup”, “add some sugar
to the cup’, “wait for the water boiled”, “add the boiling water to the
cup”, and “mix them together”. In this case, we call the task “make coffee” de-
pends on its sub-tasks. We denote the set of sub-tasks of a task is 7,up.

An atomic task has no sub-tasks. It can be independently completed by directly
mapping to one underlying service. For example, the task “switch the kettle
on” can be seen as an atomic task which invokes a service to turn the kettle on.

Priority of a task

pr denotes the importance and exigency of a task to further facilitate the execution,
suspension and re-scheduling of tasks at runtime. For tasks that have the same pri-
ority their relative importance will be determined by the priority of their respective
parent-tasks [18§].

Task Decomposition Tree
A full decomposition of a task into tasks, which will all be carried out to complete
the initial task, is called a Task Decomposition Tree (TDT). The Figure (5.7 is an

example of the graphical representation of a TDT. We have the following concepts:

e The node representing the task “make breakfast for husband” is called the
root task. A TDT has only one root task. Moreover, this task must not appear
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somewhere else in the tree for avoiding loops.

e The sub-tasks of a task are called sibling tasks. It is absolute that sibling tasks
must be pairwise distinguished.

e The task “make coffee” is called the parent task of the task “switch the
kettle on”.

e The sub-tasks of a task are also called its children tasks.

The edges connecting between a parent task and its children tasks represent the
dependence of the parent task on the children tasks.

Dependence of a task on its sub-tasks

There is an practical situation where a task ¢’ is a sub-task of a task ¢ but ¢’
is optional to be completed. That is, in some cases, a user accepts the result of ¢
without ¢’ to be accomplished. In many cases, a optional sub-task is used to make
the overall result of its root task smoother or better. Therefore, we have two kinds
of dependence between a task and its sub-tasks. They are optional dependence and
compulsory dependence.

In this section, a proposed architecture of contextual service composition as de-
picted in Figure ?? will be described. This architecture will be employed to build
the systems which would address the issues mentioned so far. The idea is to divide
the architecture into two levels: the task level and the service level. This division
will support for modularisation of the system because there are two key series of
problems regarding to service computing and task computing which the architecture
needs to consider about.

The task level mainly focuses on designing user interfaces which meaningfully
express the functionalities of the contextual services to the users. The task level
also address the problems of getting task commands from the users. The service
level concerns with the problems of e.g. service discovery, service composition, and
context gathering.

Dividing the architecture into two levels because of [18]:

1. Task definition models human preferences and requirements better than service
orientation models adopted in earlier works;

2. Separation of tasks and services would allow for greater flexibility of changing
the tasks without changing the services and vice-verse;

3. It hides the complexity of composting embedded services in pervasive envi-
ronment from the users.
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The system operates in two phases. The first phase is to create contextual tasks.
The second phase is to execute contextual tasks. The execution of a task is depen-
dent on the current context while the current context determines the tasks available
to be performed.

5.11.10 Awutomatic task creation

The purpose of this phase is to produce a list of contextual tasks which can be
chosen to accomplish by a user. As defined so far, a contextual task is a semantic
expression of a contextual service. In other words, there is a bijection from the set
of contextual services to the set of contextual tasks. The algorithm of this phase is

shown in Figure [5.8|

| Gather context l

v
No

Context changed? —

Yes
| Discover services I

}

- No
Any new services?

Yes |

| Record services in service repository

}

|Compose services based on context

No|
New contextual services? —

Yes |

|Record execution plans in plan repository

}

| Express contextual services as contextual tasks

}

| Update list of contextual tasks

}

| Update user interfaces

End

Figure 5.8: The algorithm of the contextual task creation
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Every specified interval, the system automatically gathers the current context
to detect whether it has been changed. If the context has been changes, then
the process of service composition is invoked. Firstly, base services are discovered
and the new set of discovered services is compared to the previous set of services
to find the new ones. Next, the list of contextual services is produced by the
service composition component based on the context and the set of base services.
Then, using the description of base services, the ontology of the context, the list of
contextual tasks corresponding to the contextual services is updated. Finally, the
user interfaces will be updated so that a user can browse the list of tasks or choose
to perform a specified task. What happen when a task is selected to accomplish
will be described in the second phase.

It is important to consider the structure and the expression of contextual tasks
so that the user can quickly find the wanted tasks. The following strategy should
be taken into account:

e Organising tasks follows the hierarchal structure. The structure can be based
on the ontologies of context such as places, roles of the user, devices, and time.
This issue will be investigated in this research.

e The task can be structured as a task list which is ordered based on the priority
levels of tasks. The priority level are determined relied on the context, users’
preferences, usage histories, habits, and routines.

e There is a method of task structure in which a user can specify a task by
providing a command in forms of e.g., natural language, speech, thoughts,
body language, eye-lights.

e The system can ask a user a few simple questions so that it can identify the
task or reduce the number of tasks enabling the user quickly find out the task
the user would like to accomplish.

As described above, we do not care the concepts of composite task or compound
tasks. Actually, subtasks will not appear in this proposed architecture. Any tasks
are atomic tasks (or primitive tasks). However, a contextual service may have its
sub-services and/or dependant services. Reason for this is that the system can
concentrate on solving the complexity of service execution only. Moreover, it can
be proved that all contextual tasks can be carried out without subtasks.

5.11.11 Automatic or user initiated task execution

The algorithm of the second phase is shown in Figure Firstly, from the user
interface, a user inputs a task command. How the user specify a task would depend
how the task list is structured. Then, if the system identifies the task, it will ask the
user for the parameters required by the task. Otherwise, the user needs to modify the
task command so that that system can recognise it. Next, the system will validate
the parameters required for executing the contextual service associated with the
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( Begin )

| Accept a command

}

| Identify the contextual task
|

No// 
— Can the task be identified?
Yes |

|Accept parameters for the task
v

{/”/\ No
Are the parameters valid? —

Yes |
No

— Context changed?

Yes
| Re-composition

/\ No
Is the service available?

Yes

| Execute the contextual servicel

| Report the result
}

Figure 5.9: The algorithm of the contextual task execution

specified task. If the parameters are valid, the system then double-checks on the
context to determine whether the context has been changed or not. This procedure
is to ensure that the context is remaining appropriate to the chosen task. In the case
that the parameters provided are invalid, an appropriate report will be informed to
the user so that he/she can modify the parameters. Coming back to the case of
checking on the context for changes, if the context is still unchanged, the system
will execute the contextual service. Otherwise, the service must be re-composed.
After the re-composition, if the service is still available in the new context, it will
be executed. If not, an appropriate report will be informed to the user. Finally,
the system will give out the result of the service execution (e.g., successful, failed
messages, or something has been done).
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In order to concretise these algorithms of the two phases above, the research
will formally model and specify the concepts which are includes in the proposed
architecture. In the next section, I will give the formal definitions of context, a
contextual task, a contextual service, an execution plan of a service.

5.11.12 A proposal of a task-driven operation

|Accept a command from the user

!

| Analyse the command to identify the task

|

| Gather resources, context & services for the task

/\ No
Can the task be done?

YesT

|Accept parameters & requirements for the task
v

/\ No
Meet the requirements?
Yes T

| Compose services for the task

\ o
Any execution paths?

Yes T

Invoke services (execute the task)

Successful?

Yes

| Report the result
'

Figure 5.10: A proposal of the operation of a task-driven system

5.11.13 Command acceptance

1. Typing the command phrase (command lines).
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2. Using graphical user interfaces including touching or clicking the command in
the list of available commands on the screen.

3. Using speeches.

4. Commands are dynamically automatic created when the current context changes.
5. Thoughts in mind with supports by special devices attached on the body.

6. Eye-beam or eye-wink.

7. Gestures [? |

hierarchical task graphs (task decomposition and levels of service utilization) phrases
sequence of subtasks (task statements (concurrently, parallel) and dependency state-
ments (explicit prerequisite))

Thay vi a library of pre-programmed hierarchical task graphs or customise an ex-
isting graph for their purposes [? |, hierarchical task graphs co the duoc tao ra tu
dong dua tren thoi quen su dung cua nguoi dung ma he thong hoc duoc, dua vao
ngu canh hien thoi biet duoc de recommand cho nguoi dung nhung tac vu uu tien
nhat. Lam the nao de lam duoc dieu nay???

Hoi nguoi dung paramaters hoac cung co the gathering papamaters tu moi truong
xung quanh.

discovering the relevant services —; composing them —; invoking
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Chapter 6

Research Plan

In this chapter, I will describe the research plan to complete the proposed framework
as my PhD dissertation. First, I will discuss critical technologies that are essential
for implementing the task-based framework. Second, I will describe the method to
evaluate the feasibility of the framework. Third, I will present the milestones of the
future research.

6.1 State of the Work

This section will introduce the state of the work carried out so far. The previous
work consists of early and partial designs and implementations of the framework
proposed in Chapter 3 (Section [5.5]), a case study application, and a context simu-
lator.

6.1.1 Implementation

[ use Java Micro Edition for implementing TASKREC which can be run on most mo-
bile phones. Java Enterprise Edition can be used to implement the Task Execution
Engine, the Context Management System, and the Resource, Device, and Service
Management System because it supports well for Service-Oriented Architectures.

6.1.2 A Case Study Application

In order to show that the complexity and inconsistency of using of pervasive systems
can be greatly reduced by the use of the proposed task-driven framework, I evaluate
the feasibility of using the framework in a prototype system. This prototype systems
is developed based on the scenario described in Section [[L6.1
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6.2 Future Work

Implementation, Evaluation, Task Execution,...

6.3 Milestones

The proposed research work is expected to be completed in 19 months from 9,/2009
to 3/2011. The work will be divided into several stages as follows:

Sep. 2009: Complete research proposal, PerCom 2010 due on 28/9

Oct. 2009: Complete survey on task computing, Pervasive 2010 due on 16/10,
PerCom workshop 2010 due on 18/10,

Nov. 2009: Implementation

Dec. 2009: Implementation

Jan. 2010: Implementation, Pervasive workshop due on 1/2/2010
Feb. 2010: Implementation

Mar. 2010: Implementation, Ubicomp due on 30/3/2010

Apr. 2010: Implementation

May 2010: Implementation

Jun. 2010: Implementation, Ubicomp workshop due on 30/6,/2010
Jul. 2010: Implementation

Aug. 2010: Conduct a series of experiments based on the prototyped system
Sep. 2010: Analyse data

Oct. 2010: Write a journal paper

Nov. 2010: Write the PhD dissertation

Dec. 2010: Write the PhD dissertation

Jan. 2011: Write the PhD dissertation

Feb. 2011: Write the PhD dissertation

Mar. 2011: Write the PhD dissertation
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Chapter 7

A Task Description Language

7.1 Examples of Tasks

7.1.1 Requirements for Choosing Examples of Tasks

e Should be the typical day-to-day tasks such as tasks in office spaces, home
entertainment

e Should coverage of a variety of services/devices

e Should demonstrate automatic instantiation of tasks on a variety of plat-
forms/environments

e Should also demonstrate pro-activity when tasks can’t be instantiated directly

e Should demonstrate that a task can be suspended in one environment and
restarted in a variety of platforms (task engine).

e Should automatically adjust task configurations so that tasks can continue
with a minimal amount of user disruption (task engine).

7.1.2 Tasks

e Contacting a colleague

e Selling a house (showing a house to a customer and letting me know if another
customer has decided to buy the house.)

e Enrols a subject (student).
e Watch movie: display, audio, and player

e Editing a Power-Point file: display and input device (keyboard, mouse, touch-
ing, pointing...)

e Email a document
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Present slide-show (computer, projector, audio, microphone, white-board),
displaying a slideshow (plasma displays, a video wall, touch screens, hand-
helds, tablet PCs, (like Microsoft PowerPoint or Acrobat Reader)

Arranging a trip

Get direction and map

Set reminder to do something
Schedule a meeting (something)
Exchanging electronic business cards (contracts)
Lecture Task

Music Playing Task

Borrowing a book from the library
Copying a videotape to a DVD
Watching a recorded TV episode
Turning off the room lights

make a teleconference

make a video-conference

Having breakfast: Making the room lighter; deploying calm music; deploy-
ing useful information showing e-mail, wheatear forecast, e-newspapers front
page, personal schedule.

Watching TV: Deploying TV content; controlling TV content access; recom-
mending TV content

Having a family party: Deploying music; deploying a background of family
pictures; showing drinks mixing recommendations; guiding user for making
drinks showing list of drinks, quantities of ingredients, recipes; alarming spe-
cific locations alcohol and snack location.

“performing a conference session”: giving my talk; manage the sessions
listen to radio: change channel

make coffee

set clock

Book theater seat

making a flight reservation: selecting departure and arrival towns; optionally,
selecting seat and meal preferences
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e task of E-shopping: Looking for the product (Entering a search criterion;
choosing an offer), Checking the offer, and Ordering the product

e collaboratively writing a research paper with a coauthor: format the bibli-
ography; send the current draft to the second author; incorporate marked-up
comments into the text file: EDIT-MANUSCRIPT: MOVE-TEXT, DELETE-
PHRASE, and INSERT-WORD.

e editing a paragraph in a word processor: MOVE-TEXT, DELETE-PHRASE,
and INSERT-WORD.

Some Tasks and Activities of College Professors

Prepare class material Participate in faculty meeting Grade midterm and final Go
to lunch Teach class Hold research meeting Make a cup of tea Compose research
paper Develop final exam Write grant proposal Perform field work Send FAX Make a
phone call Read a research paper E-mail Review paper Order materials Discuss with
students Manage project Conduct experiment Hold research seminar Plan business
trip Browse Web pages Meet company people

9:00 (Arrive at office) 9:00 Make a cup of tea Office Teapot, cup, spoon 3 9:10 E-
mail Office PC 2 9:50 Read a research paper Office Paper, notebook, marker, pen,
PC 2 10:30 Teach class Class room OHP, transparency, marker, notebook Students
1 12:00 Go to lunch Cafe Glass, knife, fork, spoon, plate, paper napkin Friends 3
13:00 Grade midterm Office Answer sheet, pen, notebook, PC 2 14:30 Compose
research paper Office PC, notebook, pen, dictionary, book, whiteboard, marker
1 16:30 Participate in faculty meeting Meeting room Notebook, pen, whiteboard,
maker Faculty members 1 18:30 Discuss with students Lab Whiteboard, marker
Students 1

7.2 Eveluation

Time on task, keystrokes, mouse clicks, and tasks completed, users’ satisfaction,
users’ errors, (cognitive) effort a user spends.

7.3 Notes

Note:

e Different users under different situations should see different, task based user
interfaces of the system.

e In general, the user is neither interested in which devices are involved nor
what sequence of actions to execute on them. She just wants to get the job
done.
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e One could think of services reaching from simple weather forecasts to intelli-
gently control blinds.

e Embedded devices invade us.
e What resources are at hand and what tasks do they (PCEs) support?
e multi-modal interaction: visual, acoustic, and haptic input and output

e To reduce the usage complexity of user interfaces and improve their usability.
The increasing complexity due to technological development will be reduced
by using a model-based approach for the generation of user interfaces. The
core model of a model-based approach focusing on user-centred development
is often the task model of a user interface.

e Smart environments bring together multiple users, (interaction) resources and
services. This creates complex and unpredictable interactive computing envi-
ronments that are hard to understand. Users thus have difficulties to build up
their mental model of such interactive systems.

e Users immersed in a pervasive environment should become aware of the tasks
they can execute using the resources present in the environment.

e Users should be able to manage the tasks they are involved in, i.e. (re)configure
them or switch between tasks.

Hong and Eom [128] conclude that the most intuitive method that can replace the
inputting key code step is “pointing” remote to the device that the user intends
to operate. They name this pointing based multi-device controlling method as
Point and Control (PAC). PAC uses IR LEDs and IR image sensor to determine
the target device. Each target device has unique IR LED information, and the
universal remote control is equipped with an IR LED image sensor to read the
target device’s IR information. When a user points the remote to the target device,
the remote retrieves the image of IR LED data, decides what device to control, and
finally transmits the proper key code. Since key code inputting has changed to the
pointing behaviour, a user can control several devices with ease, feeling much more
comfortable.
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