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Introduction

In this paper I shall show how the computer may be used to
provide an environment for building and testing mathematical
concepts as part of a long-term learning schema following the
theory of Skemp, (1962, 1971, 1976, 1979). I do this in tribute to
the inspiration I have received from working with Richard Skemp
and reading his publications over the major part of my time in
mathematics education. History may record that it was my fortune
to be his last Ph.D. student before his retirement as Professor of
Educational Theory at Warwick University. It is an honour that I
cherish, and a responsibility that will be hard to maintain at a
fraction of the standards that he has set in scholarship and insight.

Background

Fifteen years ago I was to give my first course of lectures on “The development
of mathematical concepts” to undergraduates who were mathematics majors
with excellent records in mathematics but no experience in studying how people
learn. The course was based on the difference between the formal, the historical,
and the cognitive development of mathematical concepts. The formal
mathematics was familiar to students, the historical and cultural side could be
taken from a number of sensible mathematical histories, but the cognitive
development caused some difficulties. In the early seventies there were five
major thinkers in the psychology of education who gave highly relevant insights
into mathematics education : Piaget, Dienes, Bruner, Ausubel and Skemp. For
my undergraduates, with little knowledge of children, Piaget proved difficult to
penetrate. Although we could talk about assimilation and accommodation of
concepts in a meaningful way, the notion of the stages: sensori-motor, concrete-
operational and formal-operational, was purely a theoretical construct. To these
students a “concrete operational child” was one who could conserve number,
quantity, volume, etc, and could argue logically, provided there were concrete
materials available to represent the concepts physically. The students had an
enjoyable time playing with Dienes’ logic blocks and algebraic experience
materials for factoring quadratics. Yet the precise nature of how this concrete



Building and testing concepts with a computer David Tall

– 2 –

experience is translated into formal ideas remained something of an enigma. We
considered some of Bruner’s papers on a theory of instruction and the notion of
discovery and we made reference to the text on educational psychology by
Ausubel. But the textbook that made the course meaningful to the students was
a popular little paperback that could be bought in W. H. Smith’s bookshop by
the average browser: Richard Skemp’s Psychology of Learning Mathematics.
The passage of time has seen this book distilled and revised, translated into
other languages, and now brought out in a new American edition. Fifteen years
after its first publication it remains a book to stimulate thought and discussion
about the way we learn mathematics. Its major value for so many people is that
it is not about mathematical learning at specific levels of development, but it has
implications at all levels. Later it was to be followed by Intelligence, Learning
and Action, again a profound book that has wide implications.

The difference between Skemp’s approach and others is highlighted by his
desire to make his work understandable not only to theorists, but also to
educational practitioners. Ausubel (1968), for example, desires to give a clarity
to his theories by using technical terms that are endowed with special
definitions. He describes concepts as “objects, events, situations or properties
that possess common criterial attributes (despite diversity along other
dimensions or attributes) and are designated by some sign or symbol, typically a
word with generic meaning”. Skemp (1971), on the other hand, believes
strongly in using evocative terminology and giving it a special meaning or
“interiority” in the special context. He remarks that, “though the term ‘concept’
is widely used, it is not easy to define, nor... is a direct definition the best way to
convey its meaning.” He goes on to elucidate two principles:

1) Concepts of a higher order than those which a person already has
cannot be communicated to him by a definition, only by
arranging for him to encounter a suitable number of examples.

2) Since in mathematics these examples are almost invariably other
concepts, it must first be ensured that these are already formed in
the mind of the learner.

These principles taxed the minds of myself and some of my university
mathematics colleagues for some time in the early seventies. I well remember a
colleague teaching a group theory course by not mentioning the term ‘group’ at
the outset, and beginning with various examples that would eventually form the
concept later: permutations of finite sets, geometrical transformations, and so
on. The trouble was that, without some knowledge of where they were heading,
the students seemed to be confused by the diversity of the examples in the early
stages. Clearly an organising principle was needed that would help in the
abstraction of higher order concepts.

Ausubel et al (1968) had already proposed such a principle: the advance
organiser, which is “introductory material presented in advance of, and at a
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higher level of generality, inclusiveness, and abstraction than the learning task
itself, and explicitly related both to existing relevant ideas in cognitive structure
and to the learning task.” Another colleague at university considered that the
ideas in the linear algebra course were essentially very simple, and began his
course with a preview lecture that covered all the essential principles in one go.
He found that the students were somewhat perplexed by the lecture. At this
stage they seemed to lack the relevant higher order ideas to comprehend the
simplicity of the structure.

Advance organisers, by definition, require the student to possess knowledge
appropriate to the new task, which is at a higher level of generality than the task
itself. For example, Ausubel applied his theory to the learning of a second
language where the learner may already have higher level concepts available
from the study of the first language: sentence construction, parts of speech,
tense of verbs, and so on. In mathematics there may occur times when
appropriate higher level concepts are not available to the students.

In such cases, how are we to introduce the learner to the new concepts?
Dienes (1960) suggests that physical manipulation of his materials at the
concrete operational stage may provide experiences from which the higher level
concepts may be abstracted at a later stage. He suggests a number of principles
on which to build up ideas from concrete experience to formal abstraction. But
this is not the only possible strategy.

In Dienes and Jeeves (1965) a contrary principle is put forward, suggesting
that, in some cases, more effective learning may be achieved by first
introducing the learner to a structure that is more general and more complex. By
being thrown in, at the ‘deep-end’, the authors suggest that the learner is more
likely to use a higher order ‘operational structuring’ approach to cope with a
problem.

Thus Dienes is suggesting two different kinds of approach, one which builds
up in a careful and structured way from concrete materials, the other that sets
the learner in a problem area to discover the higher level structure from his or
her investigations. Again, how are we to reconcile these two different pieces of
advice, and how are we to proceed best when we introduce students to new
areas of mathematics?

In Intelligence, learning and action, Richard Skemp suggests a clarification
of the concrete/formal dichotomy in his modes of building and testing (figure
1). He remarks that, as currently taught, pure mathematics relies heavily on
mode (iii), in varying degrees on mode (ii) and not at all on mode (i). However,
if one interprets the idea of initial concrete activities being centred in mode (i),
aided by explanation and discussion in mode (ii), then the computer gives us a
totally new way of attacking the learning of mathematical concepts.

The important first phase in learning new concepts is not necessarily through
manipulating concepts that are represented physically in a concrete sense, but
externally, in a manner which allows predictable manipulations for building and



Building and testing concepts with a computer David Tall

– 4 –

testing. This predictable environment for building and testing can be provided
by suitable software on a computer.

The computer has capabilities that complement those of the human mind.
Where the human mind is prone to error, yet able to make leaps of insight, the
computer is consistent (provided it is properly programmed) and predictable. It
is this very consistency and predictability that make it, in Skemp’s terminology,
an environment for building and testing mathematical concepts. For, if the
computer is programmed to carry out mathematical processes in a way which
makes them transparent to the user, then the programmes can be used in mode
(i), with explanations in mode (ii), to gain experiences of concepts in action,
forming a cognitive base for the later building and testing of the formalities of
the theory in modes (ii) and (iii). One may build concepts by considering a
number of examples (and non-examples) of a process in action to observe
regularities and abstract the underlying generalities, and in a complementary
fashion, one may test concepts by conjecturing what may happen in as yet
untried situations before carrying them out to check the conjectures.

Generic organisers

An environment that provides the user the facilities of manipulating examples
of a process or concept I term a generic organiser. The term “generic” means
that the learner’s attention is directed at certain aspects of the examples which
embody the more abstract concept. Thus the equality 3+2=2+3 may be seen as a
specific example of arithmetic in which two additions give the same result, or as
a generic example of the commutative property of addition. The generic
example is seen as a representative of a whole class of examples which embody
the general property.

REALITY BUILDING REALITY TESTING
Mode (i) Mode (i)

from our own encounters with
actuality:
experience

against expectation of events in
actuality:
experiment

Mode (ii) Mode (ii)
from the realities of others:

communication

comparison with the realities of
others:
discussion.

Mode (iii) Mode (iii)
from within, by formation of
higher order concepts. by
extrapolation, imagination,
intuition:
creativity

comparison with one’s own
existing knowledge and beliefs:

internal consistency.

Figure 1



Building and testing concepts with a computer David Tall

– 5 –

Computer programs can show not only examples of concepts, but also,
through dynamic action, they can show examples of mathematical processes. In
some instances the processes become encapsulated as mathematical concepts.
Thus my program GRADIENT (Tall 1986a) which shows a secant clicking
along a curve, simultaneously plotting the gradient of the secant as a point, is
carrying out a mathematical process. But the finished product is a static graph
representing the gradient function of the curve, and this is now a mathematical
concept. Thus computer programs can provide an enviroment that enables
teachers to demonstrate mathematical concepts and processes, and students to
explore them. During the demonstrations and explorations it is possible to focus
not only on the particular example being constructed by the computer at the
time, but also to see it as being a typical representative of a class of examples.
By seeing a wide variety, not only of examples, but of non-examples, using the
speed and calculation power of the computer at the behest of the teacher and
pupil, it is possible to focus on the more general concept that is represented by
the whole class of examples and get a true feeling for the concept that can form
the basis for more formal later work.

Before the advent of the computer, a common philosophy of teaching was
based on the notion that the French call the “didactic triangle” between the
pupil, the teacher and the mathematics (figure 2):

pupil

teacher mathematics

Figure 2 : The Didactic Triangle

The mathematics is part of a shared knowledge system, shared by those who
have already learnt to understand it. The respresentative of this culture in the
classroom is the teacher. The mathematics is in the mind of the teacher and the
only externalized physical representions are usually in a text book. Here the
mathematics is static in fixed words and pictures. The only dynamic
representation is through the verbal explanation of the teacher and any diagrams
that may be drawn.

The Didactic Tetrahedron

The introduction of the computer brings a new dimension into the learning
situation. There are now four major components, which may be viewed as
forming a tetrahedron in a suitable educational context (figure 3):



Building and testing concepts with a computer David Tall

– 6 –

pupil

teacher mathematics

computer

co
nt

ex
t

Figure 3 : The Didactic Tetrahedron

It is assumed that the computer has appropriate software available to represent
the mathematics, and that this software is designed in a manner that makes the
mathematics as explicit as possible. It must show the processes of the
mathematics as well as giving the final results of any calculation.

If the computer software is in the form of a generic organiser, then it may be
used in a flexible way. I have seen my own software given to pupils to solve
problems without any explanation as to how it should be used. As a challenge,
in the right context, this ‘deep-end’ approach can be most effective. My own
preference is for an initial element of teaching and discussion with the teacher
using the organiser to demonstrate examples, slowing down the computer action
to explain what is happening, and pausing on occasion in the middle of a routine
when an interesting point is reached that is worthy of further discussion. (For
this reason I design computer programs with speed of action always under the
control of the user.) The intention of discussion at this stage is a negotiation of
meaning. The idea is to help the students form their own concept images in a
way that is likely to agree with the interpretation of the mathematical
community. This may be done through a Socratic dialogue between teacher and
pupils which is enhanced by the addition of the computer. The mathematics is
no longer just in the head of the teacher, or statically recorded in a book. It has
an external representation on the computer as a dynamic process, under the
control of the user, who may be the teacher, the pupil, or a combination of
people working together. Concepts may be built by seeing examples in action,
and tested by predicting what will happen on artfully chosen examples before
letting the computer carry them out.

The enhanced Socratic mode of teaching that I use with my own generic
organisers begins with teacher demonstration of the concepts on the computer
and dialogue between teacher and pupils in a context that encourages enquiry
and cooperation. At this stage only one computer is required for the whole class
(though younger children are best helped in small groups). At the earliest
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opportunity, individual pupils will be typing in their own suggestions which
arise as a result of the dialogue and, as they gain in confidence, the teacher
plays a less central role. There may come a phase of operation in which the
pupils are using the generic organiser for their own investigations. In larger
classes this may require more computers to allow all the students access, though
it is often possible to organise a circuit system enabling pupils to take it in turns
to work together in small groups. At this stage the operative part of the didactic
tetrahedron is the relationship between the pupil and the mathematical ideas, as
represented on the computer by the generic examples. The teacher takes no
directive role, being available only to answer questions which may arise in the
course of the student investigations. At a later, review stage, further discussion
with the pupils is sensible, to probe their ideas and make certain that their
concept image is appropriate for the wider mathematical community. In this
way the students come to terms with the ideas through experience and build
their concepts in a way which is likely to be potentially meaningful.

Examples of generic organisers

Fract ions

In Tall 1986b a generic organiser is described that was written to encourage
discussion and exploration of the notion of a fraction. It is my belief that the
child’s understanding may be hampered by the limitations of its own physical
ability. For example, it may be possible for the child to visualize a cake cut into
seven equal pieces, but not to carry out the accurate physical subdivision. The
vernacular use of fraction names in uses such as “give me the bigger half” is
then emphasised by actual experience where fractions tend to be cut
inaccurately. The computer is not necessarily helpful here. A computer picture
is made up of individual pixels, so if a line length 30 pixels is to be cut into four
equal parts, some will be seven pixels long, and some eight. The computer is
hardly more accurate than the child! However, if a circle is cut up into sectors,
although it is again performed inaccurately on the computer screen, it is
possible to maintain an illusion that it is being done accurately, even if the
picture is not exact. Using this idea I wrote a simple program for subdividing a
“cake” into a specified number of equal pieces and allowing the user to take as
many pieces as are required. The cutting process is counted out, and the number
of pieces required are counted on-screen, using the usual symbols for fractions.
Children have a great sense of humour. They may cut a cake into five equal
pieces and then demand to have eleven of them! The child is not restricted to
demanding less than a whole cake, and so can gain direct experience of
fractions greater than one. The computer complains “I’ll have to cut more cake”
and stoically draws two more cakes, cutting each into five equal parts and
counting out the required number of pieces. In figure 4 the computer has
counted the five pieces on the first cake, has moved on to the second and
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counted piece six and is now on seven. The numerator of the fraction changes as
the sector is counted and the process will be completed after counting eleven
pieces by the remaining pieces on the last cake being eaten away.

Figure 4

The static picture in figure 4 is not very informative. It only comes to life when
seen dynamically on the computer screen. By itself the program is quite limited,
but as a focus for discussion, exploration and explanation it has proved valuable
in giving an enriched concept image of the notion of fraction, including
fractions greater than one. Routines are also included in the program to show
the idea of equivalent fractions by cutting up the cake in equivalent ways.

Algebraic notation

A generic organiser developed for algebraic notation in conjunction with
Michael Thomas (Tall & Thomas 1986) shows another aspect of introducing a
mathematical concept by mode (i) exploration. Here we wished to give a mental
image of the notion of a variable as a labelled box into which a value of the
variable could be placed. The children, aged 11 or 12, performed a variety of
related tasks, some using a physical representation of a ‘maths machine’ in the
form of a card with rectangular boxes marked on it, which could be used as
labelled stores for numbers. They also wrote short BASIC programs whose
purpose was to give numerical values to variables such as X,Y and to calculate
numerical values of expressions such as X+Y, 2*X+Y or 2*(X+Y). The writing
of programs is a very definite way in which the computer can be used to build
and test the concept of a variable using the predictability of the computer
language. However, note that BASIC is not a language that allows actual
algebraic manipulations of the symbols, so it can only act in a generic way,
using algebraic notation in the program to represent specific numbers at any
given time.

In addition to the cardboard ‘maths machine’ and the programming
activities, the pupils also used a computer program which represented the
variable stores, labels and contents on screen. Some stores were allowed varied
inputs and represented ‘variables’, other stores had fixed contents, representing
‘constants’ and others could be labelled with algebraic expressions, giving
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algebraic functions which were automatically calculated by the program.
(Figure 5.)

Figure 5 : The Algebraic Maths Machine

The expressions here could be ordinary algebra, allowing implicit
multiplication, such as 2x, as well as explicit BASIC notation and the pupils
could use the program to investigate problems experimentally, for instance,
“when is the value of 2x+3 bigger than 10?”.

The computer ‘Maths Machine’ is a generic organiser in the sense that it
enables the pupil to picture the mathematical concept of a variable. (It is less
effective in showing, for example, how the calculations are actually carried out,
but this is done by the activities with the cardboard maths machine and the
programming.)

After a three week module of work using the above materials, the children
were performing at a significantly higher level than the average performance of
pupils several years older in certain tasks requiring an understanding of
algebraic notation. (See Thomas, 1985, for further details.)

Graphic Calculus

The major area where generic organisers have been developed to aid in the
formation of higher order concepts is in the learning of the calculus. Following
Skemp (1962), in one of my first publications in mathematical education I
attempted to develop a long-term learning schema for the calculus (Tall 1975).
This was based on an attempt to reformulate the calculus on more meaningful
terms, based on a theoretical analysis of the concepts. However, research in
Schwarzenberger and Tall (1978) revealed genuine cognitive difficulties in the
subject. These were further reported in Tall & Vinner (1981) and similar
phenomena were noted in Cornu (1981, 1983). Students have particular
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difficulties with the limiting concept and with the interpretation of words whose
everyday meaning is different from the technical mathematical meaning.

This problem is made worse by using a formal approach to mathematics at a
stage when the students lack the sophistication to be able to cope with it. Even
so-called “intuitive” approaches to the subject are often based on a formal order
of development. For example, the gradient of a general graph is formally
defined in terms of the derivative, which is itself defined formally as a limit.
Most develoments of the calculus therefore precede the notion of the gradient of
a graph by a discussion of the limiting process which the students may fail to
understand. Instead they form their own concept image in an idiosyncratic
manner.

The generic organisers for the calculus are designed to present the learner
with experiences that enable them to develop suitable mental images of the
mathematical concepts. Instead of a formal approach, in which the
mathematical pre-requisites are presented in a non-meaningful context before
the main concepts are described, they are part of a cognitive approach in which
a global gestalt of the main concept is given in the early stages. For example,
instead of beginning the theory of differentiation with a discussion on limits,
one may present a global gestalt of the notion of the gradient of the graph using
the generic organiser GRADIENT to visualize the changing gradient as a secant
steps along the graph. It is even better if the student already has cognitive
experiences of magnifying the graph and sees the graph as being “locally
straight”.

A cognitive approach to the calculus

The approach advocated in GRAPHIC CALCULUS has been fully documented
elsewhere, in a series of six articles in Mathematics Teaching beginning with
Tall (1985), and in the program documentation itself, Tall (1986a). For the
purposes of this article, which is mainly concerned with the theory of building
and testing of concepts using generic organisers, I shall concentrate on two
aspects, the concept image of the gradient of a given graph and the converse
problem, to find the graph, given the gradient.

The first stage is to establish the idea of the gradient of a curved graph. The
program MAGNIFY allows the user to first draw a graph and then select any
part of the graph and magnify it. Figure 6 shows the graph of f(x)=x2 drawn
from x=–2 to 2, and a small part of the curve centred on x=1 magnified. The
magnified portion looks (almost) straight and has gradient 2.

If students are left to magnify graphs of their choice, they will soon discover
that almost all functions they are able to type into the computer have the
property that small parts of their graphs magnify to look nearly straight.
However, without intervention from the teacher they may believe this to be a
general property of graphs and form an inadequate concept image. They may
never have drawn graphs that do not have this property other than, perhaps,
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f(x)=|x| (which must be typed into the computer as abs(x)). But the single
example of the absolute value function can be combined with others to give
more interesting graphs, such as f(x)=abs(sinx), which magnifies at the origin to
show two different gradients to the left and right. (Figure 7).

This now liberates the possibilities of visual imagery. Consider the graph
y=sinx+abs(sin(100x))/100.

It consists of the graph y=sinx, with tiny oscillations built on from
abs(sin(100x))/100. To a standard scale the graph looks not much different on

Figure 6: Magnifying a locally straight graph

Figure 7: graph with corners
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the computer screen from y=sinx, but a suitable magnification shows corners at
regular intervals (figure 8).

By seeing examples such as these, the student is assisted in developing a
concept image of the types of graph that are discussed in the calculus. There are
those which look “locally straight” and there are others, which may look not
much different to the naked eye, yet which have corners. It is quite possible to
discuss more complicated examples fairly early on in the calculus, though this is
very much a matter of taste to be decided by the teacher. What is certain is that
these more interesting examples need a great deal of sophistication to invent and
may not arise in free explorations by the students without guidance from the
teacher. As Bruner stated in The Relevance of Education (1974),

It seems to me highly unlikely... that one would expect each organism tto
rediscover the totality of its culture...

Even given the powerful visualisations available in a generic organiser such as
MAGNIFY or GRADIENT, these are only made apparent by the sensitive
guidance of a gifted teacher.

After experiences with MAGNIFY, the program GRADIENT allows
students to see the gradient of a “locally straight” curve built up dynamically as
a secant through nearby points (x, f(x)), (x+c, f(x+c)) clicks along the curve for
variable x and fixed c. As each secant is drawn, its gradient is plotted as a point,
leaving behind a trace of points that outlines the gradient graph (figure 9).

By experiences such as these, pupils learning the calculus have an increased
chance of linking the formal manipulations of the calculus mentally with a
geometric visualization of the process. For example, in the thesis Tall (1986c),
it is shown that students using the gradient program are better able to sketch the

Figure 8: A graph which magnifies to reveal corners



Building and testing concepts with a computer David Tall

– 13 –

gradient of a given graph than those who have had a more traditional
introduction to the theory. They are also better able to carry out the reverse
process of recognising the original function given the gradient. The striking
statistic in this study is the number of students in the exercise succeeding in
both tasks (which was set at obtaining over 75% of the marks for sketching the
gradients of four graphs and correctly identifying the original function given the
gradient graph). There were 26 out of 42 experimental students (62%) who were
successful in both, but only 2 out of 72 control students (3%).

The students’ success was dependent on the suitable use of the generic
organisers. They worked well in two schools following a prescribed course of
action designed to develop the concept imagery of the gradient of a graph. In a
third school, where the program was not used for demonstration and the
students were given only a single opportunity to draw a gradient, the results
were significantly worse than the control students who did not use the
computer.

The need for an organising agent

As we have seen, generic organisers by themselves do not guarantee abstraction
of the general concept embodied in the organiser. Left to their own devices,
students may either miss the point of the organiser or, more seriously, the
organiser may be misused and non-generic noise embodied in the
implementation may distract the user and lead to cognitive obstacles. The
human mind is a very powerful pattern-detecting mechanism and may easily
alight on an underlying regularity that is not intended for abstraction. For
example, the functions that are typed into the GRAPHIC CALCULUS
programs are all combinations of standard functions and, with the exception of

Figure 9: Sketching the gradient of cosx
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the absolute value ABS, the integer part INT and the signum function SGN, all
these tend to be continuous and differentiable. My experience is that students do
not draw examples of graphs with ‘corners’ if they are left to their own devices.
Thus exploration without guidance could lead to either to the belief that every
function is differentiable, or that every function is differentiable except at a
number of isolated exceptional points. Indeed, the latter was the commonly
accepted belief amongst professional mathematicians in previous centuries.

A generic organiser is therefore only potentially meaningful, in the sense of
Ausubel. The learner usually requires an external organising agent in the shape
of guidance from a teacher, textbook, or some other agency to point to the
salient generic features and away from misleading factors. In the preceding
discussion I have referred to the enhanced Socratic mode in which the teacher
plays the role of the organising agent. It may happen that the expert knowledge
systems of the Fifth generation of computing may provide facilities which can
act the part of the organising agent. Languages like PROLOG promise to move
in this direction but have yet to fulfil their promise. At the moment there is a
clear divide between the modes of thinking of man and machine. The brain of
man acts both globally and sequentially. Some neurologists describe the global
action of the right hemisphere and the sequential action of the right. Even
though this is open to some dispute, it is a useful metaphor. The role of the
organising agent demands a global facility and, at the moment, the computer
seems to offer only the complementary power of a very fast metaphorical left
brain. Nevertheless one should look forward to the time when computer systems
will include guiding and monitoring facilities in learning, with generic
organisers available as “desk-top” options, to be selected and used for learning
in the manner that the calculator is available in the classroom today.

A long-term learning schema using generic organisers

And so I return to the original topic of my first research into mathematics
education: the design of a long-term learning schema for the calculus, as an
exemplar of long-term learning schemas leading to more advanced formal
mathematical concepts. I have laid out the framework of the plan in Tall (1985)
et seq. Generic organisers play a vital role in moving from the specific example,
to the generic example, representing a typical element of the whole class of
examples, to the general concept which encapsulates the whole class as a single
higher level entity. It is this movement to a higher level of conceptual thinking
that creates the greatest difficulty in mathematics. Once the move has been
made, the mathematics becomes greatly simplified. It is this fundamental divide
that separates out those that can, from those that cannot do mathematics. Those
that ‘can’ see the simplicity of the general abstract idea, those that ‘cannot’ see
the plethora of individual examples, each endowed with the noise of the
particular case that makes it difficult to obtain any sense from such complex
diversity.
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Richard Skemp has taught me, above all, that it is not the complexification
of ideas that marks progress, it is the distillation and simplification of ideas,
making them available to a wider class of users, guided by the simple
abstraction of the unifying ideal. Compare the theories of motion of the Greeks,
with the movement of the heavens described by the “harmony of the spheres”,
in which circular motion is superimposed on other circular motion, with the
simplicity of Newton’s laws. The observation that acceleration is proportional
to the force is a simple one, but it is also profound.

In this way we must look for unifying ideas in the calculus. These unifying
ideas are not found in practising the use of a long list of formulae for
differentiation, or the greater number of techniques for integration, but in the
knowledge that the calculus is about the rate of change (differentiation),
cumulative growth (integration) and the inverse relationship between them (the
fundamental theorem). Cognitive support for all three ideas, and for many more
besides, can be given by the generic organisers of GRAPHIC CALCULUS.
Each organiser is intended to offer an immediate intuitive grasp of the idea,
embodied initially in a single example, then refined and developed in further
examples, in a manner that can readily be apprehended by the learner. Of
necessity, this operates in a simplified context, appropriate for the learner at his
current state of cognitive development. It therefore may tell the truth, but not
the whole truth. But a good generic organiser can provide not only the intuitive
grasp of concepts for the present, it can sow the seeds for the later development
of the theory.

For example, the organisers MAGNIFY and GRADIENT together show the
idea that a differentiable function is one that looks “locally straight”. This leads
naturally into the concept of a local linear approximation and (years later) to the
idea that differentiable manifolds are “locally flat”. Likewise, the blancmange
function (a specific example of a function which is nowhere locally straight)
leads on to a natural formal proof of the existence of an everywhere continuous,
nowhere differentiable function (Tall 1982).

This example exhibits a feature of the use of generic organisers in long-term
learning schema. The organiser GRADIENT works on the principle that the
gradient of a curve can be visualized by looking along the graph and plotting the
gradient of a moving secant. By adding a tiny multiple of the blancmange
function b(x) to any differentiable function f(x), one gets a function f(x)+kb(x)
(where k is very small), which is non-differentiable. The graphs of the functions
f(x) and f(x)+kb(x) look indistinguishable drawn to a standard scale on a
computer screen. Yet one is differentiable everywhere and one differentiable
nowhere. Thus the initial idea of looking along a curve to visualize its gradient
is theoretically unsatisfactory. Two graphs can look alike in a given picture yet
one has a derivative and one does not. The organisational system contains the
seeds of the eventual replacement of the generic organiser. It leads to a higher
plane where one realizes the need for a more rigorous theoretical formulation.



Building and testing concepts with a computer David Tall

– 16 –

Thus an organiser in a long-term learning schema acts in a manner which has
a Piagetian stage structure. First it must be used in an environment where a
simple formulation is possible, giving a sense of equilibrium to the learner.
Later a dissonant property may be encountered which causes conflict and
requires mental reconstruction to move into a new and richer level of
equilibrium. The function of a good long-term generic organiser is first to be
directly relevant to the current cognitive state of the learner, yet to contain the
seeds of more subtle ideas that lead into later formal theory when, and if, that
proves necessary.

The full long-term learning schema using generic organisers to move up to
higher order concepts is built on cognitive, not logical, principles, as enunciated
by Richard Skemp in 1971:

Some reformers try to present mathematics as a logical development. This
approach is laudable in that it aims to show that mathematics is sensible and
not arbitrary, but it is mistaken in two ways. First it confuses the logical and
the psychological approaches. The main purpose of a logical approach is to
convince doubters; that of a psychological one is to bring about understanding.
Second, it gives only the end-product of mathematical discovery (‘this is it, all
you have to do is learn it’), and fails to bring about in the learner those
processes by which mathematical discoveries are made. It teaches
mathematical thought, not mathematical thinking.

It is to be hoped that the appropriate use of generic organisers will provide a
rich environment to stimulate mathematical thinking and build a fuller
understanding.
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