
Entire contents Copyright© 2009, Techweb/United Business Media LLC, except where otherwise noted. No portion of this publication july be repro-
duced, stored, transmitted in any form, including computer retrieval, without written permission from the publisher. All Rights Reserved. Articles
express the opinion of the author and are not necessarily the opinion of the publisher. Published by Techweb, United Business Media Limited, 600
Harrison St., San Francisco, CA 94107 USA 415-947-6000.

Editor’s Note 2
by Jonathan Erickson

Techno-News 3
Finding Java API Me t h ods and Cl a s s e s

Features
How the U.S. Changed Its Se c u ri ty Ga m e 4
by Alan Paller

Agencies pool threat data and make practical fixes to common woes.

The Case for D 7
by Andrei Alexandrescu

D could be best described as a high-level systems programming language.

Debugging MySQL Sto red Proce d u re s 15
by Brian J. Tarbox

Being able to do low- or no-cost logging with Stored Procedures is an

extremely useful technique.

Ex pe ri e n ces with Ka n b a n 18
by Charles Suscheck

Somewhere between the structure afforded by Scrum and the fluidity of

Extreme Programming, Kanban is a very lean Agile development technique.

Mo n i to ring Remote Tasks in AJAX 21
by Dino Esposito

The Progress Indicator pattern lets the JavaScript client and the server

application share information.

Columns
Of Inte re s t 22

Co nve r s at i o n s 23
by Jonathan Erickson

Dr. Dobb’s talks with security expert Gary McGraw about Twitter and other topics.

Book Rev i ew 24
by Mike Riley

Andy Lester offers no-nonsense job search and interview advice in Land the Tech Job You Love.

Ef fe ct i ve Co n c u rre n cy 25
by Herb Sutter

Herb explains the power of “In Progress”

July, 2009The Art and Business of Software Development
D I G E S T

D r . D o b b ’ s D i g e s t Ed i to r ’s Note

DR. DOBB’S DIGEST 2 July 2009 www.ddj.com

I n fo r m ation Se c u r i t y

W hen it comes to computer security, it’s a question of “when,” not “if”:
When will you unknowingly download a Trojan horse, when will your
web site be defaced, when will your credit card treat someone else to
dinner, and when will your company lose intellectual property and

critical data about your core business and clients?
How big is the problem? While exact figures are hard to come by, estimates are stag-

gering. In a recent survey commissioned by security firm McAfee, more than 800 CIOs
around the world estimated that they lost a combined $4.6 billion worth of intellectual
property last year, while spending approximately $600 million repairing damage from one
data breach or another. Based on these numbers, McAfee projects that companies world-
wide lost more than $1 trillion in 2008 alone. Of this, 42% of the respondents said laid-
off employees are the biggest threat, followed by outside data thieves at 39%. Then there’s
the 2005 FBI report that pegs internal security attacks at costing U.S. businesses $400 bil-
lion per year.

While it’s unlikely you can totally prevent intrusions, you can mitigate their impact. One
way is to build or “bake” security into software, starting in the design phase instead of re t ro-
fitting it at the end. As it turns out, that’s the goal of Build Security In (buildsecurityin
.us-cert.gov), a collaborative program between the Department of Homeland Security and
the Software Engineering Institute to provide software developers and architects with
practices, tools, guidelines, rules, and principles for building security into software
throughout the lifecycle. Build Security In sees software security fundamentally as an
engineering problem that must be addressed in a systematic way throughout the software
development lifecycle.

The good news is that this heightened awareness of security is forcing companies to
become more attuned to how their software is being designed, developed, and tested.

Return to Table of Contents

[]

By Jo n athan Eri c k s o n ,
Ed i tor In Ch i e f

D r . D o b b ’ s D i g e s t Te c h n o - N ew s

R e s e a rchers at Carnegie Mellon
U n i v e r s i t y ’s School of Computer
Science have developed two new tools
to help programmers select fro m

among thousands of options within the APIs used
to write applications in Java.

The tools — Jadeite and Apatite — take advan-
tage of human-centered design techniques to sig-
nificantly reduce the time and guesswork associat-
ed with finding the right classes and methods of
APIs. Choosing APIs for accomplishing a given
task is not intuitive, said Brad A. Myers, pro f e s s o r
of human-computer interaction. With more than
35,000 methods listed in 4,100 classes in the cur-
rent Javadoc library of APIs — and more being
added in every new version — not even the savvi-
est developer can hope to be familiar with them all.

“This is a fundamental problem for all pro-
grammers, whether they are novices, pro f e s s i o n-
als, or the growing number of end-users who just
need to modify a web page,” Myers said. “It’s pos-
sible to design APIs so that they are easier to use,
but that still leaves thousands of existing APIs
that are hard to use but essential for Java pro g r a m-
ming. Jadeite and Apatite help programmers find
what they need among those existing APIs.”

Jadeite (Java Documentation with Extra
I n f o rmation Tacked-on for Emphasis) impro v e s
usability by enhancing the existing Javadoc docu-
mentation. For instance, Jadeite displays the
names of API classes in font sizes that corre s p o n d
with how heavily used they are based on Google
s e a rches, helping programmers navigate past litt l e -
used classes. The commonly used PrintWriter is
in large, prominent letters, while the lesser used
PrintEvent is in smaller type.

Jadeite also uses cro w d - s o u rcing to compen-
sate for the fact that an API sometimes doesn’t
include methods that programmers expect. For
instance, the Message and MimeMessage c l a s s e s
d o n ’t include a method for sending an e-mail mes-
sage. So Jadeite lets users put so-called placehold-
ers for these expected classes and methods within
the alphabetical listing of APIs. Users can edit the
placeholder to guide programmers to the actual

location of the desired method, explain why a
d e s i red method is not part of the API, or note that
a desired functionality is impossible.

Finding the way to create certain types of objects,
such as SSL sockets that enable secure Internet com-
munications, may not be obvious to pro g r a m m e r s
the first time they encounter these objects. In these
cases, Jadeite includes examples of the most popular
code used by programmers to create these objects,
allowing the user to learn from the examples.

User studies showed that programmers could
p e rf o rm common tasks about three times faster
with Jadeite than with the standard Javadoc docu-
mentation. Apatite (Associative Perusal of APIs
That Identifies Ta rgets Easily) takes a diff e re n t
a p p roach, allowing programmers to browse APIs
by association, seeing which packages, classes,
and methods tend to go with each other. It also
uses statistics about the popularity of each item to
p rovide weighted views of the most re l e v a n t
items, listing them in larger fonts. Both Jadeite
and Apatite remain re s e a rch tools, Myers said, but
a re available for public use. Broader use of the
tools will enhance the cro w d - s o u rcing aspects of
the tools, while giving the re s e a rchers import a n t
feedback about how the tools can be impro v e d .

R e s e a rch by Jeff rey Stylos, who was awarded a
Ph.D. in computer science this spring, underlies
both Jadeite and Apatite. Besides Myers, re s e a rc h
p rogrammer Andrew Faulring and underg r a d u a t e
computer science student Zizhuang Yang con-
tributed to the development of Jadeite and com-
puter science undergraduate Daniel S. Eisenberg
led the implementation of Apatite. Eisenberg ’s
work on Apatite earned first place in the Ya h o o !
U n d e rgraduate Research Aw a rds competition at
C a rnegie Mellon this spring.

Jadeite and Apatite are part of the Natural
P rogramming Project, www. c s . c m u . e d u / ~ N a t P ro g / ,
an initiative within Carnegie Mellon’s Human-
Computer Interaction Institute that is investigating
how to make programming easier. Both tools have
been funded by grants from the National Science
Foundation and SAP AG.

Return to Table of Contents

DR. DOBB’S DIGEST 3 July 2009 www.ddj.com

Finding Java API
Methods and Cl a s s e s
Reducing time and guesswork when searching for the right classes and methods

[]
E D I T O R - I N - C H I E F
Jonathan Erickson

E D I T O R I A L
MANAGING EDITOR
D e i rd re Blake
COPY EDITOR
Amy Stephens
CONTRIBUTING EDITORS
Mike Riley, Herb Sutter
W E B M A S T E R
Sean Coady

VICE PRESIDENT, GROUP PUBLISHER
Brandon Friesen
VICE PRESIDENT GROUP S A L E S
M a rtha Schwart z
S E RVICES MARKETING
C O O R D I N AT O R
Laura Robison

A U D I E N C E D E V E L O P M E N T
C I R C U L ATION DIRECTOR
K a ren McAleer
M A N A G E R
John Slesinski

DR. DOBB’S
600 Harrison Street, 6th Floor, San
Francisco, CA, 94107. 415-947-6000.
w w w. d d j . c o m

UBM LLC

Pat Nohilly Senior Vice Pre s i d e n t ,
Strategic Development and Business
Administration
Marie Myers Senior Vice Pre s i d e n t ,
M a n u f a c t u r i n g

Te c h We b

Tony L. Uphoff Chief Executive Off i c e r
John Dennehy, CFO
David Michael, CIO
John Siefert, Senior Vice President and
P u b l i s h e r, Inform a t i o n Week Business
Technology Network
Bob Evans Senior Vice President and
Content Dire c t o r, Inform a t i o n We e k
Global CIO
Joseph Braue Senior Vice Pre s i d e n t ,
Light Reading Communications
N e t w o r k
Scott Vaughan Vice Pre s i d e n t ,
Marketing Serv i c e s
John Ecke Vice President, Financial
Technology Network
Beth Rivera Vice President, Human
R e s o u rc e s
Jill Thiry Publishing Dire c t o r
Fritz Nelson Executive Pro d u c e r,
Te c h Web TV

DR. DOBB’S DIGEST 4 July 2009 www.ddj.com

D r . D o b b ’ s D i g e s t

H ow the U.S. Changed
Its Security Ga m e

On March 12, 2007, the CEO of one of the nation’s largest defense contractors learned of a call
f rom the Office of the Secre t a ry of Defense informing his firm that the FBI had evidence that
his company had allowed another nation to steal details of some sensitive technology that
DOD had contracted to develop. There was no getting the data back. In a meeting at the

Pentagon the next week, the executive learned he was not alone. Around the table were other defense con-
tractor executives who had suff e red similar bre a c h e s .

The meeting was among the catalysts for what has evolved into a change in thinking about inform a-
tion security in U.S. government and the defense industrial base. It includes more emphasis on actions
p roven to block known or expected attacks, as exemplified in the “20 Critical Security Controls” craft-
ed earlier this year.

The changed thinking involves IT pros from CIO to developer, and is highly relevant to the private sec-
tor as well. A bank recently lost $10 million in less than 30 minutes to hackers who had replicated AT M
c a rds and manipulated internal bank computers to increase limits on the amount each card holder could
take in a day. The amount of money lost was limited only by the amount of money in the ATM machines
that had been targ e t e d .

T h roughout most of this decade, the topic of cybersecurity rarely touched senior management, com-
ing up only in the context of re g u l a t o ry compliance. The problem has been that many of the steps taken
to meet compliance re q u i rements were n ’t geared to match the emerging threat. Rather than doing the tasks
needed to ensure that systems were configured securely and that attacks were blocked or found quickly,
o rganizations were forced to pay consultants to write lengthy compliance re p o rts. The re p o rts met the re g-
u l a t o r ’s demands, and the CIO was told that his organization was in compliance. When the CIO learn e d
that the company’s systems had been penetrated and its data looted, surprise was a reasonable re s p o n s e .

The Big Qu e s t i o n s
T h ree questions are usually asked following a cyberattack. The first two are :

1. What do we need to do to fix this pro b l e m ?
2. How much is enough?

Any CIO will quickly discover security people don’t agree on the answers. When outside experts are
asked, their opinions also diff e r, leaving CIOs frustrated and asking the third question:

3. Whom can I trust to answer the first two questions?

The CIOs of the major defense contractors and sensitive government sites faced exactly this uncert a i n-
t y. They found a solution to this problem that may be of value to those who want to avoid those unwant-
ed FBI calls. While the U.S. defense industry was discovering the extent of penetration into its systems,
and thousands of other businesses were hearing from the FBI that they were victims, too, the U.S. intelli-
gence community, the departments of Defense, Homeland Security, and Energ y, were leading a national
e ff o rt to transform cybersecurity.

A theme that shaped the national makeover was that defense must be informed by offense. In other
w o rds, organizations should prioritize their security investments on actions that can be proven to block
known or expected attacks, or that directly help identify and mitigate damage from attacks that get past
the defense. This was a huge shift in thinking and in behavior. Its greatest impact was to change who was
c o n s i d e red an expert — it answered question No. 3. In the past, consulting firms armed with checklists

Agencies pool thre at data and make pract i cal fixes to common wo e s

by Alan Paller

DR. DOBB’S DIGEST 5 July 2009 www.ddj.com

of questionable value were let loose to point
out missing documentation or incomplete
a w a reness pro g r a m s .

Under the “offense informs defense”
a p p roach, the measures of effectiveness are
defined by the people who know how
attacks are carried out, and are more specif-
ic and more directly related to defenses
against known attacks — such as the speed
with which unauthorized systems are identi-
fied and removed from the network. Other
examples of the new practices include:

• Automated inventory so every connect-
ed system is known and monitore d .

• Application software testing so that
security flaws are removed from web
applications before they’re posted.

• S e c u re configurations of systems and
s o f t w a re deployed on the network.

In all cases, the practices include specific
tests that can measure the effectiveness of
the controls. Most of the new metrics are
automated so that CIOs get continuous visi-
bility into their organization-wide security
e ffectiveness, rather than snapshots or com-
pliance summaries. In short, common
t h reats mean common defenses must be
implemented first, and extensively automat-
ed to continually update.

Another critical change in thinking in
g o v e rnment is recognition that, because of
the widespread use of common computer
and network technology (Windows, UNIX,
HTML, Secure Sockets Layer, SQL, and so
on), all organizations face many of the same
t h reats. Individual organizations may face
additional threats, but unless they engineer
their systems to withstand the common
t h reats, even targeted attackers need not
w o rry about specialized tactics — attackers
can just use the common attacks that work
on any organization not fully pre p a re d .

I t ’s those common threats that make this
security challenge a top priority for software
development staff. The majority of curre n t
attacks exploit programming errors made by
developers whose training never included
finding and fixing security flaws. One of the
most critical controls not in place in most
o rganizations is a secure application training

testing program. (Disclosure: SANS Institute
operates the Internet Storm Center, the
I n t e rn e t ’s early-warning system; is a degre e -
granting institution; and provides training
for security professionals and pro g r a m m e r s .)

In federal agencies and leading defense
i n d u s t ry organizations, these common
t h reats are being countered through a thre e -
p a rt initiative:

• Establish a prioritized set of security
c o n t rols that the community aff i rms will
stop or mitigate known attacks.

• Use common tools to automate the con-
t rols, and even the measurement of the
c o n t rols, that continuously monitor
s e c u r i t y.

• C reate a dashboard for CIOs and senior
managers to be able to monitor the sta-
tus of security in their organizations.

Ag re e m e nt On
The 20 Most Cri t i cal Co nt ro l s
Although many subdivisions of the U.S.
D e p a rtment of Defense, the civilian govern-
ment, and various defense contractors have
detailed knowledge of attacks that they have
experienced, creating an effective national
defense means pooling all that knowledge
into a prioritized and up-to-date list of criti-
cal security controls that re p resents the most
c u rrent attack map available.

In Febru a ry, the Center for Strategic and
I n t e rnational Studies (csis.org) announced it
had collated that attack knowledge across all
relevant agencies and published a first draft
of the “20 Critical Security Controls” (the
list is at www. s a n s . o rg/cag). The contro l s
w e re the consensus of organizations that
understand offense — including the
National Security Agency, DOD Joint Ta s k
F o rce Computer-Global Network
Operations, the DOD Cyber Crime Center,
U S - C E RT at the Department of Homeland
S e c u r i t y, and the nuclear energy re s e a rch lab-
oratories at the U.S. Department of Energ y,
plus top commercial forensics and penetra-
tion testing organizations. After public
review involving more than 60 org a n i z a-
tions, the 20 critical controls were published
for government and private use. The U.S.
State Department has already implemented

s o f t w a re and hard w a re that automate moni-
toring of the 20 critical controls and is
demonstrating how they can be monitore d
at every U.S. embassy around the world
t h rough a centralized dashboard.

The Deve l o per Role:
Co nt rol No. 7
Application software security is the contro l
most often weakly implemented. Eff e c t i v e
implementation calls for three pro c e s s e s :

• Testing all applications using sourc e -
code analysis tools (Ounce Labs, Fort i f y,
C o v e r i t y, and Veracode are among the
most widely used); web application
scanning tools (such as IBM Rational
AppScan, Hewlett-Packard We b I n s p e c t ,
and Cenzic Hailstorm); and, for impor-
tant applications, application penetra-
tion testing. But the control isn’t in place
when tests are run; it’s in place only
when the processes can ensure that
p roblems are fixed or vulnerabilities are
mitigated with other defenses, such as a
web application fire w a l l .

• Training and testing programmers in
s e c u re coding skills in their own pro-
gramming languages. This is focused on
finding and fixing the critical erro r s
identified in the “25 Most Dangero u s
P rogramming Errors” (www. s a n s . o rg /
t o p 2 5 e rrors), developed jointly by NSA,
DHS, Mitre, and SANS. The control is in
place only if the programmers pass peri-
odic competency exams in each lan-
guage they use.

• P ro c u rement language requiring soft-
w a re suppliers to implement the first
two processes. Putting these re q u i re-
ments into all contracts that result in
s o f t w a re being delivered or used on
behalf of the organization extends the
c o n t rol to where it can do the most
good.

The Way Fo rwa rd
The outline of a new era is taking shape in
s e c u r i t y. In the past, security was usually
“bolted on” after systems were designed and
deployed. That doesn’t work. Security is
e ffective only when it’s “baked in.”

Security is baked in when very large buy-
ers or groups of smaller buyers act jointly to
establish minimum security standards for
the software and systems and networks they

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 6 July 2009 www.ddj.com

b u y, and then demand that vendors deliver
technology that meets those standard s .

The U.S. Air Force offers the most suc-
cessful example. With the help of the NSA,
the organization that best understands how
attacks are launched and why they work, the
Air Force identified how Windows should be
c o n f i g u red to make it tougher to attack, then
persuaded Microsoft to sell 500,000 copies
of Windows XP and Vista pre c o n f i g u re d
with all key security settings installed. Air
F o rce users could turn on their PCs know-
ing they were safely configured. The Air
F o rce saved more than $200 million in
acquisition and operations cost, radically
i m p roved defense against common attacks,
and made users happier because systems
failed less often. To d a y, commercial org a n i-
zations and governments benefit from the
m o re secure version of Wi n d o w s .

By replicating and expanding the Air
F o rce process, the federal government can
use its buying power to provide incentives to
bake security into all products and services it
buys with the ultimate goal of making secu-
rity less expensive and easier and more eff e c-
tive for all buyers of the same technologies.

The 20 Most Critical Security Contro l s
automate the measurement of these baked-
in controls and can themselves be purc h a s e d
baked into network and systems monitoring
s o f t w a re .

A new era of buying security baked in
and continuous monitoring of focused,
o ff e n s e - i n f o rmed security controls has
begun. In government, it’s made possible by
sharing attack and defense inform a t i o n
a c ross the U.S. government and its contrac-
tors, and re p resents the best hope against
i n c reasingly sophisticated cyberspace
attacks. Any business trying to answer the
questions “What do we need to do?” and
“How much is enough?” would do well to
focus on implementing and automating the
20 critical controls.

— Alan Paller is director of research for
the SANS Institute, responsible for projects
including the Internet Storm Center and the
Top 10 Security Menaces.

Return to Table of Contents

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 7 July 2009 www.ddj.com

D r . D o b b ’ s D i g e s t

The Case for D

L e t ’s see why the D programming lan-
guage is worth a serious look. Of course,
I’m not deluding myself that it’s an easy
task to convince you. We pro g r a m m e r s

a re a strange bunch in the way we form and keep
language pre f e rences. The knee-jerk reaction of a
p rogrammer when eyeing a The XYZ Pro g r a m m i n g
Language book on a bookstore shelf is something
like, “All right. I’ll give myself 30 seconds to find
something I don’t like about XYZ.” Acquiring
e x p e rtise in a programming language is a long and
a rduous process, and satisfaction is delayed and
u n c e rtain. Trying to find quick reasons to avoid
such an endeavor is a survival instinct: The stakes
a re high and the investment is risky, so having the
ability to make a rapid negative decision early in
the process can be a huge re l i e f .

That being said, learning and using a pro g r a m-
ming language can be fun. By and large, coding in
a language is fun if the language does a satisfactory
job at fulfilling the principles that the coder using
it holds in high esteem. Any misalignment causes
the programmer to re g a rd the language as, for
example, sloppy and insecure or self-righteous and
tedious. A language can’t possibly fulfill every o n e ’s
needs and taste at the same time as many of them
a re contradictory, so it must carefully commit to a
few fundamental coordinates that put it on the
landscape of programming languages.

So what’s the deal with D? You might have
heard of it already — the language with a name
like a pun taken a bit too far; annoyingly men-
tioned now and then on newsgroups dedicated to
other languages before the off-topic police repri-
mands the guilty; praised by an enthusiastic
friend all too often; or simply as the result of an
idle online search a la “I bet some loser on this big
large Internet defined a language called D, let’s
see... oh, look!”

In this article, I provide a broad overv i e w,
which means by necessity I use concepts and fea-
t u res without introducing them rigorously as long
as they are reasonably intuitive.

L e t ’s take a brief look at some of D’s fundamen-
tal features. Be warned that many features or limi-
tations come with qualifications that make their
boundaries fuzzy. So if you read something that
d o e s n ’t quite please you, don’t let that bother you
too much: The next sentence may contain a
redeeming addendum. For example, say you re a d
“D has garbage collection” and you get a familiar
f rozen chill up the spine that stops in the cere b ru m
with the imperious command “touch the rabbit
foot and stay away.” If you are patient, you’ll find
out that D has constructors and destructors with
which you can implement deterministic lifetime of
o b j e c t s .

But Be fo re Getting Into It. . .
B e f o re getting into the thick of things, there are
a few things you should know. First and fore-
most, if you kind of considered looking into D
for whatever reason, this time is not “as good as
a n y,” it’s in fact much better than others if you’re
looking for the edge given by early adoption. D
has been evolving at a breakneck pace but in re l-
ative silence, and a lot of awesome things have
been and are being done about it that are start i n g
to become known just about now — some liter-
ally in this very article. At this writing, my book
The D Programming Language is 40% complete
and available for pre - o rder at Amazon. Safari’s
Rough Cuts subscription-based service makes
advance chapters available here .

There are two major versions of the language
— D1 and D2. This article focuses on D2 exclu-
sively. D1 is stable (will undergo no other changes
but bug fixes), and D2 is a major revision of the

D could be best described as a high-level sys tems programming language

by Andrei Alexandrescu

DR. DOBB’S DIGEST 8 July 2009 www.ddj.com

language that sacrificed some backward s
compatibility for the sake of doing things
consistently right, and for adding a few
c rucial features related to manycores and
generic programming. In the process, the
l a n g u a g e ’s complexity has increased, which
is in fact a good indicator because no lan-
guage in actual use has ever gotten smaller.
Even languages that started with the stated
intent to be “small and beautiful”
inevitably grew with use. (Yes, even Lisp.
S p a re me.) Although programmers dre a m
of the idea of small, simple languages,
when they wake up they seem to only want
m o re modeling power. D’s state of transi-
tion is putting yours truly in the unenvi-
able position of dealing with a moving tar-
get. I opted for writing an article that ages
nicely at the expense of being occasionally
f rustrating in that it describes features that
a re in the works or are incompletely imple-
m e n t e d .

The official D compiler is available for
free off digitalmars.com on major desktop
p l a t f o rms (Windows, Mac, and Linux).
Other implementations are underw a y,
notably including a .NET port and one
using the LLVM infrastructure as a back-
end. There are also two essential D
libraries, the official — Phobos — and a
community-driven library called Ta n g o .
Tango, designed for D1, is being ported to
D2, and Phobos (which was frustratingly
small and quirky in its D1 iteration) is
undergoing major changes and additions to
take full advantage of D2’s capabilities.
(There is, unsurprisingly, an amount of pol-
itics and bickering about which library is
better, but competition seems to spur both
into being as good as they can be.)

Last but definitely not least, two window-
ing libraries complete the language’s off e r i n g
quite spectacularly. The mature library DWT
is a direct port of Java’s SWT. A newer devel-
opment is that the immensely popular Qt
S o f t w a re windowing library has re c e n t l y
released a D binding (in alpha as of this writ-
ing). This is no small news as Qt is a gre a t
(the best if you listen to the right people)
l i b r a ry for developing portable GUI applica-
tions. The two libraries fully take D into “the
GUIth dimension.”

D Fu n d a m e nt a l s
D could be best described as a high-level sys-
tems programming language. It encompass-
es features that are normally found in higher
level and even scripting languages — such as
a rapid edit-run cycle, garbage collection,
built-in hashtables, or a permission to omit
many type declarations — but also low-level
f e a t u res such as pointers, storage manage-
ment in a manual (a la C’s malloc/free) or
semi-automatic (using constru c t o r s ,
d e s t ructors, and a unique scope statement)
m a n n e r, and generally the same direct re l a-
tionship with memory that C and C++ pro-
grammers know and love. In fact, D can link
and call C functions directly with no inter-
vening translation layer. The entire C stan-
d a rd library is directly available to D pro-
grams. However, you’d very rarely feel com-
pelled to go that low because D’s own facili-
ties are often more powerful, safer, and just
as efficient. By and large, D makes a stro n g
statement that convenience and eff i c i e n c y
a re not necessarily at odds. Aside from the
higher level topics that we’ll discuss soon, no
description of D would be complete without
mentioning its attention to detail: All vari-
ables are initialized, unless you initialize
them with void; a rrays and associative arr a y s
a re intuitive and easy on the eyes; iteration is
clean; NaN is actually used; overloading
rules can be understood; support for docu-
mentation and unit testing is built-in. D is
multi-paradigm, meaning that it fosters writ-
ing code in object-oriented, generic, func-
tional, and procedural style within a seam-
less and remarkably small package. The fol-
lowing bite-sized sections give away some
generalities about D.

He l l o, Ch e a p s h o t
L e t ’s get that pesky syntax out of the way. So,
without further ado:

import std.stdio;
void main()
{

writeln("Hello, world!");
}

Syntax is like people’s outfits — rational-
l y, we understand it shouldn’t make much of
a diff e rence and that it’s shallow to care
about it too much, but on the other hand we

can’t stop noticing it. (I remember the girl
in red from The Matrix to this day.) For
many of us, D has much of the “next door”
familiar looks in that it adopted the C-style
syntax also present in C++, Java, and C#. (I
assume you are familiar with one of these,
so I don’t need to explain that D has par for
the course features such as integers, float-
ing-point numbers, arrays, iteration, and
recursion.)

Speaking of other languages, please allow
a cheapshot at the C and C++ versions of
“Hello, world.” The classic C version, as lift-
ed straight from the second edition of K&R,
looks like this:

#include <stdio.h>
main()
{

printf("hello, world\n");
}

and the equally classic C++ version is (note
the added enthusiasm):

#include <iostream>
int main()
{

std::cout << "Hello, world!\n";
}

Many comparisons of the popular first
p rogram written in various languages
revolve around code length and amount of
information needed to understand the sam-
ple. Let’s take a different route by dis-
cussing correctness, namely: What happens
if, for whatever reason, writing the greeting
to the standard output fails? Well, the C
program ignores the error because it doesn’t
check the value returned by printf. To tell
the truth, it’s actually a bit worse; although
on my system it compiles flag-free and
runs, C’s “hello world” returns an unpre-
dictable number to the operating system
because it falls through the end of main.
(On my machine, it exits with 13, which
got me a little scared. Then I realized why:
“hello, world\n” has 13 characters; printf
returns the number of characters printed,
so it deposits 13 in the EAX register; the
exit code luckily doesn’t touch that register;
so that’s ultimately what the OS sees.) It
turns out that the program as written is not
even correct under the C89 or C99 stan-
dards. After a bit of searching, the Internet
seems to agree that the right way to open
the hailing frequencies in C is:

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 9 July 2009 www.ddj.com

#include < stdio.h>
int main()
{

printf("hello, world\n");
return 0;

}

which does little in the way of corre c t n e s s
because it replaces an unpredictable re t u rn
with one that always claims success,
whether or not printing succeeded.

The C++ program is guaranteed to re t u rn
0 from main if you forgot to re t u rn, but also
i g n o res the error because, um, at pro g r a m
s t a rt s t d : : c o u t . e x c e p t i o n s () is zero and
nobody checks for std::cout.bad() after the
output. So both programs will claim success
even if they failed to print the message for
whatever reason. The corrected C and C++
versions of the global greet lose a little of
their lip gloss:

#include <stdio.h>
int main()
{

return printf("hello, world\n") < 0;
}

a n d

#include <iostream>
int main()
{

std::cout << "Hello, world!\n";
return std::cout.bad();

}

F u rther investigation reveals that the
classic “hello, world” for other languages
such as Java (code omitted due to space lim-
itations), J# (a language completely — I
mean completely — unrelated to Java), or
Perl, also claim success in all cases. Yo u ’ d
almost think it’s a conspiracy, but fort u n a t e-
ly the likes of Python and C# come to the
rescue by throwing an exception.

How does the D version fare? Well, it
d o e s n ’t need any change: writeln t h rows on
f a i l u re, and an exception issued by main
causes the exception’s message to be printed
to the standard error stream (if possible) and
the program to exit with a failure exit code.
In short, the right thing is done automatical-
l y. I wouldn’t have taken this cheapshot if it
w e re n ’t for two reasons. One, it’s fun to
imagine the street riots of millions of
betrayed programmers crying how their
“Hello, world” program has been a sham.
(P i c t u re the slogans: “Hello, world! Exit
code 13. Coincidence?” or “Hello, sheeple!
Wake up!” etc.) Second, the example is not

isolated, but illustrative for a pervasive pat-
t e rn — D attempts not only to allow you to
do the right thing, it systematically attempts
to make the right thing synonymous to the
path of least resistance whenever possible.
And it turns out they can be synonymous
m o re often than one might think. (And
b e f o re you fix my code, “void main()” i s
legal D and does what you think it should.
Language lawyers who destroy noobs writ-
i n g “void main()” instead of “int main()” i n
C++ newsgroups would need to find anoth-
er favorite pastime if they switch to D.)

Heck, I planned to discuss syntax and
ended up with semantics. Getting back to
syntax, there is one notable depart u re fro m
C++, C#, and Java: D uses T!(X, Y, Z) i n s t e a d
of T<X, Y, Z>(and T!(X) or simply T!X f o r
T<X>) to denote parameterized types, and
for good reasons. The choice of angular
brackets, when clashing with the use of ‘<’,
‘>’, and ‘>>’ as arithmetic operands, has been
a huge source of parsing problems for C++,
leading to a hecatomb of special rules and
a r b i t r a ry disambiguations, not to mention
the world’s least known syntax object.tem-
plate fun<arg>(). If one of your C++ fellow
coders has Superman-level confidence, ask
them what that syntax does and you’ll see
k ryptonite at work. Java and C# also adopt-
ed the angular brackets but wisely chose to
disallow arithmetic expressions as parame-
ters, thus preemptively crippling the option
to ever add them later. D extends the tradi-
tional unary operator ‘!’ to binary uses and
goes with the classic parentheses (which
(I’m sure) you always pair pro p e r l y) .

Co m p i l ation Mod e l
D ’s unit of compilation, protection, and
modularity is the file. The unit of packaging
is a dire c t o ry. And that’s about as sophisticat-
ed as it goes. There ’s no pretense that the
p rogram source code would really feel better
in a super-duper database. This appro a c h
uses a “database” tuned by the best of us for
a long time, integrating perfectly with ver-
sion control, backup, OS-grade pro t e c t i o n ,
j o u rnaling, what have you, and also makes
for a low entry barrier for development as all
you need is an editor and a compiler.
Speaking of which, specialized tool support

is at this time scarce, but you can find things
like the emacs mode d-mode, vim support ,
the Eclipse plug-in Descent, the Linux
debugger ZeroBugs, and the full IDE
P o s e i d o n .

Generating code is a classic two-stro k e
compile and link cycle, but that happens
considerably faster than in most similar
e n v i ronments, for two reasons, no, thre e .

• One, the language’s grammar allows sep-
arate and highly optimized lexing, pars-
ing, and analysis steps.

• Two, you can easily instruct the compil-
er to not generate many object files like
most compilers do, and instead con-
s t ruct everything in memory and make
only one linear commit to disk.

• T h ree, Walter Bright, the creator and
original implementor of D, is an inveter-
ate expert in optimization.

This low latency means you can use D as
a heck of an interpreter (the shebang nota-
tion is supported, too).

D has a true module system that support s
separate compilation and generates and uses
module summaries (highbrowspeak for
“header files”) automatically from source, so
you don’t need to worry about maintaining
redundant files separately, unless you re a l l y
wish to, in which case you can. Yep, that
stops that nag right in mid-sentence.

Me m o ry Model
And Ma nyco re s
Given that D can call C functions dire c t l y, it
may seem that D builds straight on C’s mem-
o ry model. That might be good news if it
w e re n ’t for the pink elephant in the ro o m
d a n g e rously close to that Ming-dynasty vase:
m a n y c o res — massively parallel arc h i t e c-
t u res that throw processing power at you
like it’s going out of style, if only you could
use it. Manycores are here, and C’s way of
dealing with them is extremely pedestrian
and error prone. Other procedural and
object-oriented languages made only little
i m p rovements, a state of affairs that marked
a re c rudescence of functional languages that
rely on immutability to elegantly sidestep
many parallelism-related pro b l e m s .

Being a relative newcomer, D is in the
enviable position of placing a much more

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 10 July 2009 www.ddj.com

i n f o rmed bet when it comes to thre a d i n g .
And D bets the farm on a memory model
that is in a certain way radically diff e re n t
f rom many others. You see, old-school
t h reads worked like this: You call a primitive
to start a new thread and the new thre a d
instantly sees and can touch any data in the
p rogram. Optionally and with obscure OS-
dependent means, a thread could also
a c q u i re the so-called thread-private data for
its own use. In short, memory is by default
s h a red across all threads. This has caused
p roblems yesterd a y, and it makes today a liv-
ing hell. Ye s t e rd a y ’s problems were caused by
the unwieldy nature of concurrent updates:
I t ’s very hard to properly track and synchro-
nize things such that data stays in good
shape throughout. But people were putting
up with it because the notion of share d
m e m o ry was a close model to the reality in
h a rd w a re, and as such was efficient when
gotten right. Now is where we’re getting to
the “living hell” part — nowadays, memory
is in fact increasingly less shared. To d a y ’s
reality in hard w a re is that processors com-
municate with memory through a deep
m e m o ry hierarc h y, a large part of which is
private to each core. So not only share d
m e m o ry is hard to work with, it turns out to
be quickly becoming the slower way of
doing things because it is incre a s i n g l y
removed from physical re a l i t y.

While traditional languages were
wrestling with all of these problems, func-
tional languages took a principled position
stemming from mathematical purity: we’re
not interested in modeling hardware, they
said, but we’d like to model true math. And
math for the most part does not have muta-
tion and is time-invariant, which makes it
an ideal candidate for parallel computing.
(Imagine the moment when one of those
first mathematicians-turn e d - p ro g r a m m e r s
has heard about parallel computing — they
must have slapped their forehead: “Wait a
minute!…”) It was well noted in function-
al programming circles that such a compu-
tational model does inherently favor out-of-
order, parallel execution, but that potential
was more of a latent energy than a realized
goal until recent times. Today, it becomes

increasingly clear that a functional, muta-
tion-free style of writing programs will be
highly relevant for at least parts of a serious
application that wants to tap into parallel
processing.

So where ’s D positioning itself in all this?
T h e re ’s one essential concept forming the
basis of D’s approach to parallelism:

M e m o ry is thread-private by default, shared on
d e m a n d .

In D, all memory is by default private to
the thread using it; even unwitting globals
a re allocated per- t h read. When sharing is
d e s i red, objects can be qualified with shared,
which means that they are visible from sev-
eral threads at once. Cru c i a l l y, the type sys-
tem knows about shared data and limits
what can be done with it to ensure that pro p-
er synchronization mechanisms are used
t h roughout. This model avoids very elegant-
ly a host of thorny problems related to syn-
c h ronization of access in default-share d
t h readed languages. In those languages, the
type system has no idea which data is sup-
posed to be shared and which isn’t so it often
relies on the honor system — the pro g r a m-
mer is trusted to annotate shared data appro-
p r i a t e l y. Then complicated rules explain
what happens in various scenarios involving
u n s h a red data, shared annotated data, data
t h a t ’s not annotated yet still shared, and
combinations of the above — in a very clear
manner so all five people who can under-
stand them will understand them, and every-
body calls it a day.

S u p p o rt for manycores is a very active
a rea of re s e a rch and development, and a
good model has not been found yet. Start i n g
with the solid foundation of a default-private
m e m o ry model, D is incrementally deploy-
ing amenities that don’t restrict its options:
p u re functions, lock-free primitives, good
old lock-based programming, message
queues (planned), and more. More advanced
f e a t u res such as ownership types are being
discussed.

I m m u t a b i l i ty
So far so good, but what happened to all that
waxing about the purity of math, immutabil-

i t y, and functional-style code? D acknowl-
edges the crucial role that functional-style
p rogramming and immutability have for
solid parallel programs (and not only paral-
lel, for that matter), so it defines immutable
as a qualifier for data that never, ever
changes. At the same time, D also re c o g n i z e s
that mutation is often the best means to a
goal, not to mention the style of pro g r a m-
ming that is familiar to many of us. D’s
answer is rather interesting, as it encompass-
es mutable data and immutable data in a
seamless whole.

Why is i m m u t a b l e data awesome?
Sharing i m m u t a b l e data across thre a d s
never needs synchronization, and no syn-
c h ronization is really the fastest synchro-
nization around. The trick is to make sure
that read-only really means re a d - o n l y, other-
wise all guarantees fall apart. To support
that important aspect of parallel pro g r a m s ,
D provides an unparalleled (there goes the
lowest of all literary devices right there)
s u p p o rt for mixed functional and impera-
tive programming. Data adorned with the
i m m u t a b l e qualifier provides a strong static
guarantee — a correctly typed program can-
not change i m m u t a b l e data. More o v e r,
immutability is deep — if you are in
i m m u t a b l e t e rr i t o ry and follow a re f e re n c e ,
you’ll always stay in i m m u t a b l e t e rr i t o ry.
(Why? Otherwise, it all comes unglued as
you think you share i m m u t a b l e data but end
up unwittingly sharing mutable data, in
which case we’re back to the complicated
rules we wanted to avoid in the first place.)
E n t i re subgraphs of the interc o n n e c t e d
objects in a program can be “painted”
i m m u t a b l e with ease. The type system
knows where they are and allows fre e
t h read-sharing for them and also optimizes
their access more aggressively in single-
t h readed code, too.

Is D the first language to have proposed a
default-private memory model? Not at all.
What sets D apart is that it has integrated
default-private thread memory with
immutable and mutable data under one sys-
tem. The temptation is high to get into more
detail about that, but let’s leave that for
another day and continue the overv i e w.

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 11 July 2009 www.ddj.com

Sa fe ty High On the List
Being a systems-level language, D allows
e x t remely efficient and equally dangero u s
c o n s t ructs: It allows unmanaged pointers,
m a n u a l - m e m o ry management, and casting
that can break into pieces the most care f u l
d e s i g n .

H o w e v e r, D also has a simple mechanism
to mark a module as “safe,” and a corre s p o n-
ding compilation mode that forces memory
s a f e t y. Successfully compiling code under
that subset of the language — aff e c t i o n a t e l y
dubbed “SafeD” — does not guarantee you
that your code is portable, that you used
only sound programming practices, or that
you don’t need unit tests. SafeD is focused
only on eliminating memory corruption pos-
sibilities. Safe modules (or triggering safe
compilation mode) impose extra semantic
checks that disallow at compilation time all
d a n g e rous language features such as forg i n g
pointers or escaping addresses of stack vari-
a b l e s .

In SafeD you cannot have memory cor-
ruption. Safe modules should form the bulk
of a large application, whereas “system”
modules should be rare and far between, and
also undergo increased attention during code
reviews. Plenty of good applications can be
written entirely in SafeD, but for something
like a memory allocator you’d have to get
your hands gre a s y. And it’s great that you
d o n ’t need to escape to a diff e rent language
for certain parts of your application. At the
time of this writing, SafeD is not finished, but
is an area of active development.

Read My Lips: No Mo re Axe
D is multi-paradigm, which is a pre t e n t i o u s
way of saying that it doesn’t have an axe to
grind. D got the memo. Everything is not
necessarily an object, a function, a list, a
hashtable, or the Tooth Fairy. It depends on
you what you make it. Programming in D
can there f o re feel liberating because when
you want to solve a problem you don’t need
to spend time thinking of ways to adapt it to
your hammer (axe?) of choice. Now, tru t h
be told, freedom comes with re s p o n s i b i l i t y :
You now need to spend time figuring out
what design would best fit a given pro b l e m .

By refusing to commit to One True Wa y,
D follows the tradition started by C++, with
the advantage that D provides more support
for each paradigm in turn, better integration
between various paradigms, and consider-
ably less friction in following any and all of
them. This is the advantage of a good pupil;
obviously D owes a lot to C++, as well as less
eclectic languages such as Java, Haskell,
E i ffel, JavaScript, Python, and Lisp.
(Actually most languages owe their diction
to Lisp, some just won’t admit it.)

A good example of D’s eclectic nature is
re s o u rce management. Some languages bet
on the notion that garbage collection is all
you need for managing re s o u rces. C++ pro-
grammers recognize the merit of RAII and
some say it’s everything needed for re s o u rc e
management. Each group lacks intimate
experience with the tools of the other, which
leads to comical debates in which the part i e s
d o n ’t even understand each other’s arg u-
ments. The truth is that neither approach is
s u fficient, for which reason D breaks with
m o n o c u l t u re .

Ob j e ct - O ri e nted Fe at u re s
In D you get s t ru c t s and then you get c l a s s e s.
They share many amenities but have diff e r-
ent charters: s t ru c t s a re value types, where a s
c l a s s e s a re meant for dynamic polymorphism
and are accessed solely by re f e rence. That
way confusions, slicing-related bugs, and
comments a la // No! Do NOT inherit! do not
exist. When you design a type, you decide
u p f ront whether it’ll be a monomorphic
value or a polymorphic re f e rence. C++
famously allows defining ambiguo u s - g e n d e r
types, but their use is rare, erro r- p rone, and
objectionable enough to warrant simply
avoiding them by design.

D ’s object-orientation offering is similar
to Java’s and C#’s: single inheritance of imple-
mentation, multiple inheritance of interf a c e .
That makes Java and C# code re m a r k a b l y
easy to port into a working D implementa-
tion. D decided to forgo language-level sup-
p o rt for multiple inheritance of implementa-
tion, but also doesn’t go with the sour- g r a p e s
t h e o ry “Multiple Inheritance is Evil: How an
Amulet Can Help.” Instead, D simply

acknowledges the difficulty in making mul-
tiple inheritance of state work efficiently and
in useful ways. To provide most of the bene-
fits of multiple inheritance at contro l l a b l e
cost, D allows a type to use multiple subtyp-
ing like this:

class WidgetBase { ... }
class Gadget { ... }
class Widget : WidgetBase, Interface1,
Interface2
{

Gadget getGadget() { ... }
alias getGadget this; // Widget

subtypes Gadget!
}

The alias introduction works like this:
Whenever a G a d g e t is expected but all you
have is a Wi d g e t, the compiler calls
g e t G a d g e t and obtains it. The call is
e n t i rely transparent, because if it were n ’t ,
that wouldn’t be subtyping; it would be
something frustratingly close to it. (If you
felt that was an innuendo, it pro b a b l y
was.) More o v e r, g e t G a d g e t has complete
d i s c retion over completing the task — it
may re t u rn e.g. a subobject of this or a
brand new object. You’d still need to do
some routing to intercept method calls if
you need to, which sounds like a lot of
boilerplate coding, but here ’s where D’s
reflection and code generation abilities
come to fore (see below). The basic idea is
that D allows you to subtype as you need
via alias this. You can even subtype i n t i f
you feel like it.

D has integrated other tried and tru e
techniques from experience with object ori-
entation, such as an explicit override key-
w o rd to avoid accidental overriding, signals
and slots, and a technique I can’t mention
because it’s trademarked, so let’s call it con-
tract programming.

Fu n ctional Prog ra m m i n g
Quick, how do you define a functional-style
Fibonacci function?

uint fib(uint int n)
{

return n < 2 ? n : fib(n - 1) + fib(n
- 2);
}

I confess to entertaining fantasies. One of
these fantasies has it that I go back in time
and somehow eradicate this implementation
of Fibonacci such that no Computer Science

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 12 July 2009 www.ddj.com

teacher ever teaches it. (Next on the list are bubble sort and the O(n
log n)-space quicksort implementation. But fib outdoes both by a
l a rge margin. Also, killing Hitler or Stalin is dicey as it has hard - t o -
assess consequences, whereas killing fib is just good.) fib takes expo-
nential time to complete and as such promotes nothing but igno-
rance of complexity and of the costs of computation, a “cute excus-
es sloppy” attitude, and SUV driving. You know how bad exponen-
tial is? fib(10) and fib(20) take negligible time on my machine,
w h e reas fib(50) takes nineteen and a half minutes. In all likelihood,
evaluating fib(1000) will outlast humankind, which gives me solace
because it’s what we deserve if we continue teaching bad pro g r a m-
m i n g .

Fine, so then what does a “green” functional Fibonacci imple-
mentation look like?

uint fib(uint n)
{

uint iter(uint i, uint fib_1, uint fib_2)
{

return i == n
? fib_2
: iter(i + 1, fib_1 + fib_2, fib_1);

}
return iter(0, 1, 0);

}

The revised version takes negligible time to complete fib(50). T h e
implementation now takes O(n) time, and tail call optimization
(which D implements) takes care of the space complexity. The pro b-
lem is that the new fib kind of lost its glory. Essentially, the re v i s e d
implementation maintains two state variables in the disguise of func-
tion parameters, so we might as well come clean and write the
straight loop that iter made unnecessarily obscure :

uint fib(uint n)
{

uint fib_1 = 1, fib_2 = 0;
foreach (i; 0 .. n)

{
auto t = fib_1;
fib_1 += fib_2;
fib_2 = t;

}
return fib_2;

}

but (shriek of horror) this is not functional anymore! Look at all that
disgusting mutation going on in the loop! One mistaken step, and we
fell all the way from the peaks of mathematical purity down to the
unsophisticatedness of the unwashed masses.

But if we sit for a minute and think of it, the iterative fib is not
that unwashed. If you think of it as a black box, fib always outputs
the same thing for a given input, and after all pure is what pure does.
The fact that it uses private state may make it less functional in let-
t e r, but not in spirit. Pulling carefully on that thread, we reach a very
i n t e resting conclusion: as long as the mutable state in a function is
e n t i rely transitory (i.e., allocated on the stack) and private (i.e., not
passed along by re f e rence to functions that may taint it), then the
function can be considered pure .

And that’s how D defines functional purity: you can use mutation
in the implementation of a pure function, as long as it’s transitory
and private. You can then put pure in that function’s signature and
the compiler will compile it without a hitch:

pure uint fib(uint n)
{

... iterative implementation ...
}

The way D relaxes purity is quite useful because you’re getting
the best of both worlds: iron-clad functional purity guarantees, and
c o m f o rtable implementation when iteration is the pre f e rred method.
If that’s not cool, I don’t know what is.

Last but not least, functional languages have another way of
defining a Fibonacci sequence: as a so-called infinite list. Instead of
a function, you define a lazy infinite list that gives you more
Fibonacci numbers the more you read from it. D’s standard library
o ffers a pretty cool way of defining such lazy lists. For example, the
code below outputs the first 50 Fibonacci numbers (you’d need to
import std.range) :

foreach (f; take(50, recurrence!("a[n-1] + a[n-2]")(0, 1)))
{

writeln(f);
}

T h a t ’s not a one-liner, it’s a half-liner! The invocation of re c u r-
rence means, create an infinite list with the re c u rrence formula a[n]
= a[n-1] + a[n-2] s t a rting with numbers 0 and 1. In all this there is
no dynamic memory allocation, no indirect function invocation, and
no nonrenewable re s o u rces used. The code is pretty much equivalent
to the loop in the iterative implementation. To see how that can be
done, you may want to read through the next section.

Ge n e ric Prog ra m m i n g
(You know the kind of caution you feel when you want to describe
to a friend a movie, a book, or some music you really like but don’t
want to spoil by overselling? That’s the kind of caution I feel as I
a p p roach the subject of generic programming in D.) Generic pro-
gramming has several definitions — even the neutrality of the
Wikipedia article on it is being disputed at the time of this writing.
Some people refer to generic programming as “programming with
parameterized types, aka templates or generics,” whereas others
mean “expressing algorithms in the most generic form that pre s e rv e s
their complexity guarantees.” I’ll discuss a bit of the former in this
section, and a bit of the latter in the next section.

D offers parameterized structs, classes, and functions with a sim-
ple syntax, for example here ’s a min f u n c t i o n :

auto min(T)(T a, T b) { return b < a ? b : a; }
...
auto x = min(4, 5);

T would be a type parameter and a and b a re regular function param-
eters. The auto re t u rn type leaves it to the compiler to figure out what
type min re t u rns. Here ’s the embryo of a list:

lass List(T)
{

T value;
List next;
...

}
...
List!int numbers;

The fun only starts here. There ’s too much to tell in a short article to
do the subject justice, so the next few paragraphs offer “deltas” —

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 13 July 2009 www.ddj.com

d i ff e rences from the languages with generics that you might alre a d y
k n o w.

Parameter Kinds. Not only types are acceptable as generic
parameters, but also numbers (integral and floating-point), strings,
compile-time values of struct type, and aliases. An alias parameter is
any symbolic entity in a program, which can in turn refer to a value,
a type, a function, or even a template. (That’s how D elegantly side-
steps the infinite re g ression of template template template — param-
eters; just pass it as an alias.) Alias parameters are also instru m e n t a l
in defining lambda functions. Variable-length parameter lists are also
a l l o w e d .

String Manipulation. Passing strings to templates would be next
to useless if there was no meaningful compile-time manipulation of
strings. D offers full string manipulation capabilities during compila-
tion (concatenation, indexing, selecting a substring, iterating, com-
p a r i s o n)

Code Generation: The Assembler of Generic Pro g r a m m i n g .
Manipulating strings during compilation may be interesting, but is
confined to the data flatland. What takes things into space is the
ability to convert strings into code (by use of the m i x i n expression).
Remember the recurrence example? It passed the re c u rre n c e formu-
la for Fibonacci sequences into a library facility by means of a
string. That facility in turn converted the string into code and pro-
vided arguments to it. As another example, here’s how you sort
ranges in D:

// define an array of integers
auto arr = [1, 3, 5, 2];
// sort increasingly (default)
sort(arr);
// decreasingly, using a lambda
sort!((x, y) { return x > y; })(arr);
// decreasingly, using code generation; comparison is
// a string with conventional parameters a and b
sort!("a > b")(arr);

Code generation is very powerful because it allows implementing
e n t i re features without a need for language-level support. For exam-
ple, D lacks bitfields, but the standard module std.bitmanip defines a
facility implementing them fully and eff i c i e n t l y.

Introspection. In a way, introspection (i.e., the ability to inspect
a code entity) is the complement of code generation because it looks
at code instead of generating it. It also offers support for code gener-
ation — for example, introspection provides the information for gen-
erating a parsing function for some enumerated value. At this time,
i n t rospection is only partially supported. A better design has been
blueprinted and the implementation is “on the list,” so please stay
tuned for more about that.

is and static if. Anyone who’s written a nontrivial C++ template
knows both the necessity and the encumbrances of (a) figuring out
whether some code “would compile” and deciding what to do if yes vs.
if not, and (b) checking for Boolean conditions statically and compil-
ing in diff e rent code on each branch. In D, the Boolean compile-time
e x p re s s i o n i s (t y p e o f (e x p r)) yields t ru e if e x p r is a valid expression, and
f a l s e o t h e rwise (without aborting compilation). Also, static if l o o k s

p retty much like i f, except it operates during compilation on any valid
D compile-time Boolean expression (i.e., #if done right). I can easily
say these two features alone slash the complexity of generic code in
half, and it filled me with chagrin that C++0x includes neither.

B ut Wait, There’s. . .Well, You Know. Generic programming is a
vast play field, and although D covers it with a surprisingly compact
conceptual package, it would be hard to discuss matters further with-
out giving more involved information. D has more to off e r, such as
customized error messages, constrained templates a la C++0x con-
cepts (just a tad simpler — what’s a couple of orders of magnitude
between friends?), tuples, a unique feature called “local instantia-
tion” (crucial for flexible and efficient lambdas), and, if you call
within the next five minutes, a knife that can cut through a fro z e n
can of soda.

A Wo rd on the St a n d a rd Libra ry
This subject is a bit sensitive politically because, as mentioned,
there are two full-fledged libraries that can be used with D, Phobos
and Tango. I only worked on the former so I will limit my com-
ments to it. For my money, ever since the STL appeared, the land-
scape of containers+algorithms libraries has forever changed. It’s
changed so much, in fact, that every similar library developed after
the STL but in ignorance of it runs serious risks of looking goofy.
(Consequently, a bit of advice I’d give a programmer in any lan-
guage is to understand the STL.) This is not because STL is a per-
fect library — it isn’t. It is inextricably tied to the strengths and
weaknesses of C++; for example, it’s efficient but it has poor sup-
port for higher order programming. Its symbiosis with C++ also
makes it difficult for non-C++ programmers to understand the STL
in abstract, because it’s hard to see its essence through all the nuts
and bolts. Furthermore, STL has its own faults; for example, its
conceptual framework fails to properly capture a host of containers
and ways of iterating them.

S T L’s main merit was to reframe the entire question of what it
means to write a library of fundamental containers and algorithms,
and to redefine the process of writing one in wake of the answer. The
question STL asked was: “What’s the minimum an algorithm could
ever ask from the topology of the data it’s operating on?”
S u r p r i s i n g l y, most library implementers and even some algorithm
pundits were treating the topic without due rigor. STL’s angle put it
in stark contrast to a unifying interface view in which, for example,
i t ’s okay to unify indexed access in arrays and linked lists because the
topological aspect of perf o rming it can be written off as just an
implementation detail. STL revealed the demerit of such an appro a c h
because, for example, it’s disingenuous to implement as little as a lin-
ear search by using an unifying interface (unless you enjoy waiting
for quadratic algorithms to terminate). These are well-known tru t h s
to anyone serious in the least about algorithms, but somehow there
was a disconnect between understanding of algorithms and their
most general implementations in a programming language. Although
I was conversant with algorithm fundamentals, I can now say I had

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 14 July 2009 www.ddj.com

never really thought of what the pure, quintessential, Platonic linear
s e a rch is about until I first saw it in the STL 15 years ago.

T h a t ’s a roundabout way of saying that Phobos (places to look at
in the online documentation: std.algorithm and std.range) is a lot
about the STL. If you ask me, Phobos’ offering of algorithms is con-
siderably better than STL’s, and for two reasons. One, Phobos has the
obvious advantage of climbing on the shoulders of giants (not to
mention the toes of dwarfs). Two, it uses a superior language to its
f u l l e s t .

Ranges are Hot, Iterators are Not. P robably the most visible
d e p a rt u re from the STL is that there are no iterators in Phobos. The
iterator abstraction is replaced with a range abstraction that is just as
e fficient but offers vastly better encapsulation, verifiability, and
abstraction power. (If you think about it, none of an iterator’s prim-
itive operations are naturally checkable. That’s just bizarre.) Code
using ranges is as fast, safer, and terser than code using iterators —
no more for loop that’s too long to contain in one line. In fact, think-
ing and coding with ranges is so much terser, new idioms emerg e
that may be thinkable but are way too cumbersome to carry thro u g h
with iterators. For example, you might have thought of a chain f u n c-
tion that iterates two sequences one after another. Ve ry useful. But
chain with iterators takes four iterators and re t u rns two, which
makes it too ham-fisted to be of any use. In contrast, chain w i t h
ranges takes two ranges and re t u rns one. Furt h e rm o re, you can use
variadic arguments to have chain accept any number of ranges —
and all of a sudden, we can avail ourselves of a very useful function.
chain is actually implemented in the standard module std.range. As
an example, here ’s how you can iterate through three arr a y s :

int[] a, b, c;
...
foreach (e; chain(a, b, c))
{

... use e ...
}

Note that the arrays are not concatenated! chain leaves them in place
and only crawls them in sequence. This means that you might think
you could change elements in the original arrays by means of chain,
which is entirely true. Guess what this code does:

sort(chain(a, b, c));

Yo u ’ re right — the collective contents of the three arrays has been
s o rted and, without modifying the size of the arrays, the elements
have been efficiently arranged such that the smallest come in a a n d
so on. This is just a small example of the possibilities off e red by
ranges and range combinators in conjunction with algorithms.

Laziness to Infinity and Beyond. STL algorithms (and many
others) are eager: By the time they re t u rn, they’ve finished their job.
In contrast, Phobos uses lazy evaluation whenever it makes sense. By
doing so, Phobos acquires better composition capabilities and the
ability to operate with infinite ranges. For example, consider the pro-

totypical higher order function map (popular in functional pro g r a m-
ming circles, not to be confused with the homonym STL data stru c-
t u re) that applies a given function to each element in a range. If map
w e re insisting to be eager, there’d be two pro b l e m s .

• First, it would have to allocate new space to store the result (e.g.,
a list or an arr a y) .

• Second, it would have to consume the range in its entirety before
re t u rning control to the caller.

The first is an efficiency problem: Memory allocation could and
should be avoided in many cases (for example, the caller wants to
just look at each result of map in turn). The second is a problem of
principles: Eager map simply can’t deal with infinite ranges because
it would loop fore v e r.

T h a t ’s why Phobos defines map to re t u rn a lazy range — it incre-
mentally makes pro g ress as you consume elements from it. In con-
trast, the reduce function (in a way, a converse of map) is eager. Some
functions need both lazy and eager versions. For example, retro(r)
re t u rns a range that iterates the given range r b a c k w a rds, where a s
reverse(r) reverses r in place.

Co n c l u s i o n
T h e re would be more things to talk about even in an overv i e w, such
as unit tests, UTF strings, compile-time function evaluation (a sort of
D interpreter running during compilation of a D program), dynamic
c l o s u res, and many others. But with any luck, your curiosity has
been piqued. If you are looking for a system-level language without
the agonizing pain, an application language without the boredom, a
principled language without the attitude, or — most importantly —
a weighted combination thereof, then D may be for you.

If you feel like asking further questions, write the author, or bet-
ter yet, tune to the Usenet server news.digitalmars.com and post to
the digitalmars.d newsgroup — the hub of a vibrant community.

Ac kn ow l e d g m e nt s
Many thanks to Scott Meyers who pointed out the necessity of such
an article and suggested its title. I have gotten excellent reviews, feed-
back, and suggestions from Bill Baxter, Jason House, John “Eljay”
Love-Jensen, Denis Koroskin, leonardo maffi (sic), Petru Marg i n e a n ,
B a rtosz Milewski, Derek Parnell, Brad Roberts, Joel Salomon,
Benjamin Shro p s h i re, David Simcha, Florin Trofin, Cristian
Vlasceanu, and Walter Bright.

— Andrei Alexandrescu is the author of M o d e rn C++ Design and
The D Programming Language. He can be contacted at erdani.org.

Return to Table of Contents

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 15 July 2009 www.ddj.com

D r . D o b b ’ s D i g e s t

Debugging MySQL Sto r e d
P r o c e d u r e s

St o red Pro c e d u res are programs that exe-
cute within a database serv e r. They are
usually written in a database language such
as PL/SQL or ANSI SQL:2003 SQL/PSM.

(Granted, some database servers do support Java
s t o red pro c e d u res, but I don’t examine them here .)
T h e re are any number of books for learning to
write Stored Pro c e d u res — MySQL Store d
Procedure Programming, by Guy Harrison, and
Teach Yourself PL/SQL in 21 Days, by Jonathan
Gennick and Tom Luers, come to mind), but there
a re a handful of general reasons to write code in a
s t o red pro c e d u re :

• The logic being implemented might be data-
base logic and so a database language is closer
to the problem domain than a general-purpose
language like Java.

• A stored pro c e d u re can be significantly faster
than a Java program, which might make multi-
ple calls to the database.

• A stored pro c e d u re can be more secure.

R e g a rdless of the reasons for choosing to write a
s t o red pro c e d u re, the problem of how to debug one
remains. What if you could debug in both develop-
ment and production at little to no cost to the perf o rm-
ance of the Stored Pro c e d u res? Traditional debuggers
do not generally work with stored pro c e d u res, which
can leave a developer with a fast and broken pro c e d u re
executing within their database serv e r.

Ap p roaches Th at Do n’t Wo rk
Debug the SQL in your Stored Procedure. T h i s
a p p roach works on the assumption the main logic
of your Stored Pro c e d u res is the actual DDL and
DML within the pro c e d u re, in other words, the
queries, inserts, and so on. It assumes that the re s t
of the Stored Pro c e d u res is largely scaffolding to
s u p p o rt the database operations. In many cases this
is a valid assumption, after all if the Store d

P ro c e d u re wasn’t manipulating the database you
p robably wouldn’t have written it as a Store d
P ro c e d u re .

It goes without saying that re g a rdless of how
much non-SQL code you have in your Store d
P ro c e d u res, you need to validate the SQL itself,
especially since this level of testing can be re l a t i v e-
ly straightforw a rd. It can be as simple as start i n g
your database command-line tool (or query bro w s-
er for the GUI-inclined) and pasting in the guts of
your SQL statements to verify correctness. This of
course goes beyond simple syntactic corre c t n e s s ,
you must validate the semantic correctness as well.

In some cases, however, it’s not quite that sim-
ple, for a couple of classes of reasons. First, your
SQL code can (and usually will) rely on variables
and parameters that have been defined and/or
manipulated by the Stored Pro c e d u res. If you have
a select statement that stored its results into a vari-
able, and then a later SQL statement that uses that
variable, then your “paste the sql into the com-
mand line” approach of testing gets a bit hard e r.
You have to insert one or more statements, execute
them, perhaps creating temporary variables along
the way, and possibly modify the SQL you are actu-
ally trying to test. This happens by degree but you
can certainly reach a point where it’s clear that
y o u ’ re no longer testing the SQL you started with.

The second class of problem with this appro a c h
is that often the logic of the Stored Pro c e d u res lives
in the procedural code of the pro c e d u re and not in
the SQL statements themselves. SPs are commonly
used to instantiate business logic — and this is
usually embodied in the flow of the code thro u g h
the pro c e d u re or pro c e d u res. In this kind of situa-
tion simply bench testing the SQL statements does
not really test the pro c e d u re .

I n s e rt p r i n t statements in your Store d
Procedure. Another common approach is to sprin-
kle print statements throughout your pro c e d u re .

Being able to do low- or no-cost logging with Sto red Pro c e d u res is an ext remely useful te c h n i q u e

by Brian J. Tarbox

DR. DOBB’S DIGEST 16 July 2009 www.ddj.com

This has also been described as “Sherman set the way back
machine to 1980” when p r i n t statements were about the only
game in town. This approach can actually be very useful, espe-
cially during the early stages of development. Each database serv-
er tends to have its own way of doing p r i n t statements and each
has their own idiosyncrasies. For example, when using MySQL
c o n c a t () calls to build up a string to output, you have to guard
against null values, which turn your entire string to null. The fol-
lowing code can be danagero u s :

select someColumn from someTable into myVar where.
concat(‘better hope myVar is not null ‘, myVar);

If the where condition results in no rows being selected then
myVar might be null and the output of the concat will also be null.
I t ’s better to use concat_ws(“delimiter”, “text to store”) which handles
null values appro p r i a t e l y.

T h e re are two main drawbacks to using print statements in this
w a y. First, the print statements are live during production (unless
you guard each one with a conditional flag), meaning that you pay
the significant perf o rmance penalty for logging all the time.

Second and more serious is that if your stored pro c e d u res are
invoked from a Java application, the print statements don’t go any-
w h e re. The print statements can only be seen if you execute your
S t o red Pro c e d u res from the command line. What’s the point of log
messages that you can’t see?

Develop a rigorous set of return codes. In this approach, you
define a detailed set of re t u rn codes to cover all interesting cases. The
implied contract here is that a given specific re t u rn code tells you
e v e rything you need to know about the execution of the pro c e d u re .
T h e o retically this is a fine approach, but in the real production world
it tends to fall apart. A re t u rn code might tell you what finally went
w rong with a pro c e d u re but it’s just too easy to imagine needing to
know more about how the pro c e d u re got to that failure condition.

Put another way, if you get a support call from your most impor-
tant customer at 3:00 A M do you want to have to a grand total of one
re t u rn code to tell you what went wrong?

The Pro posed Ap p ro a c h
The current approach uses several of MySQL’s special features to
c reate a logging scheme that is both robust and practically fre e .
We create two tables: a temporary log table using the Memory
engine and a permanent log table using the MyISAM engine.
MySQL supports several storage engines that act as handlers for
d i ff e rent table types. MySQL storage engines include both those
that handle transaction-safe tables and those that handle non-
transaction-safe tables. The memory engine perf o rms all opera-
tions in memory and never writes to disk. As such it is very fast,
though transient. The MyISAM engine is a nontransactional
engine; transactions can include both transactional and non-
transactional tables (the nontransactional table simply ignore the
transactional commands).

Log messages are inserted into the tmplog table, which is a prac-
tically free operation since that table lives in memory. The extre m e l y

low cost of this operation means that a developer can be verbose in
their use of logging. Rather than agonize over whether to log some-
thing or not, you can simply log at will.

In the (hopefully) usual case where nothing goes wrong, the
S t o red Pro c e d u res does not have to do anything. Te m p o r a ry tables
only exist for the duration of a connection. In the typical J2EE usage
p a t t e rn, an external request arrives at the system, a connection is
retrieved from the connection pool, and is used and then re t u rned to
the pool. When the connection is re t u rned to the pool the temporary
table is effectively dropped — the code does not have to do anything
to remove the log messages that were inserted during the successful
invocation of the Stored Pro c e d u res. In this way, the system suff e r s
little to no perf o rmance cost for a successful operation.

When the Stored Pro c e d u re detects a failure condition, it does an
I N S E RT SELECT from the temporary memory table into the perm a-
nent MyISAM table. Thus it pre s e rves all log messages that were writ-
ten to the memory table into the MyISAM table. In this way the sys-
tem re c o rds all of the information it needs but only in the cases where
it needs it.

Log4J users can imagine being able to run your production sys-
tem at DEBUG level for all the failure cases but only pay the over-
head of running at WARN level for all of the successful cases — with-
out having to know which cases were which ahead of time.

An important thing to note is the choice of the MyISAM engine
for the permanent log table. Remember that rows are typically only
written to that table when things are going badly. That would usual-
ly result in the current transaction being rolled back — except that
we really want the inserts into the log table to succeed! The MyISAM
engine is not a transactional engine. This means that even if a trans-
action is rolled back, the inserts into the log table are pre s e rved —
which is exactly the desired behavior.

The Cod e
T h e re are four SPs defined in the debugLogging.sql package. Two SPs
help setup the tables to be used, one perf o rms temporary logging,
and the last copies messages to the permanent table.

This first pro c e d u re creates both the temporary and perm a n a n t
tables. Note the use of the engine specifier to distinguish the two
tables. The temporary log contains a single interesting column,
which was called msg. The permanent table adds an automatic time-
stamp and a thingID. The assumption is that the logs are written dur-
ing an operation that creates, destroys, or modifies some object, and
that that object has a unique identifier. In the video-on-demand
space that I work in, this can be the identifier of a movie being
s t reamed to a customer’s set-top box.

Create Procedure setupLogging()
B E G I N

create temporary table if not exists tmplog (msg varchar(512))
engine = memory;

create table if not exists log (ts timestamp default
current_timestamp, thingID bigint,

msg varchar(512)) engine = myisam;
E N D ;

This next procedure creates just the temporary log table. We’ve

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 17 July 2009 www.ddj.com

seen cases in the field where the temporary table does not exist when we need to insert into it. In that case, we have a procedure to recre-
ate the table.

Create Procedure setupTmpLog()
BEGIN

create temporary table if not exists tmplog
(msg varchar(512)) engine = memory;

END;

The next procedure is the one that is called the most and performs the actual logging. A message parameter is written to the tempo-
rary table. There is a continue handler that creates the temporary table if it does not already exist.

Create Procedure doLog(in logMsg varchar(512))
BEGIN
Declare continue handler for 1146 — Table not found
BEGIN

call setupTmpLog();
insert into tmplog values(‘resetup tmp table ‘);
insert into tmplog values(logMsg);

END;

insert into tmplog values(logMsg);
END;

The last procedure is the one to call when an error is detected within the user’s SP and all of the logging needed to be saved for later
analysis. This procedure takes a final message, presumably one saying what the final error condition is. It then inserts all of the rows in
the temporary table into the permanent table, setting the timestamp along the way. To handle the situation where the user of the logging
system chooses to continue after an error, and then runs into another error, we make sure to delete all rows in the temporary table after
inserting them into the permenant table.

Create Procedure saveAndLog(in thingId int, in lastMsg varchar(512))
BEGIN

call dolog(lastMsg);
insert into log(thingId, msg) (select thingId, msg from tmplog);
truncate table tmplog;

END;

Sample Use
The following code sample shows a possible usage of the logging procedures. The example is based on the notion of a Stored Procedure
that would be called from within another stored procedure. The mission of the inner procedure is to parse a comma-separated list of val-
ues and insert each value into a cache table for use in a query by the calling procedure. It illustrates the value of being able to log not just
the final results but the steps followed along the way since it might be very valuable to know which iteration of the loop contained the
failure.

Create Procedure parseAndStoreList(in thingId int,
in i_list varchar (128),
out returnCode smallInt)

BEGIN
DECLARE v_loopIndex default 0;
DECLARE Exit Handler for SQLEXCEPTION
BEGIN

call saveAndLog(thingId, ‘got exception parsing list ‘); —
save the logs if things go badly

set returnCode = -1;
END;

call dolog(concat_ws(‘got list: ‘, i_list)); — say we got to the start
pase_loop: LOOP

set v_loopIndex = v_loopIndex + 1;
call dolog(concat_wc(‘, ‘, ‘at loop iteration ‘, v_loopIndex);
— say we got to nth iteration — actually do the parsing, or whatever

END LOOP parse_loop;
set returnCode = 0;

END;

Conclusion
The ability to do low- or no-cost logging with Stored Procedures has proven to be an extremely useful technique. It lets you instru m e n t
your code with extensive information, which is available at production runtime, but only when needed.

—Brian Tarbox is a Principal Staff Engineer in Motorola’s Home and Network Mobility group.

Return to Table of Contents

D r . D o b b ’ s D i g e s t

DR. DOBB’S DIGEST 18 July 2009 www.ddj.com

D r . D o b b ’ s D i g e s t

Experiences with Ka n b a n

In 2007, the company I work for purchased
the rights to a medical practice management
and billing system from a third-party soft-
ware development firm. Technically, the soft-

ware is an n-tiered product written in .NET that
can be fully hosted at a client site or on our
servers. A project was launched to rebrand the
product, interface the product into existing busi-
ness lines, test and debug the product, and add
market differentiators.

Because the product was new, the work was
highly exploratory with rapidly evolving re q u i re-
ments that could only come to light by learning the
p roduct. We decided to use Agile development
s u p p o rted by Scrum and elements of Extre m e
P rogramming. The entire team went through a
t remendous learning curve in both learning Agile
development and the product itself. Wi t h o u t
A g i l e ’s benefit of small iterations and the chance to
adjust our pro g ress, the project most likely would
have had significant difficulties. After 18 months,
the project reached a high level of agile maturity,
even incorporating numerous lean principles.

Our Scrum process was solid: Two-week sprints
with a demo at the end, seven people consistently
on the sprint teams, burndown charts, sprint plan-
ning for each sprint with whole team commitment,
estimation by story points, velocity measures, and
a story point estimation session with the entire
team one week before each sprint.

The Pro b l e m
At first, the business side of the company was not
accustomed to the responsiveness of Agile develop-
ment. The norm was a formal waterfall approach to
s o f t w a re development that could re q u i re several
q u a rters to develop a software release. But it didn’t
take long for the business to develop such a hunger

for change that re q u i rements (user stories) were
barely stable enough for a two-week sprint. It was
not unusual for the product owner group to give
top priority to stories that were not well thought
out, forcing development to cobble together a
sprint full of unknowns. Changes also worked
their way directly into the sprints — in mid-sprint
new stories were swapped with stories that hadn’t
been started. It seemed as though a two-week
sprint was too long as the business side of the
p roject swung from rigid change control to
demanding immediate responsiveness. Something
had to be done.

Our So l u t i o n
The management team brainstormed around ways
to make Scrum as flexible as possible on intake. We
c o n s i d e red ways to shorten the sprint length, the
estimation sessions, sprint planning, and sprint
demo length even furt h e r, all with the goal of keep-
ing people working on stories that were of highest
value to our product owner and increasing pro d u c-
t i v i t y. (See the sidebar for ideas on Scru m .)

Wh e re Can Scrum
Be Leaned Out?
Our thought process was to take lean principles
f rom Mary Poppendieck’s Implementing Lean
Software Development: From Concept to Cash a n d
apply them to the meta processes of Scrum, posing
questions such as:

• Why do we have two-week sprints? Isn’t that
an artificial and there f o re wasteful limit that
batches up work?

• Why do we have seven people on the team?
Can we have fewer (or more) team members?

• Why do we demo at the end of a sprint and not
when the story is complete? Doesn’t this sound
like batching work?

So m ew h e re between the struct u re affo rded by Scrum and the fluidity of Ext reme Pro g r a m m i n g, Kanban is a
ve ry lean Agile development te c h n i q u e

by Charles Suscheck

DR. DOBB’S DIGEST 19 July 2009 www.ddj.com

• Why do we estimate story points in an estimation session when
some of those stories may not be played because of re p r i o r i t i z a-
t i o n ?

• S h o u l d n ’t estimates be done ONLY by those working on a story ?
Having people that will not work on the story estimate seems
like a handoff situation.

• Why do we work on several stories during a sprint? Can we
work on just one and reduce inventories of work?

Our conclusion was that the basics of software Kanban, as
described by Corey Ladas (leansoftware e n g i n e e r i n g . c o m / k s s e /
s c rum-ban/), would fit the bill.

How Kanban Wo rked for Us
While Kanban means “visual card” or “board”, using Kanban in soft-
w a re development is much more than a card display board. It
involves reducing waste and emphasizing the ability to change, part-
ly through limiting availability of inventory (the story cards of
Kanban). In our process, the work is divided into a series of stories.
The stories then end up on a series of lists: the Most Wanted list, the
P re - ready list, the Kanban board (Ready, In Process, and Done). The
only status the Kanban team saw were the Ready, In Process, and
Done lists. Figure 1 shows the story pro g re s s i o n .

The product owner group creates rough cut stories and sequences
them in a Most Wanted list. Analysts groom the top stories in the list
and, once they are detailed, put them in the Pre - ready list in a tool called
“Jira.” The scrum master moves stories from the Pre - ready list to the
Ready list on the Kanban board only when the development team pulls
a story from the Ready list. The number of stories in the Ready list is
kept small — four to eight — for two reasons: Only the highest priori-
ty stories are worked, and stories are flexible until the Kanban team
pulls the story. We also limit work by maintaining a strict rule that a
teamlet (one or two people) can only work on one story at a time unless
a story is blocked; then, and only then, can a second story be pulled in.

While the analysis work may seem like a mini-waterfall, it is cer-
tainly not. The analysts learn the details of the story and collect infor-

mation for the development group. When a story is pulled into the
Kanban, the analyst is a first-class member of the teamlet, just like on
a sprint team.

When a teamlet picks a story, the story is estimated in ideal
hours. If the story proves to be more than a week’s worth of work,
we meet with the analysts and break the story into smaller seg-
ments, if at all possible.

As stories are completed, the teamlet demonstrates them to the
analysts and product owner group. A short re t rospective follows with
the teamlet, very much like Scrum, but at a story level rather than
sprint level.

F i g u re 2 is our Kanban board. The In Process list is further sub-
divided into Started (stories that are being analyzed and digested by
the team), Code/Test (stories that are being coded via test driven
development), Awaiting Test (stories that are awaiting acceptance
testing), and Pending Release (stories that are acceptance tested but
a re awaiting a patch build). Each story is written on a green card with
an orange tag indicating patch number, and a blue tag indicating who
is working on the story.

E v e ry day we have standup meetings where the commitments for
the day are written on the purple tags next to the stories. There is
also an issue list at the bottom of the board for technical debt or other
items that need to be addressed by either the teams or the scru m
m a s t e r. A typical story will pro g ress through each list on the Kanban
b o a rd in just a few days.

As you can see in Figure 2, acceptance testing and patch builds
a re currently batched. This is due to staffing restrictions and other
c i rcumstances beyond our control. While this situation is not per-
fect, our Kanban board makes the batching under Awaiting Test and
Pending Release highly visible.

Table 1 shows a number of points where our Scrum practices
w e re modified to work with Kanban. We continue to use a number
of Scrum practices where it adds value such as daily standups, story
c a rds, and information radiators.

D r . D o b b ’ s D i g e s t

Figure 1 Figure 2

DR. DOBB’S DIGEST 20 July 2009 www.ddj.com

Wh at We Lost and Ga i n e d
Kanban has a number of clear advantages.
In part i c u l a r, there is a large degree of flex-
ibility in story prioritization. As stories are
not cast in stone until they are pulled into
the Kanban, there is very little waste
developing stories that are n ’t played and
significant flexibility in reprioritizing the
backlog. Stories are typically a day’s wort h
of work, so emergency fixes can be pulled
in almost immediately without disru p t i n g
the work in pro g ress. Stories are
autonomous units of work so there is no
need to group stories based on a sprint
goal, or release goal for that matter —
t h e re is less emphasis (and time spent) on
planning sessions.

Kanban is highly productive. The
amount of work completed in just a few
months rivaled that of six months of Scru m
because there is little wasted time. A number
of things contribute to the pro d u c t i v i t y. I
found that team members were not distract-
ed with the end of the sprint push like they
w e re in Scrum. Because high-priority stories
can be pulled from the backlog without wait-
ing until the end of a two-week sprint, there
is less temptation for management to change
priorities in the middle of work, resulting in

reduced context switching for the develop-
ers. The developers have something they can
p roduce quickly, leading to a good sense of
accomplishment and a chance to re a c t
quickly to lessons learned from a story.
A l t o g e t h e r, the team and the business are
pleased with the application of Kanban.

H o w e v e r, Kanban does not come with-
out a number of challenges. With teamlets
f o rming and re f o rming on a story by story
basis, there is a danger of team cohesion
being lost. Fort u n a t e l y, we did not experi-
ence cohesion problems because most team
members have had together for a long time.
Kanban simply became a new way to pull
work. Several Scrum measurements are lost.
P redictability by sprint is lost (no sprint)
and velocity is no longer measurable. The
only metric is cycle time though the Kanban
b o a rd — which only works if stories are all
the same size. Also, it is hard to tell when a
c e rtain story in the backlog will be complet-
ed because new stories can shuffle the prior-
ity fre q u e n t l y.

Conclusion and
R e co m m e n d at i o n s
Kanban seems like a logical next evolution-
a ry step to Scrum, but only in the right cir-

cumstances — projects where the work
d o e s n ’t need to be completed in groups of
stories. Kanban has a number of advantages
such as allowing extensive flexibility of the
backlog, more flexibility in staffing, and the
ability to manage work in the face of uncer-
t a i n t y.

Kanban is successful in our environ-
ment, although it should be applied care-
fully. Kanban has increased productivity
and given the business a chance to react
quickly to lessons learned and, because of
our team experience, cohesion has not been
a problem.

I can see difficulties with using Kanban
in a product development project; a pure
S c rum-based approach may be better. The
benefits of Scrum, such as iteration 0, sprint
planning, release planning, and team pro t e c-
tion are lost with Kanban. Collaborative
p roduct design and technical design are part
of the sprint planning that is not part of
Kanban. Even the teamlet concept, rather
than Scru m ’s whole team eff o rt, can lead to a
a certain level of lost collaborative design. If
you decide to use Kanban for product devel-
opment, you must have strong leadership
f rom a product owner.

Kanban can be effective, I know fro m
experience, but it should not be applied
without understanding the trade-offs. Keep
up with the literature on the Internet; while
i t ’s a new idea, there is a wealth of inform a-
tion already available.

—Dr. Charles Suscheck is a consultant
specializing in software process optimization.
He specializes in software development
methodologies and project management and
has over 20 years of professional experience
in information technology. Dr. Suscheck has
held positions of Process Architect, Director of
R e s e a rch, Principle Consultant, and
Professional Trainer at some of the most rec-
ognized companies in America. He has spo-
ken at national and international conferences
such as OOPSLA, ECOOP, and Borcon on top-
ics related to project management.

Return to Table of Contents

D r . D o b b ’ s D i g e s t

Table 1: Modifications of Scrum to move to Kanban

DR. DOBB’S DIGEST 21 July 2009 www.ddj.com

D r . D o b b ’ s D i g e s t

M o n i toring Remote Tasks in AJAX

W hen users start a potentially
lengthy operation, the user inter-
face should be updated to re f l e c t
that work is in pro g ress and that

results may not be available for a while.
Implementing this pattern is relatively easy in
Windows applications, but not in web applications.

In web applications, displaying a static text
such as "Please, wait" just before the operation
begins is easy, but what if you want to display the
p e rcentage of work done?

In web applications, lengthy tasks occur on the
s e rv e r. No server environment provides facilities to
push state information to the client bro w s e r. At the
same time, there ’s no easy way either for a client to
grab status information and update a pro g ress bar.

As a result, it is up to the developer devising and
implementing a solution. The Pro g ress Indicator
p a t t e rn offers guidance on how to stru c t u re the
JavaScript client and the server application so that
they can share information about server pro g re s s
and re p o rt that information timely to the user.

The idea behind the pattern is that you design
the lengthy task to expose some information about
its pro g ress. In other words, the code that imple-
ments the task doesn’t include only functional
steps. Instead, functional steps are intert w i n e d
with calls to an API that exposes pro g ress inform a-
tion. The pattern also suggests you employ a sec-
ond component that from the client monitors any
exposed information by essentially polling the
s e rv e r.

The pro g ress API is made of two distinct set of
functions — one for the client and one for the serv-
e r. The server API offers a class through which the
task can save its pro g ress. The class gets status
i n f o rmation and saved it somewhere — be it a data-
base table, a disk file, or perhaps an in-memory
b u ffer such as the ASP.NET Cache. The server API
also must expose an HTTP endpoint for the client

monitor to poll to know about the status of the
ongoing task.

In ASP. N E T, the task can take the following
f o rm :

void ExecuteTask(int taskID, /* params */ ...)
{

ProgressMonitor progMonitor =
new ProgressMonitor();

progMonitor.SetStatus(taskID, “5%”);
DoFirstStep(...);
:
progMonitor.SetStatus(taskID, “100%”);
DoFinalStep(...);

}

The P ro g re s s M o n i t o r class writes to a known
location any information it receives from the task.
On the serv e r, you also need a service that can be
called from JavaScript. The purpose of this service is
reading the status of the task and re t u rn that to the
client for UI updates. The simplest way to do this is
c reating a web service that uses the P ro g re s s M o n i t o r
class to read what a given task has saved.

For the whole machinery to work, the task must
be uniquely identified with an ID. The ID must be
passed to the task when it is first started. Hence, the
task ID must be generated on the client. The
J a v a S c r i p t ’s M a t h . r a n d o m function is the tool to use.

Right after starting the remote task, the client
activates a monitoring channel which makes peri-
odical calls to previously created Web service. In
this way, the user interface knows in real time
w h a t ’s going on in the serv e r. A piece of user inter-
face is then updated to reflect the inform a t i o n
i m p o rted from the serv e r. The layout of this piece
of user interface can be defined at will. It can be a
p ro g ress bar (that is, an HTML table) or a plain
label. It is up to you how you re p resent the infor-
mation; the trickiest part is bringing that the right
s e rver information down to the client.

— Dino is the author of P rogramming Micro s o f t
A S P.NET 2.0 (Microsoft Press, 2005).

Return to Table of Contents

The Pro g ress Indicator pat tern lets the JavaScript client and the server application share info r m at i o n

by Dino Esposito

DR. DOBB’S DIGEST 22 July 2009 www.ddj.com

Of Inte r e s t

Intel has announced updates to a number of its compilers, libraries,

and cluster tools. In general, the upgrades focus on parallel pro g r a m-

ming support and optimizations. The tools that are part of the

upgrades and the new version numbers include: Intel Compilers

11.1 (F o rtran and C/C++, for Windows, Linux, Mac OS X); Intel

Integrated Performance Primitives (IPP) 6.1 (for Windows, Linux,

Mac OS X); Intel Math Kernel Library (MKL) 10.2 (for Wi n d o w s ,

Linux, Mac OS X); and Intel Cluster Toolkit, Compiler Edition

3.2.1 (for Windows, Linux). Support is included for the new AV X

and AES instructions. AVX, short for “Advanced Vector Extensions,”

is a 256-bit instruction set extension to SSE and is designed for appli-

cations that are floating-point intensive. AVX can improve perf o rm-

ance on existing and new applications that lend themselves to larg e-

ly vectorizable data sets. Wider vector data sets can process up to

twice the throughput of 128-bit data sets. The AES (short for

“Advanced Encryption Standard”) instructions set is the U.S.

G o v e rnment standard for symmetric encryption. It includes four

i n s t ructions to facilitate high-perf o rmance AES encryption and

d e c ryption, and two instructions support the AES key expansion

p ro c e d u re. http://www.intel.com

ComponentOne has released X a p O p t i m i z e r, a standalone utility

that reduces the size of XAP files by removing unused classes and

XAML resources. This reduces the size of Silverlight RIA applica-

tions, thereby improving download time and consumption of net-

work re s o u rces, as well as securing the code. According to

ComponentOne, the size of a Silverlight application can be

reduced by up to 70% without any loss in functionality.

h t t p : / / w w w. c o m p o n e n t o n e . c o m

Wind River has announced the availability of its Wind River

Hypervisor, a high-perf o rmance Type-1 hypervisor that support s

v i rtualization on single and multicore processors. Wind River

H y p e rvisor provides integration with Wind River’s VxWorks and

Wind River Linux operating systems and supports other operating

systems. The Wind River Workbench development tools suite has

been extended to support developing software that runs on the Wi n d

River Hyperv i s o r. http://www.windriver.com

Blueprint has announced Blueprint Requirements Center 2010, a tool

that provides a traceable and integrated platform that empowers

re q u i rements authors to define re q u i rements assets including function-

al and nonfunctional re q u i rements, business processes, use-cases, user

i n t e rfaces, glossaries, data, and rules. h t t p : / / w w w. b l u e p r i n t s y s . c o m

The Portland Group has announced an agreement with NVIDIA

under which the two companies plan to develop new Fortran lan-

guage support for CUDA GPUs. The pair released the Fortran lan-

guage specification for CUDA GPUs at the International Conference

on Supercomputing in Hamburg, Germ a n y. The CUDA Fortran com-

piler will be added to a production release of the PGI Fortran com-

pilers scheduled for availability in November 2009.

http://www.pgroup.com and http://www.nvidia.com

Return to Table of Contents

D r . D o b b ’ s D i g e s t Of Inte re s t[]

DR. DOBB’S DIGEST 23 July 2009 www.ddj.com

Q & A : Tw i t ter And Cl o u d s

Ga ry McGraw is CTO of Cigital, a soft-
w a re security and quality consulting
f i rm. He recently spoke with Dr. Dobb’s
e d i t o r-in-chief Jonathan Erickson

about security in the age of Twitter and cloud com-
p u t i n g .

Dr. Dobb’s: Doe s Twitter pose security-re l a t e d
p ro b l e m s ?
McGraw: Twitter presents a perfect vector for mali-
cious code and phishing, especially since most
users use bit.ly or tinyurl to fit clickable URLs into
their messages. Twitter allows dingbats to cash in
their last remaining privacy chit with a coolness
factor that often overrides common sense.

In fact, the last point applies equally well to
Facebook and MySpace. The big problem is many
users of these systems seem to have little under-
standing that postings, tweets, tequila drinking
photos, and everything they post in the Web 2.0
world is public. Before Tweeting whatever occurs
to you, think about whether you would want your
mom to read it. Also note that the Tweet will be
a round basically forever! Will your future potential
employers search Twitter? Why wouldn’t they?

Dr. Dobb’s: And virt u a l i z a t i o n ?
McGraw: Some easy questions turn out to open
various cans of worms. How can I tell if I am ru n-
ning on a VM? Can I figure out what chip I’m actu-
ally on? These questions get particularly hairy
when it comes to mobile computing. There is an
i m p o rtant class of problems in security called
“interposition” attacks. Vi rtualization opens up all
new places to get these classic old dinosaur attacks
all gussied up for the future .

Dr. Dobb’s: Does security have a role in cloud com-
p u t i n g ?

McGraw: T h e re are many diff e rent types of clouds
— public cloud computing is a world away fro m
private cloud computing. Who owns what cycles
and what runs where? Equally important for secu-
rity are infrastru c t u re as service clouds versus soft-
w a re apps as service clouds. Most eff o rt seems to be
based around securing data, both in transit and at
rest. The diff e rent cloud models imply diff e re n t
application arc h i t e c t u res, and diff e rent arc h i t e c-
t u res (as we all know) imply diff e rent security
s o l u t i o n s .

Dr. Dobb’s: Distributed systems are the norm these
days. Has security kept pace with technology
implementation in this re g a rd ?
McGraw: T h e re are some real challenges with
securing massively distributed systems. If you want
a good example of what we can expect when a
majority of apps are distributed, just take a look at
MMORPGs (or “massively multiplayer online ro l e
playing games”). Greg Hoglund and I wrote a book
called Exploiting Online Games that is really a case
study for the future of software security.

P robably the most important issue developers
and architects need to understand when it comes to
distributed systems is the notion of trust bound-
aries. As an example, it is a really bad idea to
include code running on a user’s PC or phone or
whatever (that is, client code) on the “trusted” side
of the trust boundary. Instead, think about that
code being completely and utterly exposed,
re w i red, hacked, etc. In Exploiting Online Games,
we do plenty of work disassembling the client code
for World of Warcraft with amusing but scary secu-
rity re s u l t s .

D o n ’t disre g a rd trust boundaries.

Return to Table of Contents

Tw i t ter presents a perfe ct ve ctor for malicious code and phishing

by Jonathan Erickson

D r . D o b b ’ s D i g e s t Co nve r s at i o n s[]

DR. DOBB’S DIGEST 24 July 2009 www.ddj.com

Land the Tech Job You Love

It goes without saying that times are tough and finding the per-
fect job is even tougher. Chicago-based technologist and
author Andy Lester offers no-nonsense job search and inter-
view advice in his recent Pragmatic Bookshelf title, Land the

Tech Job You Love. Read on to find out if the tips he shares are wort h
the book’s cover price.

Unlike the pile of job search and interview tip books on the mar-
ket, Land the Tech Job You Love is a book exclusively optimized for
devoted IT professionals looking to improve their chances of land-
ing the ideal job (or, at the very least, “a” job) in the highly compet-
itive and job-constrained technology sector. Keenly written espe-
cially for the highly intelligent yet often intro v e rted technical cro w d ,
Andy Lester has distilled a number of excellent reminders for re a d-
ers seeking out what jobs they desire and what they qualify for, as
well as customizing their resume for the targeted employer, ace’ing
the interview and negotiating the job off e r.

Having been on both sides of the hiring fence, I can attest to
many of Andy’s recommendations for interviewees. I can also re l a t e
to some of the horror stories he relates in the book, since I have
i n t e rviewed some of the very character types Andy uses as worst-
case scenario examples.

The book itself can be read in an hour or two, but putting into
practice all the suggestions will take days or even weeks to re f i n e .
Like most Pragmatic Bookshelf titles, this book takes a very prag-
matic approach to the resume and interview process. Stro n g l y
opinionated dos and don’ts are punctuated with real world exam-

ples and continued emphasis on what it will take to honestly
i m p ress hiring managers and interviewers. I appreciated Andy’s
honest, take-it-or-leave-it approach to getting serious about the job
s e a rch, coupled with the real-world realities of the current econom-
ic and job availability climate. The book is devoid of rah-rah feel
good pep talks. Instead, the author tackles the reality of the curre n t
tech job market head-on, dealing with tough interview questions,
avoiding clichés and generally telling it like it is — very re f re s h i n g .

While most tech managers and executives will probably not dis-
cover any new insights shared in the book, Land the Tech Job You
Love supplies an excellent distillation of all the ‘best of’ job searc h
tips amassed over a successful IT pro f e s s i o n a l ’s care e r. For those
seeking a change in their current tech employment situation, this
book is definitely worth its asking cover price. Given the author’s
welcome knack for hard truths combined with real-world examples,
I’d like to see him follow up this book with a sequel, possibly titled
Keep the Tech Job You Love to carry forw a rd the successful practices
of people who make themselves invaluable participants to their
o rg a n i z a t i o n s .

Return to Table of Contents

Reviewed by Mike Riley

D r . D o b b ’ s D i g e s t Book Rev i ew[]

Land the Tech Job You Love

by Andy Lester

The Pragmatic Bookshel f

280 pages; $23.95

DR. DOBB’S DIGEST 25 July 2009 www.ddj.com

The Power of “In Progress”

Do n ’t let a long-running operation take
hostages. When some work that takes
a long time to complete holds exclu-
sive access to one or more popular

s h a red re s o u rces, such as a thread or a mutex that
c o n t rols access to some popular shared data, it can
block other work that needs the same re s o u rc e .
F o rcing that other work to wait its turn hurts both
t h roughput and re s p o n s i v e n e s s .

To solve this problem, a key general strategy is to
“design out” such long-running operations by split-
ting them up in to shorter operations that can be ru n
a piece at a time. Last month [1], we considered the
special case when the hostage is a thread, and we
want to prevent one long operation from comman-
deering the thread (and its associated data) for a
long time all at once. Two techniques that accom-
plish the strategy of splitting up the work are contin-
uations and reentrancy; both let us perf o rm the long
work a chunk at a time, and in between those pieces
our thread can interleave other waiting work to stay
re s p o n s i v e .

U n f o rt u n a t e l y, there ’s a downside: We also saw
that both techniques re q u i re some extra care
because the interleaved work can have side eff e c t s
on the state the long operation is using, and we
needed to make sure any interleaved work would-
n ’t cause trouble for the next chunk of the longer
operation already in pro g ress. That can be hard to
re m e m b e r, and sometimes downright complicated
and messy.

Is there another, more general way?

Let It “ Pa rt l y” Be : Em b ra ce
I n c re m e ntal Ch a n g e
L e t ’s look at the question from another angle, sug-
gested by my colleague Te rry Crowley: Instead of
viewing partially-updated state with in-pro g re s s

work as an ‘unfortunate’ special case to re m e m b e r
and recover from, what if we simply embrace it as
the normal case?

The idea is to treat the state of the shared data
as stable, long-lived and valid even while there is
some work pending. That is, the “work pending”
that results from splitting long operations into
smaller pieces isn’t tacked on later via a black-box
continuation object or encoded in a stack frame on
a reentrant call; rather, it’s promoted to a full-
fledged, first-class, designed-in-up-front part of the
data stru c t u re itself.

Looking at the problem this way has several
benefits. Perhaps the most important one is cor-
rectness: We ’ re making it clear that each “chunk”
of processing is starting fresh and not relying on
system state being unchanged since a previous call.
In [1], we had to remember not to make that
implicit assumption when we resumed a continua-
tion or re t u rned from a yield; this way, were are
explicit about the “data plus work pending” state
as the normal and expected state of the system.

This approach also enables several perf o rm a n c e
and concurrency benefits, including that we have a
range of options for when and how to do the pend-
ing work. We’ll look at those in more detail once
we’ve seen a few examples, but for now note that
they include that we can choose to do the pending
w o r k :

• with finer granularity, so that we hold exclu-
sion (e.g., locks) for shorter times as we do
smaller chunks of the work;

• a s y n c h ro n o u s l y, so that it can be more easily
p e rf o rmed by another helper thread; and/or

• l a z i l y, instead of all up fro n t .

Note the “and/or”—one or more of these
may apply in any given situation. Some of these

Hold no hostages: K n ow when to design for “p a rtially update d” as the normal state

By Herb Sutter

D r . D o b b ’ s D i g e s t Ef fe ct i ve Co n c u r re n c y[]

DR. DOBB’S DIGEST 26 July 2009 www.ddj.com

techniques, notably enabling lazy evalua-
tion, are well-known optimizations for
o rd i n a ry perf o rmance, but they also
d i rectly help with concurrency and
re s p o n s i v e n e s s .

The rest of this article will consider two
mostly orthogonal issues: First, we’ll consid-
er diff e rent ways to re p resent the pending
work in the data stru c t u re, with re a l - w o r l d
examples. Then, we’ll separately consider
what major options we have for actually exe-
cuting the work, how to use them singly or
in combination, and what their tradeoffs are
and where each one applies.

Option 1:
Data + Pending Ch a n g e s
P e rhaps the simplest option is to re p re s e n t
the data along with a (possibly empty)
queue of pending updates or other work to
be perf o rmed against it, as illustrated in
F i g u re 1. This configuration is the most sim-
ilar to the continuation style in [1].
H o w e v e r, unlike that style where we explic-
itly created a continuation object and
appended it to a queue that was logically
separate from the data, here the pending
work queue is an intentional first-class part
of the data stru c t u re integrated into its
design and operation.

One potential drawback to Option 1 is
that it can be less flexible if we may need to
i n t e rrupt and re s t a rt an operation we’ve split

into pieces and enqueued. For example, if
recalculations are affected by further user
input, and multiple chunks of the re c a l c u l a-
tion work are already in the queue, we may
need to traverse the queue to remove specif-
ic work items. One way to minimize this
c o n c e rn is to only enqueue one “next step”
at a time for each long-running operation,
and have the end of each chunk of work
enqueue its own continuation (see sample
code in [1]).

Option 2: Data + Coo ki e s
F i g u re 2a shows a diff e rent way to encode
pending work: Attach reminders (or “cook-
ies”) that go with the data, each of which
remembers the current state of a given oper-
ation in pro g re s s .

Consider the example of a word pro c e s s-
ing application, as suggested in Figure 2a:
Pagination, or formatting the content of a
document as a series of pages for display, is
one of dozens of operations that can take far
longer than would be acceptable to perf o rm
s y n c h ronously; there ’s no way we want to
make the user wait that long while typing. In
M i c rosoft Wo rd, the internal data stru c t u re
that re p resents a document makes it well-
defined to have a document that is only par-
tially paginated, specifically so Wo rd can
b reak the pagination work up into pieces. By
executing the operation a piece at a time, it
can stay responsive to any pending user mes-
sages and provide intermediate feedback
b e f o re continuing on to the next chunk.

At any given time, we only need to
immediately and synchronously perf o rm

pagination up to the currently displayed
page, and then only if the program is in a
mode that displays page breaks. Later pages
in the document can be paginated lazily dur-
ing idle time, on a background thread, or
using some other strategy (see “When and
How To Do the Work” later in this art i c l e) .
H o w e v e r, if the user jumps ahead to a later
page, pagination must be completed to at
least that page, and any that is not yet per-
f o rmed must be done immediately.

This approach can be more flexible than
Option 1 in the case when we may need to
i n t e rrupt and re s t a rt the operation, such as if
pagination is impacted by some further user
input such as inserting a paragraph. Instead
of walking a work queue, we update the
(single) state of pagination for this docu-
ment; in this case, it’s probably sufficient to
just resume pagination from a specific earli-
er point where the new paragraph was
i n s e rt e d .

F i g u re 2b shows another example of how
this technique can be used in a typical mod-
e rn word pro c e s s o r, in this case OpenOff i c e
Wr i t e r. Like many word processors, Wr i t e r
o ffers a synchronous “spell check my docu-
ment now” function that pops up a dialog
and lets you step through all the potential
spelling mistakes in your document. But it
also offers something even more helpful: “re d
squigglies,” or immediate visual feedback as
you type to highlight words that may be mis-
spelled. In Figure 2b, the document contains
what looks more like C++ code than English
w o rds, and so a number of words get the re d -
squiggly I-can’t - f i n d - t h a t - i n - m y - d i c t i o n a ry

D r . D o b b ’ s D i g e s t

Figure 1: Deferring work via “data +

pending changes.”

Figure 2a: Deferring work via “data +

cookies.”

Figure 2b: Red squigglies in a word

processor—without “spell check document”

(courtesy OpenOffice.org Writer).

DR. DOBB’S DIGEST 27 July 2009 www.ddj.com

t reatment. (Aside: Yes, the typo is intention-
al. See Figure 3b.)

Consider: Would you add red squigglies
s y n c h ronously as the user types, or would
you do it asynchronously? Well, if all the
user has done is type a new word, it may be
okay to do it synchronously for that word
because each dictionary lookup is pro b a b l y
fast. But what about when the user pastes
several paragraphs at once? Or loads a larg e
document for the first time? With a lot of
work left to do, we may well want to do the
spell checking in the background and let the
red squigglies appear asynchro n o u s l y. We
can optimize this technique further in a
number of ways, such as giving priority to
checking first the visible part of the docu-
ment, but in general we can get better over-
all responsiveness by doing all spell check-
ing in the background by default to build up
a list of spelling errors in the document, so
that the information is already available and
the user doesn’t have to wait as he navigates
a round the document or enters the dedicat-
ed spell-check mode.

Option 3:
Data + La zy Eva l u at i o n
Lazy evaluation is a traditional optimization
technique that happens to also help concur-
rency and responsiveness. The basic idea is
simple: We want to optimize perf o rmance by
not doing work until that work is actually
needed. Traditional applications include
demand-loading persistent objects from a
slow database store and creating expensive
Singleton objects on demand. In Excel, for

example, it is well-defined to have work-
sheets with pending recalculations to per-
f o rm, and each cell may be “completely eval-
uated” or “pending evaluation” at any given
time, so that we can immediately evaluate
those that are visible on-screen and lazily
evaluate those that are off - s c reen or hidden.

F i g u re 3a illustrates how we can use lazy
evaluation as a natural way to encode pend-
ing work. A compiler typically stores the
abstract re p resentation of your pro g r a m
code as a tree. To fully compile your code to
generate a standalone executable, clearly the
compiler has to process the entire tree so
that it can generate all the re q u i red code. But
do we always need to process the whole tre e
i m m e d i a t e l y ?

One common example where we do not
is compilation in managed environments like
Java and .NET, where it’s typical to use a just-
in-time (JIT) compiler that compiles classes
and methods on demand as they get invoked.
In Figure 3a, for example, we may have
called and compiled C l a s s 2 : : M e t h o d A () , b u t
if we haven’t yet called C l a s s 2 : : M e t h o d B o r
anything in C l a s s 1 or C l a s s 3, those entities
can be compiled later on demand (or asyn-
c h ronously in the background during idle
time or some other strategy; again, see
“When and How To Do the Wo r k ”) .

But lazy compilation is useful for much
m o re than just JIT. Now consider Figure 3b:
L e t ’s say we want to dynamically pro v i d e
red-squiggly feedback, not on English mis-
spellings, but rather on code warnings and
e rrors. Just as we wanted dynamic spell-
checking feedback without going into a spe-

cial spell-check-everything-now mode (see
F i g u re 2b), we might want dynamic compi-
lation warnings and errors without going
into a separate compile-every t h i n g - n o w
m o d e .

In Figure 3b, the IDE is helpfully inform-
ing us that the code has several pro b l e m s ,
and even provides the helpful message
“missing closing quote” in a tooltip balloon
as the mouse hovers over the second erro r —
all dynamically as we write the code, before
we try to explicitly recompile anything.
C l e a r l y, we have to compile something in
o rder to diagnose those errors, but we don’t
have to compile the whole program. As with
the word processing squigglies, we can pri-
oritize the visible part of the code, and lazily
compile just enough of the context to make
sense of the code the user sees; in this exam-
ple, we can avoiding compiling pretty much
the entire <iostream> header because noth-
ing in it is relevant to diagnosing these par-
ticular erro r s .

When and
How To Do the Wo rk
This brings us to the key question: So, when
and how is the pending work perf o rm e d ?

One option is to do the pending work
interleaved with other work, such as in
response to timer messages or using explicit
continuations as in [1]. This approach is
especially useful when the updates must be
p e rf o rmed by a single thread, either for his-
torical reasons (e.g., on systems that re q u i re
a single GUI thread) or to avoid complex
locking and synchronization of internal data
s t ru c t u res by making the data isolated to a
p a rticular thre a d .

A second approach is to do the work
when idle and there is no other work to do.

D r . D o b b ’ s D i g e s t

Figure 3a: Deferring work via traditional lazy evaluation.

Figure 3b: Red squigglies in a C++ IDE —

without “rebuild”

(courtesy Visual Studio 2010).

DR. DOBB’S DIGEST 28 July 2009 www.ddj.com

For example, Wo rd normally perf o rms pagi-
nation and similar operations in incre m e n t a l
chunks at idle time. This approach is usual-
ly used in combination with a fallback to one
of the other approaches if we discover that
some part of the work needs to happen more
i m m e d i a t e l y, for example if the user jumps
to not-yet-paginated part of the document.

T h e re are multiple ways to implement
“when idle”:

• If all of the updates must be perf o rm e d
by a single thread, we can register call-
backs that the system will invoke when
idle (e.g., using a Windows WM_IDLE
message); this is a traditional appro a c h
for GUI applications that have legacy
re q u i rements to do their work on the
GUI thre a d .

• If the updates can be perf o rmed by a dif-
f e rent thread, we can perf o rm the work
on one or more low-priority backgro u n d
t h reads, each of which pauses every
time it completes a chunk of work. To
minimize the potential for priority
inversion, we want to avoid being in the
middle of processing an item (and hold-
ing a lock on the shared data) when the
b a c k g round thread is preempted by the
operating system, so each chunk of
work should fit into an OS scheduling
quantum and the pause between work
items should include yielding the
remainder of the quantum (e.g., using
Sleep(0) on Wi n d o w s) .

T h i rd, we can do the work asynchro-
nously and concurrently with other work,
such as on one or more normal backgro u n d

worker threads, each of which locks the
s t ru c t u re long enough to perf o rm a single
piece of pending work and then pauses to let
other threads make pro g ress. For example,
in Excel 2007 and later, cell re c a l c u l a t i o n
uses a lock-free algorithm that executes in
parallel in the background while the user is
interacting with the spreadsheet; it may ru n

on several worker threads whose number is
scaled to match the amount of hard w a re par-
allelism available on the user’s machine.

F o u rth, in some cases it can be appro p r i-
ate to do the work lazily on use, where each
use of the data stru c t u re also perf o rms some
pending work to contribute to overall
p ro g ress; or similarly we may do it on
demand specifically in the case of traditional
lazy evaluation. With these approaches, note
that if the data stru c t u re is unused for a time
then no pro g ress will be made; that might be
desirable, or it might not. Also, if the access-
es can come from diff e rent threads, it must
be safe and appropriate to run diff e re n t
pieces of pending work on whatever thre a d s
happen to access the data.

Su m m a ry
Embrace change: For high-contention data
that may be the target of long-running oper-
ations, consider designing for “part i a l l y
updated” as a normal case by making pend-
ing work a first-class part of the shared data
s t ru c t u re. Doing so enables greater concur-
rency and better responsiveness. It lets us
s h o rten the length of time we need to hold

exclusion on a given piece of shared data at
any time, while still allowing for operations
that take a long time to complete—but can
now run to completion without taking the
data hostage the whole time.

We can express the pending work in a
number of ways, including as a queue of
work, as cookies re p resenting the state of
operations still in pro g ress, or using lazy
evaluation for its concurrency and re s p o n-
siveness benefits as well as for its traditional
optimization value. Then we can execute the
work using one or more strategies that make
sense; common ones include executing it
interleaved with other work, during idle pro-
cessing, asynchronously on one or more
other threads, on use, or on demand.

I t ’s true that we’ll typically incur extra
o v e rhead to store and “rediscover” how to
resume the longer operation at the appro p r i-
ate point, but the benefits to overall system
maintainability and understandability will
often far outweigh the cost. Especially when
the interleaved work may need to be can-
celed or re s t a rted in response to other
actions, as in the pagination and re c a l c u l a-
tion examples, it’s easier to write the code
c o rrectly when the work still in pro g ress is a
well-defined part of the overall state of the
s y s t e m .

Ac kn ow l e d g m e nt s
Thanks to Te rry Cro w l e y, director of devel-
opment for Microsoft Office, for pro v i d i n g
the motivation to write about this topic and
several of the points and examples. Other
examples were drawn from the development
of Visual C++ 2010.

No te s
[1] H. Sutter. “Break Up and Interleave Wo r k
to Keep Threads Responsive” (D r. Dobb’s
D i g e s t, June 2009). Available online at
w w w. d d j . c o m / g o - p a r a l l e l / a rt i c l e / s h o w A rt i c l e
. j h t m l ? a rt i c l e I D = 2 1 7 8 0 1 2 9 9 .

—Herb Sutter is a bestselling author and
consultant on software development topics,
and a software architect at Microsoft. He can
be contacted at www.gotw.ca.

Return to Table of Contents

The internal data struct u re makes it well-defined to have a

document that is only partially paginate d, s p e c i f i cally so Wo rd ca n

b reak the pagination work up into pieces

D r . D o b b ’ s D i g e s t

