EXACT ENUMERATION OF ACYCLIC AUTOMATA
VALERY LISKOVETS

ABSTRACT. A linear recurrence relation is derived for the number of unlabeled ini-
tially connected acyclic automata. The coefficients of this relation are determined
by another, alternating, recurrence relation. The latter determines in particular
the number of acyclic automata with labeled states. Certain simple enumerative
techniques developed by the author long ago for counting initially connected au-
tomata and acyclic digraphs are combined and applied. Calculations show that the
obtained results improve recent upper bounds for the number of minimal automata
(with accepting states) recognizing finite languages. Various related questions are
also discussed.

RESUME. Une relation lindaire de recurrence est derivée pour le nombre
d’automates acycliques non-étiquetés connexes depuis ’état initial. Les coefficients
de cette relation sont détermines par une autre relation de récurrence qui est al-
ternante. Celle-ci détermine, en particulier, le nombre d’automates acycliques aux
états étiquetés. Certaines techniques énumératives, développées il y a longtemps
par auteur pour ’énumération d’automates acycliques connexes depuis I’état ini-
tial et de graphes acycliques, sont combinées et appliquées. Des calculs montrent
que les résultats ainsi obtenus améliorent certains bornes supérieures récentes pour
le nombre d’automates minimaux (avec des états acceptants) qui reconnaissent des
langages finis. En plus, quelques problemes divers y reliés sont discutés.

1. INTRODUCTION

Recently Domaratzki [Do01] and [Do02] (see also [DoKS01]) obtained some lower
and upper bounds for the number of minimal n-state automata recognizing finite
languages. In particular one of the upper bounds is based upon the enumeration of
initially connected acyclic automata with numbered states, where the transitions be-
tween states are compatible with the state numbers (from lesser to greater). These au-
tomata proved to be enumerated by the familiar (unsigned) Genocchi numbers [St99,
ex.5.8(d)] (close to the Bernoulli numbers) in the case of 2 input letters and by cer-
tain generalized Genocchi numbers for £ > 2 inputs. The author noted that a better
bound should follow from the enumeration of such automata as unlabeled ones. It
is this problem, natural and interesting by itself, which is solved here. The idea is
to combine two approaches which we developed long ago for counting labeled acyclic
digraphs [Li75] and arbitrary initially connected automata [Li69]. The point is that
in the latter case, automata do not have non-trivial automorphisms; so that the
problems of counting them as having labeled or unlabeled states are equivalent. As

Date: November 16, 2002; revised: March 25, 2003.

2000 Mathematics Subject Classification. Primary: 05C30; Secondary: 68Q70.

Key words and phrases. Initially connected automaton, deterministic acyclic automaton, quasi-
acyclic automaton, subautomaton, minimal automaton, acceptor, unlabeled automata, finite lan-
guage, pre-dead state.

1



2 V.LISKOVETS

an intermediate step we count labeled acyclic automata and, more generally, quasi-
acyclic automata with a given number of absorbing states (see the precise definitions
in Section 2).

Numerical calculations suggest that our formulae indeed provide a significantly
better upper bound for the number of minimal n-state automata with accepting states
recognizing finite languages (acceptors). This assertion remains, however, unproven
since we have not extracted any asymptotics or tight estimates from the formulae
obtained. Nor could we express the results in terms of generating functions. We
discuss these and other related questions, including some conjectures and old results,
in the second half of the paper.

Initially connected acyclic automata with a unique “pre-dead” state can also be
enumerated in a similar way, and these numbers provide a somewhat better upper
bound for the numbers of minimal automata.

The present research is motivated by abstract automata theory and is represented
in terms of automata. However our main results can be considered independently of
automata theory as the enumeration of some rather natural types of directed graphs.

2. DEFINITIONS. PRELIMINARIES

2.1. Initial automata. Generally, for automata theory we refer to [HoU79]. For
the reader’s convenience, together with terms adopted in the present paper we point
out some of their synonyms which often appear in the current literature. Throughout
the paper we consider deterministic initial finite completely defined automata without
outputs. Thus, an (initial) automaton is a quadruple A = (@, g0, X, 0), where Q) =
Q4 is the set of states, ¢ € (@ is the initial state, X is the input alphabet and
d=04:(Q,X)— Q is the transition function. ¢ extends naturally to the set X* of
all finite words over X : if w = z125... 25, then (g, w) := §((6(0(q, 1), 22) - -.), Ts).
By definition, (g, €) = ¢ for any state ¢, where € is the empty word. If §(q, w) = ¢/,
we say that the automaton A goes or passes from the state g to ¢’ under the action of
the input word w € X* and that ¢’ is reachable (accessible) from ¢ in A. The number
of states m = |@Q 4| is called the size of A. Any input letter z determines a mapping
0% from the set of states to itself, and 6 can be identified with the set of mappings
{5w}$€X-

Sometimes we admit non-initial automata; these are triples (@), X,d) in which no
initial state is distinguished.

2.2. Acceptors recognizing languages. An acceptor means an automaton with
accepting states, i.e. a pair (A, F), where A is an automaton and F' C Q4 is a
nonempty set of states called accepting, or final. The other states are called non-
accepting. In the literature, acceptors are often called simply automata or recognizers.

L(A, F) denotes the language recognized (or accepted) by the acceptor (A, F), i.e.
the set of all words under which A goes from the initial state to an accepting state:
LA F) = {w|we X* 6(q,w) € F}. (A, F) is called minimal recognizing a given
language L C X* if L = L(A, F) and A is of minimal size (number of states) among
all the acceptors recognizing L.

2.3. Recurrent and transient states. We call a state ¢ of an automaton A
recurrent if there exists a nonempty word w which returns A from g to itself: §(¢, w) =
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g. Such states are also known as cyclic or looping. Non-recurrent states are called
transient. Evidently, any (completely defined) finite automaton has recurrent states.
Moreover, for any state, there is a recurrent state reachable from it. It follows that
finite automata cannot be acyclic in the strict sense of this term; so we have to relax
the restrictions.

2.4. Acyclic automata. Dead and pre-dead states. An automaton is called
acyclic if it has a unique recurrent state. The recurrent state of an acyclic automata
is called its dead state (or sink).

It is convenient to distinguish the dead state of acyclic automata, and we will
designate it separately by the letter “D” possibly with a subscript. By 2.3, the dead
state D of an acyclic automaton is absorbing (a trap), i.e. 6(D,x) = D for any z € X.
In a sense, the dead state is a formal element of an acyclic automata. From now on, n
will denote the number of transient states of acyclic automata, so that n = m—1. The
transient states are usually labeled by qo, q1,...,g.—1, Where gy is the initial state.
It is important to stress that we do not demand that the transition function ¢ be
compatible with the numbers (or any other order) of the labels ¢, ¢qs, ... .

Call a state ¢ of an acyclic automata pre-dead if only the dead state D is reachable
from ¢ by all inputs. Such states always exist: these are the sinks of the partial
automata obtained after the deletion of the dead state and all transitions to it.

2.5. Initially connected automata. A state of an automaton is referred to as
a source (or maximal) if there are no transitions to it. It is easy to see that any
non-empty acyclic automaton has at least one source.

An automaton A is called initially connected if all of its states are reachable from
the initial state. An acyclic automaton is initially connected if and only if ¢, is its
unique source. In the current literature, initially connected automata are sometimes
referred to as start-useful automata (or automata with no start-useless state).

The transition diagram of an acyclic automata is an acyclic (multi)digraph up to
loops in the dead state, and in the case of initially connected acyclic automata this
is an acyclic digraph with a unique sink and a unique source (a two-pole acyclic
network).

2.6. Subautomata. Let A be an automaton with the set of states Q). If R is a subset
of @ and if 6(¢,z) € R for any g € R and = € X, then R and the restriction of § to R
form an automaton called a subautomaton. In other words, a subautomaton absorbs
all transitions: it admits transitions to it from the outside, but all the transitions
from it lead again to it. This notion is naturally extended to acceptors: F'N R serves
as the set of accepting states.

2.7. Lemma. For any state g € Q, all states reachable from it in an automaton A
form an initially connected subautomaton A9 with the initial state q. U

A@ is a minimal subautomaton containing ¢ and is said to be generated by the
state q.

The subautomaton A®) is called the initially connected component of A.

By definition, subautomata generated by states satisfy the following heredity prop-
erty: if ¢’ is reachable from ¢, then A is a subautomaton of A@ and A@¢) = A¢).
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2.8. Isomorphism. Two automata A4 = (Q, g, X,0) and A" = (Q', ¢y, X,0') with
the same input alphabet X are called isomorphic (by states) if there is a one-to-one
correspondence (isomorphism) between their sets of states p : ' — @ such that
p(gh) = qo and p(8'(¢',z)) = 0(p(g),x) for all states ¢ € @' and all z € X. An
isomorphism of acceptors must additionally preserve the property of states to be or
not to be accepting.

Isomorphisms from A to A are called automorphisms. All automorphisms of A
form a group.

Two states ¢ and ¢’ of an automaton A are called similar if the subautomata A
and A@) generated by them are isomorphic. A is referred to as a primitive automaton
if all its subautomata generated by a single state are pairwise non-similar.

The following assertion is well known (see, e.g., [Li69]) and easily provable since
any automorphism preserves the initial state and all paths from it:

2.9. Lemma. The group of automorphisms of an initially connected automaton is
trivial.

2.10. Finite languages and minimal acceptors. Consider an acceptor (A, F).
If there is a recurrent state ¢ in it reachable from the initial state gy and an accepting
state ¢’ reachable from ¢, then it is evident that the language L = L(A, F') recognized
by (A, F) is infinite. Conversely, if A is acyclic and D ¢ F, then L(A, F) is finite.
These facts explain a particular interest of researchers to acyclic automata and ac-
ceptors, which prove to be efficient tools for a formal representation and processing
of artificial and natural languages; see, in particular, [Re92, DaMWWO00].
The following important claim is valid (see, e.g., [Mi99]):

2.11. Proposition.

1. For any finite language L, there exists a unique (up to isomorphism) minimal
acceptor (A, F) = (Ar, FL) recognizing it. Moreover:

2. Ay is an initially connected acyclic automaton.

3. For any state, there is an accepting state reachable from it.

The first assertion is a direct corollary of the famous Myhill — Nerode theo-
rem [HoU79]; the second and third assertions are evident. In the literature, automata
satisfying properties 2 and 3 are sometimes called stripped or trim, and automata
satisfying properties 3 are said to have no final-useless state.

In fact, the minimal acceptors are known to be completely characterized by one
more property. Call (A, F)) reduced if Ly # L, for any two different states ¢’ and g,
where L, denotes the set of all words recognizable by the subautomaton A@ (more
exactly, by the corresponding acceptor): L, := {w|d(q,w) € F}. In particular,
L, =L.If Ly = L,, the states ¢’ and ¢ are said to be equivalent, and if such ¢’ # ¢
exist, the acceptor (A, F) is called reducible.

2.12. Lemma. (A, F) is the minimal acceptor (for the language recognized by it)
if and only if it satisfies assertions 2 and 3 of Proposition 2.11 and is reduced.

Two elementary facts concerning acceptors should also be mentioned: if L =
L(A, F) is finite, then D ¢ F; € € L if and only if ¢g € F.
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2.13. Enumerators. Now we can obtain some upper bounds for the number My (n)
of minimal (n 4 1)-state acceptors recognizing finite languages. Denote by Ci(n) the
number of initially connected acyclic automaton, counted up to isomorphism (that
is, unlabeled), with n transient states and k inputs. It is clear from assertion 3 of
Proposition 2.11 that in any minimal acceptor (A, F') recognizing a finite language,
F must contain all the pre-dead states. Consequently, in any automaton A there are
no more than 2"~! ways to choose F. Therefore

My (n) < 2" 'Ck(n). (1)

Moreover, we can strengthen this bound. As we have just seen, if a minimal
acceptor had two or more pre-dead states, then all of them would be accepting.
But then they would be equivalent, which is impossible for minimal acceptors by
Lemma 2.12. Thus we obtain the following (cf. [Ma00]).

2.14. Corollary. Any minimal acceptor recognizing a finite nonempty language has
only one pre-dead state q.. The state q, is accepting, and it is reachable from any
transient state.

Therefore, to estimate the number of minimal acceptors, we may restrict ourselves
to initially connected acyclic automata with a unique pre-dead state. Denoting by

C,gl)(n) their number, we obtain instead of (1) a tighter upper bound:
My(n) < 2°7'C (n). (2)

This inequality, however, does not strengthen (1) very significantly; see Table 5 below,
conjectured formula (15) in Subsect. 7.2 and the discussion therein.

Our main aim is to obtain a formula for the number of unlabeled initially connected
acyclic automata Cy(n). To derive it we first count labeled acyclic automata; let a(n)
denote the number of them with n + 1 states including D.

2.15. Quasi-acyclic automata. We need also a generalization of acyclic automata
called quasi-acyclic: these are automata in which all recurrent states are absorbing,
i.e. they are dead ones (sinks). This natural class is not too much popular in automata
theory since an acceptor with more than one dead states cannot be minimal.

ax(n,r) will denote the number of quasi-acyclic automata with » > 1 dead states
Dy, D,, ..., D, and n transient labeled states. Thus, ax(n,1) = ag(n). It is important
that instead of being the dead states, Dy, D», ..., D, may form an arbitrary subau-
tomaton: ag(n,r) counts also the number of all automata with such a fixed absorbing
subautomaton ( “black hole”) and n other, transient, states. Later on, we will make
use of this fruitful treatment, in particular in the formula for the number of labeled
initially connected acyclic automata cg(n).

3. MAIN RESULTS

We begin with quasi-acyclic automata, not necessarily initially connected.

3.1. Theorem. ax(0,7) =1, and for n > 1 the quantity agx(n,r) is determined by
the following recursion:

—

n—

ak(n,7) = ‘ (D (=) ) gt ), 21 (3)

Il
o
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Proof. We reason as in the case of acyclic digraphs [Li75]. Consider arbitrary quasi-
acyclic automata with & inputs, n (labeled) transient states and r dead states. Let
Y C @ be a set of n — t transient states (0 < ¢ < n). Introduce the property Iy
of an automaton to have Y as a subset of its sources. There are (¢ + 7)*"a,(¢,7)
such automata: we take an arbitrary quasi-acyclic automaton with the set Q\Y of
transient states, add Y to it and define the k(n — ¢) transitions from Y to (Q\Y)U Z
in an arbitrary way, where Z = Z, denotes the set of dead states. Now by the
inclusion—exclusion method we can count the number of automata possessing none of
these properties, and it should be equated to 0, since any nonempty acyclic automaton
possesses a source. Thus, we obtain the formula

2”: (n) (=)t + ) (t,r) =0, n>1, r>1, (4)

t=0 t

which is equivalent to (3). O

3.2. Theorem. ci(1) =1, and for n > 1, the number of labeled initially connected
acyclic automata ck(n) is determined by the following recursion:

nl (“ - 1) ar(n — £+ 1)ep(t) = ax(n), (5)

t—1

t=
where ax(n) = ag(n, 1).

Proof. In [Li69] (see also [Li69a, Li69b]) we used a simple enumerative method, which
we call the “injection method”, in order to count arbitrary labeled initially connected
automata (see formula (11) below). This method generalizes the well-known method
of counting connected graphs of various types and related objects (“exponential struc-
tures” by Stanley [St99, 5.5]). In practice it is applicable fruitfully to digraphs pos-
sessing a generalized connectivity. Briefly, the idea is to “inject” the (connected)
digraphs under consideration € into an appropriate class of digraphs 2 in such a way
that any graph A € 2 contains a uniquely determined subgraph I" (its “connected”
component) belonging to €. And, conversely, we require that the number a(n,t) of
graphs A € 2 with a given component I' € € depend only on the sizes ¢t of I' and
n of A (see [Li77] for a more general and abstract description of this method, which
covers Theorem 3.1 as well). If these properties hold, we obtain immediately a linear
recurrence relation of form

Zn: (?) a(n, t)e(t) = a(n), (6)

t=1
where a(n) and ¢(n) stand for the number of graphs with n nodes, resp., in 2 and
€. The factor (’Z) corresponds to the case when the component can contain any t-
element set of nodes; for graphs with a distinguished root this factor is replaced by
(_}), and so on. We called a(n,t) the kernel of equation (6).

In the problem under consideration, € is the class of initially connected acyclic au-
tomata, and we take the set of acyclic automata as 2[. In any acyclic automaton (or,
equivalently, automaton transition diagram) A € 2 we select its initially connected
component I' = Al®)_ Now, given an initially connected acyclic component I' with
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t labeled transient states, we consider the possible acyclic automata A with n tran-
sient states over it. Following the idea formulated in Subsect. 2.15 we may interpret
these automata as the quasi-acyclic ones with ¢ + 1 dead and n — ¢ transient states.
Therefore, regardless of a particular choice of I', there are a(n,t) = ax(n — ¢, t + 1)
such A, and the injection method is applicable here. To complete the proof of (5)
we need only to add that ¢ states of the component I' including ¢y can be chosen in

(?__11) ways. O

Now, according to Lemma 2.9, for unlabeled initially connected acyclic automata
we have the formula )
Cr{T
It is interesting to note that we do not know formal, purely analytical reasons which
would explain why the solution of equation (5) is divisible by (n — 1)! for any n. The
same remark concerns also formulae (7') and (11) below.

3.3. Automata with one pre-dead state. Similar arguments can be applied to
acyclic automata with a unique pre-dead state.

Consider labeled automata which have ¢; as the pre-dead state. Let by (n, r) denote
the number of quasi-acyclic automata which have n transient states different from
q1, 7 dead states including D and the property that ¢; is the unique state such
that all transitions from it go to D. Reasoning as in the proof of Theorem 3.1 with
Y € Q\{q1} we obtain the recurrence relation

n—1
) =3 () Com e e ) P ), @)
t=0
which together with the initial conditions b (0, 7) = 1 determines the function bg(n, r)
for all 7 > 1. In particular bg(n, 1) = bg(n) is the number of acyclic automata with ¢;
as the unique pre-dead state and n other transient states. The factor [(t+r+1)F—1]"
in equation (3') is the number of admissible transitions from Y, where |Y| = n —t,
to the other ¢ + r + 1 states including ¢;: for every state ¢ € Y, there is only one
inadmissible set of transitions, all to D.

Let ¢x(n) denote the number of the corresponding initially connected automata.
Take an acyclic automaton A with ¢; as the unique pre-dead state. Its initially
connected component I' contains ¢;, for otherwise a pre-dead state of I' would be
another pre-dead state of A. Let I' contain ¢ > 0 other transient states. Then
reasoning just as in the proof of Theorem 3.2 we obtain

) <n B 1>bk(n — bt +1)e(t) =b(n), n=1. (5')

— t—1
Finally, due to Lemma 2.9 we have the following (cf. (7)).

3.4. Theorem. The number of unlabeled initially connected acyclic automata with
a unique pre-dead state satisfies the following equation

cMn+1) = % n>1, and CI(1)=1, (7")
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where c¢x(n) is determined by formulae (5') and (3'), and n + 1 is the number of
transient states including the pre-dead state. (]

3.5. Remark. There are some reasons to rescale formulae (3') and (5') replacing
bp(n,7) and ¢(n) by new quantities which are closer to ag(n,r) and cx(n), namely,
by a,(cl)(n, r) := nbg(n — 1,7), the number of labeled quasi-acyclic automata with r
dead states, and cg)(n) = (n — 1)é&(n — 1), n > 1, the number of initially connected
acyclic automata. In both cases, n is the total number of transient states, one of
them is distinguished, and the distinguished state is a unique to have all transitions
going to D. The distinguished state is an arbitrary state, not necessarily ¢; (but it is

clearly different from ¢, in the case of c,(cl)(n)).

4. AUTONOMOUS AUTOMATA

Consider the particular case of automata with one input: £ = 1. Such automata are
usually called autonomous (or unary). It is evident that autonomous acyclic n-state
automata are equinumerous with labelled trees on n+1 nodes. So, a;(n) = (n+1)""L.
More generally, quasi-acyclic automata are in one-to-one correspondence with forests
of rooted labeled trees, and there are

r(n+7)" ' =ai(n,r)

of them with n 4+ r nodes and r > 1 trees, where every dead state serves as the
distinguished root of a tree [St99, 5.3.2]. Substituting these values into formula (3)
we obtain the following identity:

zn: (;’) (=D)"tt+r)"t=0. (8)

=0
Of course, it is not new, see, e.g., [Go72, (1.13)].

An autonomous acyclic automaton is initially connected if and only if it is a chain
starting at go and finishing at D. There are ¢;(n) = (n — 1)! such labeled chains
(hence C1(n) =1 for all n). Therefore formula (5) for £ = 1 turns into the following
variation of the familiar Riordan identity [Ri62] (cf. also [Li69a]):

2 (?:f) (n+ 1"+ 1) = 1)} = (n+ 1) ®)

t=1
5. MINIMAL ACCEPTORS

The exact enumeration of minimal acceptors recognizing finite languages remains
an open problem (cf. [CaP02, DoKS01]). Here we are interested in the relationship
between initially connected acyclic automata and minimal acceptors corresponding
to them. We begin with several new definitions.

5.1. Rank and diameter. By the rank of a state ¢ of an acyclic automaton we
understand the number equal to 1 less than the maximal length of (simple) paths
from ¢ to the dead state. For automata with a unique pre-dead state ¢, this is the
maximal length of paths (words) leading from ¢ to ¢.. In particular, the rank of ¢, is
0. States of rank 1 are also called here pre-pre-dead: these are the states becoming
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sinks after the deletion of the dead and pre-dead states. In the literature, rank is also
known under other names such as height or layer.

The maximal rank of states is called the diameter of an acyclic automaton. The
diameter of an initially connected acyclic automaton is equal to the rank of the initial
state, and for the minimal acceptor recognizing a finite language L it is equal to the
maximal length of words in L.

5.2. “Useless” automata. There exist initially connected acyclic automata with
a unique pre-dead state which cannot become minimal acceptors for any choice of the
set of accepting states, for instance, such are automata with 3 or more pre-pre-dead
states in which all transitions from them lead to the pre-dead state ¢,. Indeed, for any
choice of F', at least two pre-pre-dead states are both accepting or both non-accepting.
Consequently, they are equivalent and may be merged together.

More generally, minimal acceptors recognizing finite languages can have no more
than 2(2% — 1) pre-pre-dead states. Indeed, all transitions from a pre-pre-dead state
lead to the dead or pre-dead states. Hence there are 2¥ — 1 possible sets of transitions
(we must exclude the only case where all transitions lead to D : it would create one
more pre-dead state.) Now, any such set of transitions may be implemented no more
than twice, once in an accepting state and once in a non-accepting state, and the
estimate follows by Lemma 2.12.

There are similar constraints, though less restrictive, concerning states of rank 2
or more.

5.3. Primitive automata. At the opposite extreme, there are initially connected
acyclic automata with a unique pre-dead state for which any F' containing the pre-
dead state gives rise to minimal acceptors. Such automata can be easily characterized.

5.4. Proposition. Let A be an initially connected acyclic automaton with a unique
pre-dead state q.. Any F containing q. gives rise to minimal acceptors (A, F) if and
only if A is primitive.

Proof. If A contains two similar states ¢’ and ¢ (see the definition in Subsect. 2.8)
then we can easily find a subset F' such that the acceptor (A, F) is reducible. For
example, if F' contains all transient states both of A@) and A@, then L, = L,. By
Lemma 2.12, (A, F) is not minimal.

On the contrary, suppose that (A, F') is reducible. This means that there are
different equivalent states ¢' and g, i.e. states such that Ly = L,. It is evident that
for any F' containing ¢,, the rank of ¢ is equal to the maximal length of words in the
language L, : the longest path from ¢ to F' terminates in ¢,. The same is valid for ¢/,
therefore ¢’ and ¢ are of the same rank. Take now equivalent ¢’ and ¢ of minimal rank.
We have L, = L(A@, F) and Ly = L(A“), F"), where ' and F' denote the sets of
all accepting states reachable from ¢ and ¢’ resp. Now, if the acceptors (.A(‘I), F) and
(AW@) F') are reduced (minimal), then by Proposition 2.11 (1), they coincide up to
isomorphism; so that A is not primitive.

Suppose conversely that the acceptor (A(q), F) is reducible. Hence there are dif-
ferent states ¢” and ¢" in it such that Ly = Lgw. Now Ly = L(AWW) F") =

L(AY)F") and similarly for Lg», what means that ¢” and ¢" are equivalent in
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(A, F). But ¢" and ¢" are of rank smaller than ¢, which contradicts the choice of ¢
and ¢'. O

6. CALCULATIONS AND ESTIMATES

6.1. Tables. We restrict our calculations mainly to automata with 2 inputs. We
used Maple in all computations. Tables 1 and 2 contain data for quasi-acyclic, acyclic
and initially connected acyclic automata with labeled states.

In Table 3 we give numerical values for unlabeled initially connected acyclic au-
tomata and compare them with known lower and upper bounds. Inequality (1) to-
gether with a lower bound for M,(n) obtained in [DoKS01] give rise to the inequality

@n—1)1=1-3-5----- (2n — 1) < Cao(n). (10)

These numbers, as well as the ratios Cy(n)/(2n — 1)!!, are also contained in Table 3.

C5(n) are compared with the numbers Genocchi(n) which count, by [Do01], initially
connected acyclic automata in which states are properly ordered. Accordingly, the
last column of Table 3 represents

the average number of numberings (orderings) compatible with the transi-
tion functions in initially connected acyclic automata.

Table 4 contains intermediate data for quasi-acyclic automata with a distinguished
pre-dead state (formula (3')). Numerical data for C’él) (n) and 03(,1) (n), and their ratios
with Cy(n) and Cs(n) are contained in Table 5.

The upper bounds by inequalities (1) and (2) for the number of minimal automata

are provided in Table 6; these data are compared with the exact values and bounds
published in [DoKS01, Do02].

6.2. “Cyclic” automata. For comparison and completeness, we also calculate all
initially connected automata, not necessarily acyclic. hg(n) denotes the number of
such labeled automata with n states and & inputs. Then hg(1) =1 and by [Li69],

n—1
_ kn n—1 k(n—t)
he(n) =n —t_zl (t_1>n hi(t). (11)
Now Hy(n) = hg(n)/(n—1)! is the number of unlabeled initially connected automata.
Numerical data for them with k = 2,3 are given in Table 7.

As follows easily from formula (11), Hg(n) is divisible by n*, see [Li69]. Remark,
incidentally, that some similar observations are valid for C,(cl) (n); in particular, (2F—1)
divides C’,gl)(n).

7. FURTHER DISCUSSION

7.1. Possible generalizations. Instead of completely defined automata we could
consider partial deterministic automata, that is automata for which the transition
function is defined not necessarily for all pairs (¢, z). In this case we could exclude
the dead state and consider genuine acyclic automata. This class does not introduce
anything substantially new, since we can transform it bijectively into the class of
completely defined automata considered above by adding a new dead state and all
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TABLE 1. The number of labeled quasi-acyclic automata ay(n, r) with

n transient and r dead states

nfr 1 2 3 4 5
0 1 1 1 1 1
1 1 4 9 16 25
2 7 56 207 544 1175
3 142 1780 9342 32848 91150
4 5941 103392 709893 3142528 10682325
5 428856 9649124 82305144 440535696 1775027000
6 47885899 | 1329514816 | 13598786979 85529171200 398824865275
7 || 7685040448 | 254821480596 | 3046304952000 | 22041805076944 | 116816612731200
a2 (0’ ’l") =1
az(1,7) = 712
ax(2,7) = 2r? 4+ 4r3 4ot
az(3,7) = 21r% + 60r® + 48r* + 12r° + 16
az(4,7) = 56872 + 19207 + 2160r* + 104075 + 2287 + 2477 + 18
az(5,7) = 2970572 + 11140073 4 1504007* + 9716075 + 331907 + 628077
+680r8 + 4079 + r10
az(6,7) = 257313672 + 1037952073 + 15778080r* + 121608007° + 533052075
+1406592r7 + 23136078 + 24240r° + 1590710 + 607! 4 712
TABLE 2. The number of labeled acyclic and initially connected acyclic
automata
n az(n) c2(n) | az(n)/c2(n)
1 1 1 1.000
2 7 3 2.333
3 142 32 4.438
4 5941 762 7.797
b} 428856 32712 13.110
6 47885899 2235360 21.422
7 7685040448 224100000 34.293
8 1681740027657 31115906640 54.048
9 482368131521920 5733129144960 84.137
10 175856855224091311 1356239286057600 129.665
11 79512800815739448576 401263604225164800 198.156
12 43701970591391787395197 145349590736723788800 300.668
13 28714779850695689959247872 63331019483788869120000 453.408
14 22239820866807621347245261875 |  32702367239716877602099200 680.068
15 || 120060586399267989706814051311616 | 9760224335684945097034649600 |  1015.200

undefined transitions as leading to it. If necessary, we could enumerate partial acyclic
automata specified additionally by the number of transitions between states (or,
equivalently, complete acyclic automata specified by the number of transitions to the
dead states).

There is a less trivial generalization of automata under consideration which often
appears in the literature; the class of multi-initial automata, that is deterministic
automata with a distinguished set of initial states. By a slight modification of the
proofs given in Section 3, the formulae for labeled initial acyclic automata can be
generalized to multi-initial as well as to multi-initially connected automata (automata
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TABLE 3. The number of unlabeled initially connected acyclic
automata Cy(n)
I 11 111 II/1 IT1/11
n (2n-1)!! Ca(n) = 20 Genocchi(n)
1 1 1 1| 1.000 1.000
2 3 3 3| 1.000 1.000
3 15 16 17| 1.067 1.063
4 105 127 155 | 1.210 1.220
5 945 1363 2073 | 1.442 1.521
6 10395 18628 38227 | 1.792 2.052
7 135135 311250 929569 | 2.303 2.987
8 2027025 6173791 28820619 | 3.046 4.668
9 34459425 142190703 1109652905 | 4.126 7.804
10 654729075 3737431895 51943281731 | 5.708 | 13.898
11 13749310575 110577492346 2905151042481 | 8.042 | 26.273
12 316234143225 3641313700916 191329672483963 | 11.515 | 52.544
13 7905853580625 132214630355700 14655626154768697 | 16.724 | 110.847
14 || 213458046676875 5251687490704524 1291885088448017715 | 24.603 | 245.994
15 || 6190283353629375 | 226664506308709858 | 129848163681107301953 | 36.616 | 572.865
TABLE 4. The number of labeled quasi-acyclic automata by (n, r) with
a distinguished pre-dead state, n + 1 transient and r dead states
n/r 1 2 3 4 5
0 1 1 1 1 1
1 3 8 15 24 35
2 39 176 495 1104 2135
3 1206 7784 29430 84600 204470
4 69189 585408 2791125 9841728 28569765
5 6416568 67481928 389244600 1627740504 5518006200
6 881032059 11111547520 75325337235 364616173440 1413735254155
7 168514815360 | 2483829653544 | 19371055651200 | 106576788695352 | 465181963908480

in which every state is reachable from an initial state). Note however that multi-
initially connected automata can have non-trivial automorphisms (preserving the
property of states to be initial); so that the enumeration of such unlabeled automata
is an additional non-trivial problem.

One more useful generalization concerns non-deterministic automata; it is possible
to apply the enumerative technique of Section 3 to non-deterministic automata with
labeled states (cf. also [Ge96]).

7.2. Asymptotics. Asymptotics of ax(n),Ck(n) and C’,gl)(n) remain open prob-
lems. As Table 1 suggests (and as is typical for deterministic automata), only a small
fraction of acyclic automata are initially connected. The data in two last columns
of Table 3 suggest that Cy(n) is closer to the lower bound. Note that the Genoc-

chi numbers grow much faster than (2n — 1)!! =

4(2n)!
7r2n

Genocchi(n) ~

(2n)!

nl2n

: asymptotically as n — oo,




EXACT ENUMERATION OF ACYCLIC AUTOMATA 13
TABLE 5. The number of unlabeled initially connected acyclic
automata with a unique pre-dead state C’,gl) (n), k=2,3
I i T/T0 i V] I/iv
n] V) Ca(n) i (n) Cs(n)
1 1 1 | 1.000000 1 1 | 1.000000
2 3 3 | 1.000000 7 7 | 1.000000
3 15 16 | 0.937500 133 139 | 0.956835
4 114 127 | 0.897638 5362 5711 | 0.938890
5 1191 1363 | 0.873808 380093 408354 | 0.930793
6 15993 18628 | 0.858546 42258384 45605881 | 0.926599
7 263976 311250 | 0.848116 6830081860 7390305396 | 0.924195
8 5189778 6173791 | 0.840614 1520132414241 1647470410551 | 0.922707
9 118729335 | 142190703 | 0.835001 || 447309239576913 | 485292763088275 | 0.921731
10 || 3104549229 | 3737431895 | 0.830664 0.921060
20 0.813154 0.919137
40 0.805872 0.918746
60 0.803707 0.918682
80 0.802679 0.918661
100 0.802082 0.918652
150 0.801310
200 0.800935
250 0.800715
TABLE 6. Upper bounds for the number of minimal acceptors M;(n)
I I 11 IV | 11| /1| IV/I
n My (n): 2"*1051)(71): 2105 (n): | Up.Bound:
[DoKS01] | formula (2) | formula (1) [Do02]
1 1 1 1 11 1.000 | 1.000 | 1.000
2 6 6 6 6 | 1.000 | 1.000 | 1.000
3 60 60 64 64 | 1.000 | 1.067 | 1.067
4 900 912 1016 1120 | 1.013 | 1.129 | 1.244
5 18480 19056 21808 26432 | 1.031 | 1.180 | 1.430
6 487560 511776 596096 889216 | 1.050 | 1.223 | 1.824
7 16894464 19920000
8 664291584 790245248
9 30394709760 | 36400819968
For arbitrary k, more generally (cf. (10)),
n
11 - G- D) < Cilm), (12)

which follows easily from the enumeration of chain-like initially connected acyclic
automata. These are (n + 1)-state automata of diameter n — 1. It follows that all of
them are reduced since there is only one state of each possible rank, whereas similar

=1

states of an initially connected acyclic automaton are necessarily of the same rank.
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TABLE 7. The number of unlabeled initially connected automata

Hi(n),k=2,3
n || Hao(n) = ha(n)/(n — 1)! Hs(n)/n? Hs(n) = hz(n)/(n — 1)!
1 1 1 1
2 12 3 56
3 216 24 7965
4 5248 328 2128064
5 160675 6427 914929500
6 5931540 164765 576689214816
7 256182290 5228210 500750172337212
8 12665445248 197897582 572879126392178688
9 705068085303 8704544263 835007874759393878655
10 43631250229700 436312502297 1510492370204314777345000
11 2970581345516818 24550259053858 3320470273536658970739763334
12 220642839342906336 | 1532241939881294 | 8718034433102107344888781813632

Hence by Proposition 5.4,
(13)

a result of [Do02].

We assume that a significant (i.e. not tending to 0 as n tends to infinity) fraction of
initially connected acyclic automata with a unique pre-dead state are primitive. This
fraction increases with £ but, presumably, it does not tend to 1 as n tends to infinity
taking into account the arguments given in Subsect. 5.2: there is a significant fraction
of initially connected acyclic automata with 3 or more pre-pre-dead states, and in a
significant fraction of them at least 2 such states are similar. Thus these automata
give rise to no acceptors (note, incidentally, that pre-dead states are similar; so that an
initially connected acyclic automaton with several pre-dead states is not primitive).
If this assumption is valid, by Proposition 5.4 we get the following hypothetical
relationship (cf. (2)): Mg(n) = @(2"’10,(61)(71)),71 — 00. Moreover, we assume the
validity of the following asymptotic formula

Mi(n) ~ Y 2”_10,21) (n), n — oo, (14)

where 7 is a constant depending on £, 0 < vy, < 1for k£ > 1, and 7, — 1 as £k — oo.

The similarity of formulae (3'), (5') and (7') to, respectively, (3), (5) and (7) sug-
gests that the numbers C’,gl)(n) should be close to Ck(n) for large n. As extensive
calculations show, this is apparently the case; moreover, the fraction of automata
with a unique pre-dead state among all initially connected automata decreases mono-
tonically and tends to a positive limit as n grows. So we conjecture that

OV (n) ~ BrCi(n), n—o0, 0<Br<1, k>1. (15)

From our calculations we conclude that if (15) is valid, then S, = 0.800, (B3 ~
0.918, B, =~ 0.963, 5 =~ 0.982 and (g =~ 0.991. The corresponding data for £ = 2
and 3 are represented in Table 5; for k = 2 see also Figure 1.
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FIGURE 1. Fraction of initially connected automata with a unique pre-
dead state

If both conjectures are valid, then
Mip(n) ~ B 2" 'Cr(n), n — oo. (16)

There are other intriguing questions, in particular the distribution of the diameter
and the number of pre-dead states in acyclic and initially connected acyclic automata.
For comparison, according to McKay [McK89|, the diameter of a random acyclic
(labeled) digraph has an asymptotically normal distribution with mean pn, where
i~ 0.764. In a random acyclic digraph, the mean number of sinks tends to 1.488...
and the mean number of pre-sink nodes tends to 1.326. .. (see [Li75, Li77a]). Almost
all acyclic digraphs are connected [BeR88].

7.3. Splittable kernels. We return to the general linear recurrence relation of
form (6). Its kernel a(n,t) is said to be splittable if it can be represented as the
product of single-variable functions of n, t and n — ¢ :

a(n,t) = f(n)g(t)h(n — 1) (17)

for all non-negative n,t and n — ¢ (we might consider (?) as a part of the kernel as
well, and this factor is clearly splittable). If (17) is valid, then (6) turns into the
convolution

3 h(n—1)c(t)g(t) _ a(n) (18)

~ (n—1)! ~ f(n)n!’

which can be easily represented in terms of appropriate generating functions. Such
formulae facilitate extracting asymptotics (see, e.g., [Ro73, Li75] for the case of acyclic
digraphs).

The kernels of recurrence relations for (initially connected) automata are typically
unsplittable (unlike the case of general (di)graphs). There is a simple necessary
condition:
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7.4. Lemma [Li77|. If a(n,t) is splittable, then there exist numbers U and V', not
both equal to 0, such that for alln > 2,

a(n,n—1) Ua(n—1,n—1)

a(n,n—2) Valn—1n-2)|= " (19)

By (19) it is easy to see that the kernel of formula (3) is unsplittable.

7.5. Asymptotics of general initially connected automata. The kernel of
formula (11) for all initially connected automata is also unsplittable, and this simple
recurrent formula is not very suitable for obtaining asymptotics (numerical experi-
ments show, however, that it is not so bad for approximate calculations, contrary
to what we expected formerly). For fixed £ > 1 we managed only to extract the
asymptotics hy(n) = y; "nkrtOVrlosn) where

Yp = 2’ (1 — z,)F 1 (20)
and z; is the real root of the equation
zeb17%) =1 (21)

different from 1 (thus, y, ~ 1.196); see [Li69b]. Later on, Korshunov [Ko78] developed
a strong technique which enabled him to prove that

hi(n) ~ ykyk_"nk"“, n — 0o, (22)

(where v is a complicated constant) and which has nothing to do with the exact
enumeration. Hopefully his technique can be modified so as to cover the case of
acyclic automata.
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