

Abstract—This article is aimed on the software development

process of modern applications. The first part of article starts

with the general classification of information system based on

user interaction characteristic. After that insight into

methodologies, methods, design patterns and tools which are

part of modern software development life cycle is presented.

Second part is devoted to implementation details of presented

modern trends in real world application. Finally selected

drawbacks with proposal of theirs solutions are presented. The

main goal of this article it to provide overview of current

modern trends in software development and point out problems

which could be uncovered during adaptation phase of these

disciplines.

Index Terms—Composite application, ORM.

I. INTRODUCTION

The domain of information technology belongs to one of

the most rapidly developing areas on the world. Nowadays,

software companies, which are intended to be successful in

the software development market, have to keep their

knowledge bases up to date. The task of picking up right

methodologies, techniques and tools is critical when we are

talking about delivering high-quality and maintainable

software products, and still keep time and money costs in

reasonable limits. Current modern trends in the development

of software applications could help companies in their

business but have to be used correctly and the fact that some

of them could have negative impact on attributes of resulting

software (e.g. performance).

A. Application Posture

The term Application Posture [1] was introduced by Alan

Cooper and it basically refers to the way how end users

interact with software application. This characteristic is

really important mainly because it indicate how important the

software is for its users. According to Alan Cooper and

Robert Reimann there is following classification of software

systems [1]:

1) Sovereign–An application that takes the user’s full

Manuscript received July 25, 2012; revised September 25, 2012.

O. Moravcik and P. Schreiber are with the Institute of Applied

Informatics, Automation and Mathematics, Slovak University of Technology,

Trnava SK 917 24, Slovakia (e-mail: oliver.moravcik@stuba.sk,

peter.schreiber@stuba.sk).

D. Petrik is with the MMS Softec Ltd., Trnava, SK 917 01, Slovakia

(e-mail: petrik@mms-softec.sk).

T. Skripcak is with the Institute of Applied Informatics, Automation and

Mathematics, Slovak University of Technology, Trnava, SK 91724, Slovakia

and Department of Information Technology, Helmholtz-Zentrum

Dresden-Rossendorf, Dresden, DE 01328, Germany (e-mail:

tomas.skripcak@stuba.sk, t.skripcak@hzdr.de).

attention, such as Outlook or Word.

2) Transient–Application in the periphery of the user’s

attention, calling the user for short moments, such as (for

most folks) a calculator.

3) Daemonic–Alerting systems.

4) Parasitic–Support interaction mode for both sovereign

and transient applications, such as chat.

From the business perspective, sovereign information

systems are the most interesting field for the development

process. These applications are planned to be used by many

users in a long term period. That is why they have to be

designed not only to work well for now, but also to be

maintainable in the future.

Fig. 1. A basic schema for composite application communication with two

data sources.

Designing and building applications in a monolithic style

can lead to an application that is very difficult and inefficient

to maintain. On the other hand there is another class of

system developed according to the composite approach.

Composite application is created from group of loosely

coupled, semi-independent modules which are easily

integrated to coherent solution called “shell” [2]. Graphical

mock of such an application is figured in the Fig. 1.

B. Modern Methodologies in Software Development

Small and midsized software development companies are

often fighting with the need of having high quality

methodology in the backend of software development life

cycle and the possibility of being agile enough to quickly

react on changing requirements from users plus reduce the

time needed for iteration cycle in order to produce prototypes

of system and provide customers an opportunity to get an

insight of the resulting application.

Ideal solution of this problem is to simply compose basis

trends, disciplines, methods and tool in way which will be

suitable for current software project. Below is the overview

of most followed ides for software design:

1) Model-driven architecture (MDA)

Most of modern information systems are developed

Elements of the Modern Application Software

Development

O. Moravcik, D. Petrik, T. Skripcak, and P. Schreiber, Member, IACSIT

DB XML

Module 1

Shell

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

891

according to object oriented paradigm. MDA was initially

introduced by Object Management Group (OMG) and

provide an approach for capturing system-specification via

usage of formal models. In MDA, platform-independent

models (PMIs) are initially expressed in a

platform-independent modeling language, us as Unified

Modeling Language (UML). The platform-independent

model is subsequently translated to a platform-specific model

(PSM) by mapping the PIM to some implementation

language or platform (e.g. C#) using formal rules [3].

2) Agile software development

The idea of agility was firstly used by Kent Beck and

transformed into methodology called Extreme Programming

(XP). This methodology is described like easy, effective, low

risk, flexible, predictable, scientific and funny way of

software development [4]. Core of agile software

development is to use of light, but sufficient rules of project

behavior and the use of human and communication oriented

rules [5]. In the world of agile development everything is

focused on processes in order to deliver good product, that is

why, usage of method or process is always depended on

current project needs.

3) X-Driven design/development (XDD)

The effort of developing better applications is not only

problem of usage of newest technologies. Often in order to

develop a good product, insight into stakeholders domain

problem is needed. Eric Evans summarized some of well

known facts about domain modeling in object oriented world

in his book Domain-Driven Design [6]. Independent from

DDD, Richard Pawson introduced an idea of Naked Objects

in his dissertation thesis [7]. It basically tray to reduce

development of software application to creation of complex

domain model with metadata information, which is used to

generate all other modules including User Interface (UI) in

runtime. Systems developed on top of Naked Objects

paradigm are presented in special kind of UI known as

Object-Oriented User Interface (OOUI) [7]. As a respond to

the need of testing the Domain Model early in the software

development life cycle, together with progress of

dynamically typed languages, Test-Driven Development was

introduced mostly build on top of developers Unit Testing.

According to [8] a unit test is described as a piece of code

(usually a method) that invokes another piece of code and

checks the correctness of some assumptions afterward. If the

assumptions turn out to be wrong, the unit test has failed. A

unit is method or function. There is also one modification of

TDD which had spread around the software developer’s

world called Behavior-Driven Development (BDD) as

described in [9]. Main purpose for implementing BDD was

complexity and wide range of TDD. BDD is trying to specify

good convention in the process of test writing and execution.

The other thing is, that according to BDD only functional

user requirements are covered by tests. It means that tests

practically become functional user requirement

specifications which can be read, but also modify easily.

These practices go hand in hand with agile methodology for

software development.

4) Aspect oriented programming (AOP)

Aspect Oriented Programming is aimed on cross-cutting

problems in object oriented applications, which could not be

modeled within object oriented paradigm [10]. The example

of such problem is a functionality (e.g. logging application

messages) which should be applicable on different type of

classes (Business Entities, Infrastructure Services, etc.). This

type of functionality is encapsulated into routine called

Aspect and makes software more reusable and maintainable.

Nowadays there are AOP frameworks, for most software

programming languages, which form mainstream in

application programming. And these frameworks could be

taken as enhancement of object oriented paradigm.

Fig. 2. Architecture of a standard business system with three software layers

[11].

5) Object-relational mapping (ORM) as data access

strategy

Relational Database Management Systems (RDMS) were

and still are standard preferred solutions in the market of

corporate information system, mainly because they are

mature enough and their wide field of usability is

determining factor for many types of software systems. They

are building on top relational algebra, which give them solid

mathematical background. Modern RDMS were also able to

adapt themselves for the needs of current developer’s (e.g.

there is no problem to work with documents in eXtensible

Markup Language XML) RDMS can be used in today’s

modern object objected applications but developers need to

fight with connection of OO and relational worlds. Of course

there are other data storage paradigms like Object Oriented

Database Managements Systems (OODMS) or Document

Oriented Database Management Systems (DODMS) but they

are not established yet. It will be interesting to see how this

field of informatics will evolve in future, however for now

when we are developing OO application with RDMS system

as a storage background, it is important to have layer which

connect this two different approaches together and that is the

case of ORM [11]. The example of layered business

application with ORM persistence layer is shown in the Fig.

2.

C. Architectonic Design Patterns

Design patterns are standardized solutions for solving

typical not elemental problems in object oriented

programming. The special class of design patterns is used for

overview of whole architecture for object oriented system.

These patterns are called architectonic. Current trends are

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

892

mainly based on idea of elimination dependencies between

various components of software system. One of the most

successful architectonic design patterns nowadays is

Model-View-Controller (MVC). The idea of MVC is quite

old. It was developed at Xerox PARC in 1978/79 by Trygve

Reenskaug, but it gains its position in the world of

mainstream software developing only a few years ago. Basic

idea was that the model will be abstraction of domain model,

the view will contain user presentable interface, and

controller will coordinate capabilities of several views

making it a comprehensive tool [7]. Variations of MVC

pattern, like Model-View-Presenter (MVP) and

Model-View-View Model (MVVM – in some literature you

can also find View Model under the name Presentation

Model) are commonly used in the modern software in order

to fully utilize underlying framework of software

applications. In the Fig. 3, there is an example of how MVC,

MVP and MVVM patterns behave.

Fig. 3. Behavioral differences between MVC (Model-View-Controller),

MVP (Model-View-Presenter) and MVVM (Model-View-View Model)

design patterns.

It is worth of saying that in the modern software technique

called Dependency Injection (DI) is used in order to remove

tightly coupled components and replace them with soft

references. For more information about DI please refer to

[12].

We would like to point out one more pattern which was

introduced by Rinat Abdullin and is called Command and

Query Responsibility Segregation (CQRS) [1]. It is still in the

process of transforming into its final form, but provides us

some interesting ideas. First of all, CQRS differentiate

between commands, which purpose is to modify data in

storage system, and query producing readable information

for users in order to make responsiveness applications. Read

operations are much more often needed in comparison with

operations for data manipulation. Secondly usage of CQRS

entail that domain model and especially domain objects are

not presented to end users in their base form. The domain

model in CQRS is only used as an abstraction of the domain

problem, which contains all business logic for data

modifications and also business events. However for the

presentation purpose Data Transfer Objects (DTO) are used

as a lightweight wrapper to presenting readable data to the

user interface [1].

D. Continuous Integration

Term integration is describing an activity for combination

software components into system as a complex unit [13].

Continuous Integration is a software development practice

where members of a team integrate their work frequently,

usually each person integrates at least daily – leading to

multiple integration per day. Each integration is verified by

an automated build (including test) to detect integration

errors as quickly as possible [14]. Integration is related also

with Version Control, which is one of the aspects in Software

Configuration Management [15]. Having Version Control

system is necessarily when we want to develop high quality

software application. There are two main class of Version

Control system:

1) Centralized – This is built on top of client-server

architecture. Server plays role of source code primary

repository and each client have to communicate with

server in order to perform some action (including

commit (check in), check out, view history, revert

changes and others).

2) Decentralized – Nowadays decentralized version control

solutions become more and more popular over

centralized. These systems are built on top of peer to

peer architecture, where each peer contains repository

and changes are distributed from peer to peer as patches.

Advantage is that many operations do not need access to

network and that is why they have better performance in

comparison with centralized version control systems.

Disadvantages implies form the nature of distributed

solutions, where we do not have one place with most up

to date version of developed information system.

II. THE IMPLEMENTATION AND ELIMINATION OF

DRAWBACKS

In the real world, there is always a risk involved when

decision to adopt a new technology, methodology or

paradigm is made. Each member of team usually has to

change the way of thinking about problems and it take some

time. Implementation of new tools could also involve some

problems with e.g. performance (because we usually create

another level of abstraction) and the errors which were not

visible during change preparation time will be exposed in the

development process.

A. Usage and Limitation of ORM

The main reason for usage of ORM technology was

shielding the software developer form any interaction with

database level of an application. The developer can be fully

focused to domain model, which contains all domain logic

and do not have to bother with SQL (Structured Query

Language) commands and relational database schema [16].

That is why developer is much closer to the world of the end

user and can express his idea in language (called Ubiquitous

Language in [6]) understandable for both of them.

There are many ORM frameworks on the market, so

preliminary research and tests are necessary before choosing

the product which will be used in the software project. For

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

893

the purpose of persistence strategy, we have chosen ORM

framework described in [17]. In the following list, there are

outlined features important for ORM, when it will be used as

persistence mechanism for composite system, which is

developed according to modern trends [16]:

1) Support for many database systems and persistence

storages (at least MS SQL and Oracle).

2) Schema creation and schema update – Ability of creation

database schema and update it if necessary from class

model of domain object. It enabled us to have one object

oriented domain model modeled in CASE (Computer

Aides Software Engineering) tool. It meets MDA but

also Agile way of thinking about software development.

3) Automatic mapping relations between objects (1:1, 1:N,

M:N) to the database structure.

4) Support for transactions – Unit of Work design pattern

(for more information please refer to [18])

5) Superior query mechanism (ideally strongly typed) –

Query should not be typed as string. Enables compiler

checking of queries (in our case, we required

implementation of LINQ [19] technology).

6) Automatic notification when change in attribute value

occurred – It enables rich UI experience in Composite

Application.

During the development process we have discovered some

limitation and problems which were involved into

application of ORM into real life development cycle. They

are listed in the following list [16]:

1) Processing large amounts of data – Modification of any

object’s attributes require the reading of the object in

memory. This can lower performance, e.g. when

aggregation root domain object with many associated

objects or with a more deeper hierarchy (object in tree) is

deleted, all object waiting for deletion should be first

read from database to the memory and the deletion

process afterwards. We solved this issue by analysis of

application bottlenecks and defining cascade delete rule

in the relational database system.

2) The impossibility to join objects, which do not have

relations between them, in the query. The only working

solution we found out is the definition of database view.

It can be wrapped into the object and used in query

afterwards.

3) The problem with querying calculated attributes – In

some cases calculated attribute of the domain object is

needed as a part of query expression. In order to gain

value of calculate attribute whole object have to be read

from database, which has significant negative impact on

query performance. The solution is to define procedure

which will be calculating the value on relational database

system but the negative side is that we will have

duplicated business logic. That is recommended only in

bottlenecks of application.

B. Modern User Interface Composition

Current “rich” business applications typically feature

multiple screens, rich, flexible user interaction, data

visualization and role-determined behavior. The

application’s expected lifetime is measured in years and that

it will change in response to new, unforeseen requirements.

This application may start as small and over time evolve into

a composite client [16].

We have based our project on top of guidance [2] for

building next generation application in WPF (Windows

Presentation Foundation) technology provided by Microsoft.

It contains set of standards, design patterns and libraries

which help solving common problem in composite

application development. Probably the most important is the

implementation of architectonic design pattern called

MVVM. We slightly modify it to meet all our needs:

1) View

 XAML (eXtensible Application Markup Language) is

used for the purpose of View implementation. We decided to

use “in view” constructing of UI and composition technique

like templating, styling and data binding with automatic

change notification. WPF provide us all necessary

foundation. View should contain only functions directly

connected with the application UI.

2) View model

View Model class have access to all data and actions

which user can perform through UI. It transforms the data in

for the purpose of displaying them to the UI. We implement

View Models class as simple and reusable as possible. In the

context of composite application VM is created with help of

DI approach and it automatically run the initialization of

View component which is provided to end user to work with

immediately.

3) Model

Model is defined and generated from UML (Unified

Modeling Language) Class diagrams. It contains all business

logic and is extended with check of validation and business

rules. It also serves as basis for ORM database generation and

manipulation.

Model-View-View Model design pattern is not applicable

only for architecture of software system. Some of new

software framework successfully uses this approach to obtain

higher configurability of its components. As an example we

can state WPF framework for building user interface. In the

terms of WPF every control or component which will be

displayed on the screen is by default look less. When we need

to define a graphical shape of the user control, we crate

element called control template. Control templates are

defined by framework of course, but there is still a possibility

to override these settings and modify them to meet our needs.

The other purpose of control template is specifying the place

where the data will be presented on the control. Most LOB

(Line of Business) applications are data driven and binding

declarative binding of data to UI and also changes from UI

back to data, is another aspect of modern UI composition. In

WPF data template can be used to define UI elements in

which provided data will be presented. Data can by also

shaped with utilization of converters. At last the style is

applied on the user control to create delightful graphical

feeling. In the context of object oriented model we would say

that composition is the feature which is used in modern UI

paradigm, where user control is directly composed from

other base controls and this process can be done recursively

until the final stage is reached.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

894

Fig. 4. An example of the visual output composition [19].

Fig. 4 shows how all this could work together in order to

provide consistent and responsive user interface. This way of

thinking about UI could be applied to different platforms e.g.

mobile, web and client. WPF is oriented on rich desktop

applications but it is a big step forward. When we are

considering web, which is actually much lest interactive (in

the context of web applications), have its own user interface

description language (HTML – Hypertext Markup Language)

and styles written as CSS (Cascading Style Sheet) rules are

used for defining graphical visuals for many years, desktop

UI development , on the other hand was very limited until

present times.

C. Managed Languages and Performace

In object oriented applications written on top of software

framework there is a component responsible for memory

management called “garbage collector” (GC). Its main goal

is to delete unused object form memory heap to in order to

prevent performance problems. However there are situations

when dependency between objects does not allow to GS to

dispose objects from memory. We had also discovered this

problem, when we were dealing with implementation of

MVVM pattern in composite WPF application. We found out

that some View-Model components exist in memory more

than once, which has negative impact to performance. We

had examined this behavior and it seems that it occur only

when data object from View Model is presented by user

control (technical speaking a “Data Context” property of any

user control keep reference to the data object), but does not

have implemented ”Inotify Property Changed” interface

(.NET interface for propagating change in data immediately

to the UI) [16].

According to [20], [21] WPF uses the “Value Changed”

event, which involves calling the “Property Descriptor.

AddValue Changed” method on the “Property Descriptor”

object that corresponds to property. Unfortunately, this

action causes that the Common Language Runtime (CLR)

also keeps a reference to the “Property Descriptor” object in

a global table.

The diagnosis of memory leaking seems to be simple

especially when a memory profiler is used. This tool can help

to find out “paths to a GC root”, which can be used to

identify a problem object and its references [16]

III. OPEN ISSUES

Developing of modern information systems is complex

process and many tasks are still very difficult to accomplish.

For example it is not well defined standard on executing

parallel operations and also asynchronous user interface.

Another issue involve complex testing (involving testing

components for other vendors) of an application. Currently

an ideal solution candidate for this task is utilization of UI

testing tool.

IV. CONCLUSION

The aim of this article is to provide overview of modern

disciplines in applications development process. It outlined

some problems which are likely to come along during

learning and adopting of these techniques and solutions are

offered in the context of real world information system.

Modern trends in application development industry have of

course positive effect and try to simplify routine developer’s

task. But we have to make clear that every progress need time

so that software companies could adopt and use it correctly.

REFERENCES

[1] R. Abdullin. (October 2009). Command and query responsibility

segregation. [Online]. Available: http://abdullin.com/cqrs

[2] M. Patterns and P. Team (November 2010). Prism 4.0. [Online].

Available:

http://www.microsoft.com/en-us/download/details.aspx?id=4922

[3] J. D. Poole, “Model-driven architecture: Vision, standards and

emerging technologies,” in ECOOP Workshop on Metamodeling and

Adaptive Object Models, pp. 2-7, 2001.

[4] K. Beck, Extreme Programming, Extrémní Programování, Praha:

Grada, pp. 158, 2002.

[5] A. Cockburn, Agile Software Development, Addison-Wesley, pp. 8-9,

2001.

[6] E. Evans, Doman-Driven Design: Taskling Complexity in the Heart of

Software, New York: Addison Wesley, pp. 560, 2003.

[7] R. Pawson, “Naked objects,” Ph. D. dissertation, University of Dublin,

Trinity College, Dublin, 2004.

[8] R. Osheroves, The Art of Unit Testing, Manning, pp. 320, 2009.

[9] C. Kaner and J. Bach. (2009). Introduction to BDD. [Online].

Available: http://dannorth.net/introducing-bdd

[10] G. Kiczales, J. Lamping. A. Mendhekar, C. Maeda, C. Lopes, J. M.

Loingtier, and J. Irwin, “Aspect-oriented programming,” in European

Conference on Object-Oriented Programming ECOOP, Finland, pp.

25, 1997.

[11] P. H. Kuaté, T. Harris, C. Bauer, and G King, NHibernate in Action,

Manning, pp. 400, 2009.

[12] M. Seemann, Dependency Injection in .NET, Manning, 2009, pp. 375.

[13] S. M. Connell, Code Complete, Dokonalý kód, Brno: Computer Press,

a.s., pp. 694, 2006.

[14] M. Fowler. (2006). Continuous integration. [Online]. Available:

http://www.martinfowler.com/articles/continuousIntegration.html

[15] W. Lewis and G. Veerapillai, Software Testing and Continuous Quality

Improvement, 2nd ed. Auerbach publications, pp. 534, 2005.

[16] D. Petík and O. Moravčík, “Modern trends in the development of

software applications,” in Proc. International Workshop Innovation

Information Technologies – Theory and Practice, Dresden, pp. 3-5,

2010.

[17] Dev Express. (2006). Express persistence objects. [Online]. Available:

http://www.devexpress.com/Products/NET/ORM

[18] M. Fowler. (2002). Unit of work – design pattern. [Online]. Available:

http://martinfowler.com/eaaCatalog/unitOfWork.html

[19] F. Marguerie, S. Eichert, and J. Wooley, LINQ in Action, Manning, pp.

576, 2008.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

895

[20] J. Goldberg. (2005). WPF performance and. NET framework client

profile. [Online]. Available:

http://blogs.msdn.com/b/jgoldb/archive/2008/02/04/finding-memory-l

eaks-in-wpf-based-applications.aspx

[21] Microsoft. (2005). Memory leak in WPF. [Online]. Available:

http://support.microsoft.com/kb/938416/sk

Oliver Moravcik was born in Male Levare, Slovakia,
1952. He received his diploma degree in the field of
automation at University of Technology
Ilmenau/Germany and Ph.D. degree in the field of
computer processing also at University of Technology
Ilmenau/Germany. He became an associated (1990) and
full professor (1998) at Slovak University of
Technology in Bratislava/Slovakia. He was visiting
professor at Technical University in Koethen/Germany
(1986-1988) and at University of Applied Sciences

Darmstadt/Germany (1990-1992) as Konrad Zuse fellowship winner. He is
focused in the field of software technology and software development. He
published more than 100 articles, books and reports in international and
national journals. He leaded about 25 national and international projects.
Professor Moravcik is since 2006 the dean of the Faculty of Materials
Science and Technology in Trnava of the Slovak University of Technology
in Bratislava.

Daniel Petrik was born in Ilava/Slovakia in 1968. He

received his diploma degree in the field of

Manufacturing Systems and Robotics from Slovak

University of Technology in Bratislava in 1991. After

finishing his studies he worked at the Slovak

University of Technology in the field of process

automation and information (1991-1996). In 1994 he

started his part time job in MMS Softec Ltd (Trnava/

Slovakia) as a junior software developer. In November 1996 he left the

Slovak University of Technology and became a software architect in MMS

Softec Ltd (Trnava/Slovakia). In MMS Softec Ltd. he designed the

architecture of the following information systems: easy, e-VEGA, Proman

NG®, participated on the design of the system Proman W®. He is publishing

papers in national and international conferences and journals. MSc Daniel

Petrik’s research area of interest is software systems design, testing and its

automation.

Tomas Skripcak was born in Trnava, Slovakia, in

1986. He received his Diploma degree in the field of

applied informatics and automation in industry, from

Slovak University of Technology in Bratislava in 2010.

During studies (2005-2011), he worked as a software

developer in MMS Softec Ltd. (Trnava-Slovakia),

where he was responsible for design, development,

documentation and testing of information systems

based on .NET technology. In certain time, he is a PhD

student at Slovak University of Technology in the field

of process automation and information. Since February 2011, he is situated in

Germany at Helmholtz-Zentrum Dresden-Rossendorf. He is publishing

papers in national and international conferences and journals. His research

area of interest includes virtual reality system design, application of machine

learning and novel approaches of human-computer interaction.

Peter Schreiber was born in Bratislava, Slovakia, in

1960. He received his diploma degree in the field of

Control Theory from the Slovak University of

Technology in 1984 and a PhD. degree in the field of

Automation from the same university in 1992. He

became an associated professor of the Slovak

University of Technology for Applied Informatics and

Automation in the year 2000. He has worked as

assistant lecturer and lecturer in the Slovak University

of Technology. In the years 1995 – 1996 he was a

lecturer in Koethen in Germany. The spheres of his interest are software

systems development and intelligent control methods. He published more

than 100 articles in international journals and in the proceedings of

international conferences. He participated or leaded the solution of more than

10 grant projects in the areas of software development and control systems.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

896

