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Abstract 

A convertible authenticated encryption scheme allows the 

signer to create a valid authenticated ciphertext such that 

only the specified receiver can simultaneously recover and 

verify the message. To protect the receiver’s benefit of a 

later dispute on repudiation, the receiver has the ability to 

convert the signature into an ordinary one that can be 

verified by anyone. However, the previous proposed 

convertible authenticated encryption schemes are not 

adequate when the signers are more than one. Based on 

elliptic curve cryptography, this paper will propose a new 

efficient convertible multi-authenticated encryption scheme 

for mobile communication or hardware-limited users. The 

proposed scheme provides the following advantages: (1) 

The size of the generated authenticated ciphertext is 

independent of the number of total signers. (2) The 

signature is cooperatively produced by a group of signers 

instead of a signal signer. (3) Except for the designated 

recipient, no one can derive the signed message and verify 

its corresponding signature. (4) When a later dispute on 

repudiation, the receiver has the ability to prove the 

dishonesty of the signers by revealing an ordinary signature 

that can be verified by any verifier (or judge) without the 

cooperation of the signers. (5) The computation costs for 

the verifier will not significantly increase even if the signer 

group is expanded. Moreover, we also proposed the 

convertible multi-authenticated encryption protocol in 

multi-verifier setting for applications. 

Keywords: Elliptic curve cryptography, mobile 

communication, multi-authenticated encryption, multi-

verifier 

1   Introduction 

A digital signature on an electronic document plays the 

same role as a handwritten signature does on paper 

documents. Its main purpose is to specify the person 

responsible for the document. In some applications of the 

Internet, transmitted messages are compulsorily 

transformed into a ciphertext for satisfying the integrity, 

confidentiality, authenticity, and non-repudiation 

requirements. It is not necessary for anyone to verify the 

validity of the signature while keeping the message secret 

from the public. For example, the use of credit cards only 

needs to be verified by the credit card company. The 

straightforward approach is that a signer uses the specified 

receiver’s encryption key to encrypt both the generated 

signature and the message. In this way, only the specified 

receiver can recover both the message and its 

corresponding signature and then check the validity of the 

signature. However, this method is costly in terms of the 

computational complexities and the communication 

overheads. To improve the efficiency, some researchers 

such as Horster et al. [7] developed authenticated 

encryption schemes by modifying from Nyberg-Rueppel’s 

scheme [12]. In the authenticated encryption scheme, the 

signer may make a signature-ciphertext for a message and 

send it to a specified recipient. Only the specified recipient 

has the ability to recover and verify the message. But these 

authenticated encryption schemes are not digital signature 

schemes, no one except the specified receiver can be 

convinced of the signer’s valid signature. Further, consider 

the case of a later dispute, e.g., the credit card user denies 

having signed a signature. In this situation, the credit card 

company should have the ability to prove the dishonesty of 

those users. Then, it might be required to reveal the 

message along with its signature for verifying. To protect 

the recipient in case of a later dispute, some schemes [22] 

utilize an interactive repudiation settlement procedure 

between the recipient and the third party. It is inefficient 

due to the interactive communication. In 1999, based on 

Horster et al.’s scheme, Araki et al. proposed a limited 

verifier signature scheme and a convertible limited verifier 

signature scheme in which a receiver can convert a limited 

verifier signature into an ordinary digital signature [1, 2]. In 

this way, as the signer denies the signature, the receiver can 

prove the dishonesty of the signer by revealing an ordinary 

signature that can be verified by any verifier (or judge). 

However, the conversion of the signature requires the 

signer to release one more parameter. This results in a 

further communication burden. In addition, it may be 
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unworkable if the signer is uncooperative. Later, Wu and 

Hsu [18] proposed a convertible authenticated encryption 

scheme that can easily produce the ordinary signature 

without the cooperation of the signer, and their scheme is 

more efficient than Araki et al.’s in terms of the 

computation complexities and the communication costs. 

Since then, some similar schemes have been proposed [3, 4, 

8, 10, 15, 16, 18, 20, 21]. 

In the applications for organizations of enterprises, a 

decisional document is sometimes signed by two or more 

senior managers. Then, these above mentioned convertible 

authenticated encryption schemes have a weakness [16]. 

Their schemes cannot work, when the signers are more than 

one. In order to improve this weakness, in 2008, Wu et al. 

first proposed a convertible multi-authenticated encryption 

scheme [19]. Their scheme provides that the size of 

generated authenticated ciphertext is independent of the 

number of the total participating signers and the signature 

is cooperatively produced by a group of signers instead of a 

single signer. However, in 2009, Tsai found that the 

computational complexity of Wu et al.’s scheme is rather 

high and message redundancy is used. To improve the 

computational efficiency and remove the message 

redundancy, Tsai proposed a new convertible multi-

authenticated encryption with one-way hash function [16].  

With the rapid progress of wireless mobile 

communication, more and more people need secure 

transactions by cell phone for the electronic commerce. The 

security and efficiency are both important requirements for 

mobile communications. Due to the limitations of 

bandwidth and computation, it is necessary to construct 

low-computation and communication for convertible multi-

authenticated encryption. Therefore, based on elliptic curve 

cryptography (ECC) [9] and Schnorr’s [14] signature 

scheme, this article will propose a new efficient convertible 

multi-authenticated encryption scheme for mobile units or 

hardware-limited users. Moreover, the proposed scheme 

provides the following advantages: (1) The size of the 

generated authenticated ciphertext is independent of the 

number of total signers. (2) The signature is cooperatively 

produced by a group of signers instead of a signal signer. 

(3) Except for the designated recipient, no one can derive 

the signed message and verify its corresponding signature.  

(4) In case of a later dispute on repudiation, the receiver has 

the ability to prove the dishonesty of the signers by 

revealing an ordinary signature that can be verified by any 

verifier (or judge) without the cooperation of the signers. 

(5) The computation costs for the verifier will not 

significantly increase even if the signer group is expanded. 

Moreover, we also proposed a convertible multi-

authenticated encryption protocol in multi-verifier setting 

for some applications. It allows a group of verifiers to 

cooperatively recover and confirm the valid authenticated 

ciphertext. 

This paper is organized as follows. In the next section, 

it will present the necessary related works of the proposed 

scheme. In Section 3, we will introduce the proposed 

convertible multi-authenticated encryption scheme. The 

security analyses and the performances of the proposed 

scheme are discussed in Section 4. Some conclusions will 

be made in the last section. 

2  Preliminaries 

Before a new dynamic access control in sensor networks 

based on elliptic curves is proposed, this session first 

introduces the properties of elliptic curves that will allow us 

to discuss the security of the proposed scheme in Section 4 

[9]. 

An elliptic curve is generally given by 

                    2 3 2y x ax bx c    .  (1) 

Let q be a prime number larger than 3. An elliptic curve 

modulo q,
qE is the set of solutions (x,y) satisfying 

              2 3 2y x ax bx c     mod q.  (2) 

Here we take x and y to be in a fixed complete residue 

system modulo q, so
qE is a finite set. The group law on an 

elliptic curve is defined when the discriminant is nonzero, 

where the discriminant of the curve in Equation (2) is  

2 3 3 2 227 4 4 8c a c b a b abc       mod q. 

Again, the point at infinity is O. The rules for addition 

of points on 
qE apply with the interpretation that the 

reciprocal is the inverse modulo q. When the inverse 

modulo q does not exist, then the corresponding line is 

“vertical” modulo q. Suppose that two points 
1 1 1( , )P x y  

and 
2 2 2( , )P x y . The rules are as follows. 

  If 
1 2x x mod q , then

1 2P P O  . If 
1 0y   mod q , 

then 
1 1P P   and 2P1=O. In other cases, the sum

1 2P P is 

obtained by computing 1 2

1 2

y y

x x






 mod q, if 

1 2P P , or 

2

1 1

1

3 2

2

x ax b

y


 
  mod q, if 

1 2P P , and then let 

2

3 1 2x a x x     mod q. 

Hence, P1 + P2=(x3, y3), where 
3 1 3 1( )y x x y    

mod q. Then, it preserves the addition rules hold for all P, 

Q qE , and O is neutral element. Moreover, if the number 

of elements on qE is n, then for every point P on qE , it 

has nP O  mod q . 

In the elliptic curve cryptosystems, the elliptic curve 

discrete logarithm problem in qE is the following: Given 

P qE with order n ( That is nP = O ) and Q is a point in the 

cyclic group G P . It is intractable to find r such that Q 

= rP. Moreover, according to  the Diffie-Hellman algorithm 

over elliptic curve, it has that 

2 1 2 1 1 2 1 2 1 2( ) ( )t A t t P t t P t A t t P     over elliptic curve qE , 
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where
1 1A t P and

2 2A t P  for any positive 

integers
1t and

2t . 

3  The Proposed Scheme 

In this section, we will propose a convertible multi-

authenticated encryption scheme based on the elliptic curve 

cryptosystem (ECC) [9] and Schnorr’s [14] signature 

scheme. There are three phases in our scheme: the signing 

encryption, the message recovery and the signature 

conversion phases. In the signing encryption phase, the 

group of signers can construct the authenticated ciphertext 

to some specified recipient. In the message recovery phase, 

only the specified recipient has the ability to recover the 

ciphertext and verify the message. When a later dispute on 

repudiation, in the signature conversion phase, the recipient 

can reveal the converted multi-signature and then any one 

(or judge) can prove the dishonesty of the signers without 

the cooperation of the group of signers. Initially, the system 

authority (SA) chooses a large prime number 

q 160( 2 )q  and an elliptic curve
qE (the elliptic curve E is 

over the finite field
qF ); a cyclic group G P of points 

over the elliptic curve 
qE , where the point P is the 

generator of the group and has an order n of at least 160 

bits. It provides nP O and the point at infinity is O. SA 

also selects a secure one-way hash function h( ). Then, SA 

publishes the elliptic curve
qE , P, n, and h( ). Each signer 

in the system,
iU , owns a secret key 

ix  over the elliptic 

curve qE  and computes the corresponding public key 

i iQ x P of the point over the elliptic curve
qE . Moreover, 

the recipient V has a secret key
bx and its corresponding 

public key 
bB x P of the point over the elliptic curve

qE . 

Without loss of generality, let  1 2, , , tSG U U U be the 

signing group, V the recipient, and M the message to be 

signed. According to the concept of elliptic curves public 

key cryptosystem and Schnorr’s signature scheme, each 

signer
iU SG  performs the following steps in the 

signature encryption phase. 

3.1   The Signature Encryption Phase 

1. Each signer 
iU SG  selects a random number

ik  to 

computes the point ( , )x y

i i i iR k P R R  over the elliptic 

curve qE and broadcasts iR  to \{ }j iU SG U , 

where x

iR  and y

iR are the x-component and y-

component of point
iR , respectively. 

2. Upon receiving jR from   \ { }j iU SG U ,
iU computes 

two points 
1

t

i

i

R R


 and ( , )x yZ tMP R Z Z   over 

the elliptic curve qE , ( )x yr h M Z Z , 

and
i i is M k x r   , where t is the number of group 

signers SG, xZ  and yZ are the x-component and y-

component of point Z, respectively. Next, 
iU  sends 

( , )i is R  to \{ }j iU SG U . 

3. After receiving ( , )j js R  from \{ }j iU SG U , 
iU  

verifies 
j j jMP R s P rQ    over the elliptic curve

qE , 

where ( )x yr h M Z Z , 
jQ is the public point of 

signer
jU , and “∥” denotes concatenation. If it holds, 

proceed to the next step; else
js is requested to be 

signed and sent again.  

4. When all ( , )j js R ’s are collected and verified, the clerk, 

who can be any signer in SG, computes the 

value
1

t

i

i

s s


 mod n, the point ( , )x yD tMB D D   

over the elliptic curve
qE , and xC M D  , 

where xD is the x-component of point D and “  ” 

denotes the exclusive or operator. Note that B is the 

public point (key) of the designated recipient V. Then, 

the clerk sends ( , , , )C R s r to the recipient V. 

Here, the authenticated ciphertext for the message M 

is ( , , , )C R s r , which is sent to the verifier V. We first show 

the correctness of equation
j j jMP R s P rQ   in the 

following. It provides that
i i is M k x r   , then 

                
i i is P MP k P x rP   , 

therefore, 
i i is P rQ MP R    over the elliptic curve

qE , 

where ( )x yr h M Z Z , 
i iQ x P , and

i iR k P . 

3.2   The Message Recovery Phase 

After receiving the signature ( , , , )C R s r , V performs the 

following two steps to recover the message M and verify 

the signature. 

1. Compute two points
1

( , )
t

x y

i

i

Z sP r Q Z Z


    

and ( ) ( , )x y

bD x Z R D D    over the elliptic 

curve qE , where
bx is secret key of V. 

2. Recover the message M as xM C D   mod q. 

Then, V can verify the signature with the following 

equality: 

                     ( )x yr h M Z Z . (3) 

If it holds, the signature is valid. Hence, the recipient V 

confirms this secret message M and its signature were sent 

by the group signers  1 2, , , tSG U U U . For the security 

of Schnorr’s signature scheme, the random 

number ik should not be reused. We show the correctness of 
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equations 
1

( , )
t

x y

i

i

Z sP r Q Z Z


    and ( ) ( , )x y

bD x Z R D D    

over the elliptic curve
qE in the following. 

The proposed scheme has
1 1

( )
t t

i i i

i i

s s M k rx
 

     , 

then
1 1 1

( )
t t t

i i i i

i i i

sP MP k P rx P tMP R r Q
  

        over 

the elliptic curve
qE , it provides that  

      
1

( , )
t

x y

i

i

Z sP r Q tMP R Z Z


     ,  (4) 

Hence, 

     ( ) ( )b bD x Z R x tMP tMB    over
qE   (5) 

, and 

    ( )x x xM C D M D D      (6) 

where
bB x P is the public point of V over the elliptic 

curve
qE . 

3.3   The Signature Conversion Phase 

In case of later dispute on repudiation, V can prove the 

dishonesty of the group signers  1 2, , , tSG U U U  by 

revealing the message M for the converted signature (r, s). 

With this converted signature, anyone (or judge) can 

compute 
1

( , )
t

x y

i

i

Z sP r Q Z Z


    and verify its validity 

from equation ( )x yr h M Z Z . This phase is for the 

specified recipient to convince the judge that a signature is 

the signers’ true one if it is valid. 

In our signature conversion phase, only the recipient can 

reveal the message M and the converted signature (r, s) for 

any verifier to compute 
1

( , )
t

x y

i

i

Z sP r Q Z Z


    and 

check whether Equation (3) holds or not. Therefore, the 

group signers  1 2, , , tSG U U U cannot repudiate that 

they ever sent the message M to the recipient V. It is 

obvious that our convertible multi-authenticated encryption 

scheme can easily produce the ordinary signature without 

the cooperation of the multi-signers. Therefore, it is very 

convenient for the document’s signers to clarify the 

responsibility. 

3.4   Figures and Tables Format 

The proposed convertible multi-authenticated encryption 

can be easily updated into multi-signer and multi-verifier 

setting for the applications. The system initialization is the 

same as in this Section 3. Without loss of generality, 

let  1 2, , , tSG U U U be the signing group, 

 1 2, , , gVG V V V the recipient group, and M the message 

to be signed. Moreover, each recipient 
iV  in VG has a 

secret key
id and its corresponding public key 

i iB d P of 

the point over the elliptic curve
qE . Each signer in the 

system,
iU , owns a secret key 

ix  over the elliptic curve 
qE  

and computes the corresponding public key 
i iQ x P of the 

point over the elliptic curve
qE . We depict these three 

phases for multi-verifier setting as follows. 

3.5   The Signature Encryption Phase for Multi-verifier 

1. Each signer 
iU SG  selects a random number

ik  to 

computes the point ( , )x y

i i i iR k P R R  over the elliptic 

curve
qE and broadcasts 

iR  to \{ }j iU SG U , 

where x

iR  and y

iR are the x-component and y-

component of point
iR , respectively. 

2. Upon receiving
jR from  \ { }j iU SG U ,

iU computes 

two points 
1

t

i

i

R R


 and ( , )x yZ tMP R Z Z   over 

the elliptic curve
qE , ( )x yr h M Z Z , and 

i i is M k x r   , where t is the number of group 

signers SG, xZ  and yZ are the x-component and y-

component of point Z, respectively. Next, 
iU  sends 

( , )i is R  to \{ }j iU SG U . 

3. After receiving ( , )j js R from \{ }j iU SG U , 
iU  

verifies j j jMP R s P rQ    over the elliptic curve qE , 

where ( )x yr h M Z Z , 
jQ is the public point of 

signer
jU , and “∥” denotes concatenation. If it holds, 

proceed to the next step; else js is requested to be 

signed and sent again.  

4. When all ( , )j js R ’s are collected and verified, the clerk, 

who can be any signer in SG, computes the 

value
1

t

i

i

s s


 mod n, the point
1

( ) ( , )
g

x y

i

i

D tM B D D


   

over the elliptic curve
qE , and xC M D  , 

where xD is the x-component of point D and “  ” 

denotes the exclusive or operator. Note that iB  is the 

public point (key) of the designated recipient iV of VG. 

Then, the clerk sends ( , , , )C R s r to the recipient group 

VG.  

It is obvious that 
1

( )
g

i

i

D tM B


   

1 2( ... )gtM B B B   

1 2( ... ) ( , )x y

gtM d P d P d P D D      

Here, the authenticated ciphertext for the message M 

is ( , , , )C R s r , which is sent to the verifier group VG. In the 

signature encryption phase for multi-verifier setting, the 
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Steps 1, 2, and 3 are the same as the above signature 

encryption phase. The only difference is in the Step 4 

between the above signature encryption phase and the 

signature encryption phase for multi-verifier setting. 

3.6   The Message Recovery Phase for Multi-Verifier 

After receiving the signature ( , , , )C R s r , VG performs the 

following two steps to recover the message M and verify 

the signature. 

1. Each 
iV of VG computes two points 

1

( , )
t

x y

i

i

Z sP r Q Z Z


    and ( )i iD d Z R   over the 

elliptic curve
qE  and broadcasts

iD to \{ }j jV VG U , 

where
id is secret key of 

iV . 

2. Upon receiving
jD from \{ }j iV VG V , each

iV of VG 

can compute the point 
1

( , )
g

x y

i

i

D D D D


  . 

3. Recover the message M as xM C D   mod q. Then, 

each
iV of VG can verify the signature with the 

following equality:  

( )x yr h M Z Z . 

If it holds, the signature is valid. Hence, the 

recipient
iV of VG confirms this secret message M and its 

signature were sent by the group signers 

 1 2, , , tSG U U U . For the security of Schnorr’s 

signature scheme, the random number
ik should not be 

reused. We show the correctness of equations 

1

( , )
t

x y

i

i

Z sP r Q Z Z


    and  

1 2

1

( ... )( ) ( ) ( , )
g

x y

g i

i

D d d d Z R tM B D D


       over the 

elliptic curve qE in the following.  

The proposed scheme has
1 1

( )
t t

i i i

i i

s s M k rx
 

     , 

then   

1

( )
t

i i

i

sP MP k P rx P


  
1 1

t t

i i

i i

tMP R r Q
 

    over the 

elliptic curve qE , it provides that 

1

( , )
t

x y

i

i

Z sP r Q tMP R Z Z


     , (7) 

Hence, ( ) ( )i i i iD d Z R d tMP tMB     over qE , and  (8) 

1 2

1 1

( ... )( ) ( ) ( , )
g g

x y

g i i

i i

D d d d Z R tM B D D D
 

        

 (9) 

( )x x xM C D M D D     , (10) 

where
i iB d P is the public point of V over the elliptic 

curve qE . 

3.7   The Signature Conversion Phase for Multi-verifier  

In case of later dispute on repudiation, the verifier group 

VG can prove the dishonesty of the group 

signers  1 2, , , tSG U U U  by revealing the message M 

for the converted signature (r, s). With this converted 

signature, anyone (or judge) can compute 

1

( , )
t

x y

i

i

Z sP r Q Z Z


    and verify its validity from 

equation ( )x yr h M Z Z . This phase is for the specified 

recipient of VG to convince the judge that a signature is the 

signers’ true one if it is valid. 

In our signature conversion phase for multi-verifier, only 

the recipient of verifier group can reveal the message M 

and the converted signature (r, s) for any verifier to 

compute 
1

( , )
t

x y

i

i

Z sP r Q Z Z


    and check whether 

Equation ( )x yr h M Z Z  holds or not. Therefore, the 

group signers  1 2, , , tSG U U U  cannot repudiate that 

they ever sent the message M to the recipient group VG. It 

is obvious that our convertible multi-authenticated 

encryption scheme for multi-verifier setting can easily 

produce the ordinary signature without the cooperation of 

the multi-signers. Therefore, it is very convenient for the 

document’s signers to clarify the responsibility. 

4  Discussions 

In this section, we are going to explore the securities and 

the performances of the proposed scheme. 

4.1   Security Analyses 

In our scheme, both encrypting and signing are based on 

the ECC and Schnorr’s signature scheme, respectively. 

Thus, the security of proposed scheme is founded in the 

difficulty of solving the discrete logarithm problem in
qE . 

We will review some security terms needed for security 

analysis [5, 9]. 

Definition 1. A secure hash function, h( ): x y , is one-

way, if given x, it is easy to compute ( )h x y ; however, 

given y, it is hard to compute 1( )h y x  . 

Definition 2. The elliptic curve discrete logarithm problem 

(ECDLP) in qE is as follows: Given P qE with order n 

( That is nP = O ) and Q is a point in the cyclic group 

G P . It is intractable to find r such that Q = rP. 

Definition 3. The elliptic curve computational Diffie-

Hellman problem (ECDHP) is as follows: Given 
1t P and 

2t P  over elliptic curve qE , it is hard to compute 
1 2t t P  for 
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any positive integers
1t and

2t . 

In the proposed scheme, any signer
iU ’s private key 

ix  

must be kept secret. From public key 
i iQ x P of the group 

signer SG over the elliptic curve
qE , no one can easily 

derive the corresponding private key
ix . This security 

results from the difficulty of solving the elliptic curve 

discrete logarithm problem (ECDLP). Moreover, in our 

scheme, the ordinary signature is embedded in the 

authenticated encryption signature. Thus, the receiver can 

easily release the converted signature to any verifier (or 

judge) when the group signers SG deny their having signed.  

First, we consider the confidentiality in the proposed 

convertible multi-authenticated encryption scheme, each 

signer 
iU SG  selects a random number

ik  to computes 

the point ( , )x y

i i i iR k P R R  over the elliptic curve
qE and 

then broadcasts 
iR  to \{ }j iU SG U .Next, each

iU  

computes two points 
1

a

i

i

R R


  and ( , )x yZ tMP R Z Z    

over
qE , and applies the concept of Schnorr’s signature 

scheme to construct ( )x yr h M Z Z  and 

i i is M k x r   . Finally, the clerk of SG computes the 

value
1

t

i

i

s s


 and the point ( , )x yD tMB D D   over 
qE , 

and then generates the ciphertext C of M by 

computing xC M D  , where 
bB x P  is the public point 

of receiver V. Then, the clerk delivers the 

signature ( , , , )C R s r  to the specified recipient V. After 

receiving ( , , , )C R s r , V computes  the point 

1

( , )
t

x y

i

i

Z sP r Q Z Z


   , and then uses his secret key
bx  to 

derive ( )b bD x Z R x tMP tMB    and recovers the 

message xM C D  . Next, V can confirm that the 

message M is sent from signers SG by checking 

( )x yr h M Z Z  holds.  

In the proposed scheme, from the information 

( , , , )C R s r , anyone can derive 
1

( , )
t

x y

i

i

Z sP r Q Z Z


    

and compute (Z-R). However, without knowing V’s secret 

key
bx , no one can easily derive ( )bD x Z R tMB   and 

recover the message xM C D  . This is the elliptic curve 

computational Diffie-Hellman problem (ECDHP). For 

given ( )tMP Z R  and ( )btB tB tx P , it is very difficult to 

find 
btMB tx MP . In addition, based on ECDLP, it is 

intractable to find 
bx  such that bB x P . Therefore, it can 

provide the confidentiality in the proposed convertible 

multi-authenticated encryption. 

For the unforgeability security, in our method, it is very 

hard to derive
ik from the point

i iR k P . This security also 

results from the difficulty of solving the elliptic curve 

discrete logarithm problem (ECDLP) and Schnorr’s 

signature scheme. Even if the message M is known, 

without
ik , it is not easily for the attacker to obtain 

signer
iU ’s secret key

ix from
i i is M k x r   . We see that 

the probability of obtaining
ix and

ik from current 

is ,
i iR k P , and r is equivalent to performing an 

exhaustive search on
ix and

ik . Thus, the attacker cannot 

easily to masquerade the signer
iU .  

Moreover, the adversary can produce an authenticated 

ciphertext ( , , , )C R s r     for message *M under the private 

key of the designated recipient. If *M  

satisfies ( )x yr h M Z Z    , then the multi-signature 

( , )s r   can be regarded as a valid multi-signature for the 

message *M with respect to the group public key
1

t

i

i

Q


 of 

SG, where
1

( , )
t

x y

i

i

Z sP r Q Z Z  



   . However, based 

on the secure hash function h( ), it is difficult to 

find *M such that ( )x yr h M Z Z    . The probability of 

obtaining the exactly ( )x yr h M Z Z     is equivalent to 

performing an exhaustive search on M  . By applying the 

Schorr’s signature scheme, for ( )x yr h M Z Z  and 

i i is M k x r   (
1

t

i

i

s s


 ), without the group signer’s 

private key
ix , anyone cannot forge the signature (r, s) for 

the message M, where 
ik  is a secret random number of the 

group signer of 
iU . It can be resistant the forgery under the 

chosen-message attacks. Hence, anyone cannot masquerade 

as a signer
iU or the group signers SG to forge the valid 

signature-ciphertext ( , , , )C R s r  and send it to a specified 

recipient V. For the security of Schnorr’s signature scheme, 

the secret random number
ik should not be reused for any 

message.  

Next, the proposed convertible multi-authenticated 

encryption for multi-verifier setting is extension of the 

convertible multi-authenticated encryption scheme. After 

receiving ( , , , )C R s r , each 
iV of VG  can compute the point 

1

( , )
t

x y

i

i

Z sP r Q Z Z


   , and then use his secret key id  

to derive ( )i i i iD d Z R d tMP tMB    and send 
iD to 

other jV of VG. After receiving all jD of jV , then 

each
iV could compute 

1

( , )
g

x y

i

i

D D D D


  and recover 
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the message xM C D  . Next, each 
iV  can confirm that 

the message is sent from signers SG by checking 

( )x yr h M Z Z  holds.  

In the proposed method, from the information 

( , , , )C R s r , anyone can derive 
1

( , )
t

x y

i

i

Z sP r Q Z Z


    and 

compute (Z-R). However, without knowing 
iV ’s secret 

key
id , no one can easily derive ( )i i iD d Z R tMB   and 

recover the message xM C D  , where 
1

( , )
g

x y

i

i

D D D D


  . 

This is the elliptic curve computational Diffie-Hellman 

problem (ECDHP). For given ( )tMP Z R   

and ( )i i itB tB td P , it is very difficult to find 

i itMB td MP . In addition, based on ECDLP, it is 

intractable to find 
id  such that

i iB d P . Therefore, it can 

provide the confidentiality in the proposed convertible 

multi-authenticated encryption. Therefore, only the verifier 

group VG can recover the message M and confirm that the 

message is sent from signers SG. It is obvious that the 

security of the proposed convertible multi-authenticated 

encryption for multi-verifier setting is same as the proposed 

convertible multi-authenticated encryption protocol. 

4.2   Performances and Comparisons 

The concept of convertible multi-authenticated encryption 

was first proposed by Wu et al. [19]
.
 To improve the 

computational efficiency and remove the message 

redundancy for the Wu et al.’s scheme, in 2009, Tsai 

proposed a new convertible multi-authenticated encryption 

with one-way hash function [16]. For this reason, we only 

compare our convertible multi-authenticated encryption 

scheme with Tsai’s scheme [16]. For convenience, we 

define related notations to analyze the computational 

complexity. The notation 
mTe  means the time for one 

multiplication computation over an elliptic curve, 
aTe  

denotes the time for one modular addition computation 

over an elliptic curve, 
eT  means the time for one modular 

exponentiation computation, 
mT is the time for performing a 

modular multiplication computation, and 
hT  denotes the 

time for executing the adopted one-way hash function in 

one’s scheme. Here, the modular addition computation 

aTe for two points in elliptic curve qE is similar to the 

operation that of a modular multiplication computation
mT  

in qZ . Note that the times for computing exclusive-or, 

modular addition, and subtraction are ignored, since they 

are much smaller than mTe ,
aTe ,

eT ,
mT , and

hT  .  

In the proposed method, the most expensive operation 

is the point multiplication of the form kP and P is a cyclic 

group of points over an elliptic curve qE  [9, 11, 17]. 

Compared to RSA, ECC can achieve the same level of  

Table 1: Comparisons of Tsai’s scheme and the proposed 

scheme in computation costs 

mTe : the time for performing a multiplication computation over an 

elliptic curve 

aTe : the time for performing a modular addition computation over an 

elliptic curve  

eT : the time for performing a modular exponentiation computation 

mT : the time for performing a modular multiplication computation  

hT : the time for performing a one-way hash function 

security with smaller key sizes
 
[9, 11]. It has been shown 

that 160-bit ECC provides comparable security to 1024-bit 

RSA [13] and 224-bit ECC provides comparable security to 

2048-bit RSA [17]. Gura et al. [6] evaluated the assembly 

language implementations of ECC and RSA on the Atmel 

ATmega128 processor [18], which is popular for sensor 

platform such as Crossbow MICA Motes. In their 

implementation, a 160-bit point multiplication of ECC 

requires only 0.81s, while 1024-bit RSA public key 

operation and private key operation require about 0.43s and 

10.99s, respectively. Therefore, under the same security 

level, smaller key sizes of ECC could offer faster 

computation, as well as memory, energy and bandwidth 

savings. Hence, 
mTe is more efficient than a modular 

exponentiation computation
eT . 

We summarize the comparisons of our convertible 

mulit-authenticated encryption scheme with Tsai’s scheme 

in Table 1. As shown in Table 1, the computational 

complexity for the signature encryption phase, message 

recovery and verification, and verifying converted 

signature are (2 2)h m aT t Te tTe   , 3h m aT Te tTe  , and 

2h m aT Te tTe  , respectively. Therefore, under the same 

security level, smaller key sizes of ECC could offer faster 

computation, as well as memory, energy and bandwidth 

savings. It is obvious that the proposed scheme is more 

efficient than Tsai’s scheme. 

5   Conclusions 

Based on ECC and Schnorr’s signature scheme, we have 

proposed a convertible multi-authenticated encryption 

scheme. The proposed scheme allows a group of signers to 

cooperatively create a valid authenticated ciphertext for the 

specific recipient. In this way, only the designated recipient 

Items Tsai’s scheme              The proposed scheme 

Signature 

encryption (for 

each signer and the 

clerk) 

 

 

Message recovery 

and verification 

 

 

Signature 

conversion  

 

 

Verifying converted 

signature    

(2 1) 2h e mT t T tT         (2 2) 2h m aT t Te tTe    

 

 

 

 

3h e mT T tT                3h m aT Te tTe       

   

 

  

    0                            0 

 

 

2h e mT T tT               2h m aT Te tTe    
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has the ability to recover the message and verify the 

signature. Once the group signers deny the signature, the 

specified recipient can convert the authenticated ciphertext 

into an ordinary one for convincing anyone of the signers’ 

dishonesty. In addition, we also proposed a convertible 

multi-authenticated encryption for multi-verifier setting. It 

allows a group of verifiers to cooperatively recover the 

valid authenticated ciphertext. Comparing with previously 

proposed schemes, our method is more suitable for 

hardware-limited users or mobile units. All of them can 

simultaneously achieve the security requirements of 

integrity, confidentiality, authenticity, and non-repudiation.  
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