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Abstract

A deniable authentication protocol enables a receiver
to identify the true source of a given message but not
to prove the identity of the sender to the third party.
Non-interactive protocol is more efficient than interactive
protocol in terms of communication overhead, and thus
several non-interactive deniable authentication protocols
have been proposed. So, it is very necessary to design a
deniable authentication protocol which is non-interactive,
secure and efficient. This paper proposes a deniable au-
thentication protocol based on the bivariate function hard
problem (BFHP) cryptographic primitive. An improve-
ment based on the BFHP is suggested since the problem of
the BFHP provides the needed security elements plus its
fast execution time. At the same time, the proposed pro-
tocol has properties of completeness, deniability, security
of forgery attack, security of impersonation attack and
security man-in-the-middle attack also has been proved.
Keywords: Bivariate function hard problem, deniable au-
thentication protocol, non-interactive protocol

1 Introduction

Deniability is a privacy property that ensures protocol
participants can later deny taking part in a particular
protocol run while authentication is used to ensure that
users are who they say they are. So, a deniable authen-
tication protocol is a protocol that enables a receiver to
identify the true source of a given message, but not to
prove the identity of the sender to a third party. There
are many interactive and non-interactive deniable authen-
tication protocols have been proposed. However, the in-
teractive manner makes deniable protocols inefficient.

Deniable authentication has two characteristics that
differ from traditional authentication. The first one is

only the intended receiver can identify the true source of
a given message (i.e. able to identify the signature of the
sender) and the second one is the receiver cannot prove
the source of the message to a third party (i.e. unable
to prove the signature of the sender to a third party that
the signature belongs to the sender). In other words, once
the receiver has obtained and authenticated the message
from the sender, the receiver cannot impersonate as the
sender to a third party. Because of these two character-
istics, the deniable authentication protocol is very useful
for providing secure negotiation over internet.

For example, suppose that a customer wants to order
an item from a merchant, so the customer should make an
offer to the merchant and create an authenticator for the
offer because the merchant must be sure that this offer
really comes from the customer. However, the merchant
wants to be able to prevent the customer from showing
this offer to another party in order to elicit a better deal.
Therefore, we need a protocol that enables a receiver to
identify the source of a given message, but prevents a
third party from learning the sender’s identity.

In 1998, Dwork et al. [4] proposed an interactive de-
niable authentication protocol based on concurrent zero
knowledge proof while Aumann and Rabin [2] proposed
an interactive deniable authentication protocol based on
the integer factorization problem (IFP). Later, Deng et
al. (2001) [3] introduced two interactive deniable authen-
tication protocols based on the discrete logarithm prob-
lem (DLP) and IFP respectively. In 2002, Fan et al. [5]
introduced another simple interactive deniable authenti-
cation protocol based on Diffie-Hellman Key Distribution
Protocol. However, there is a common weakness in the
four previous protocols which the sender does not know
to whom he proves the source of a given message. That
is, a third party can impersonate the intended receiver to
identify the source of a given message. Meanwhile, these
four protocols are interactive and less efficient.
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This scenario has led many cryptographers to come up
with non-interactive deniable authentication protocol in
order to enhance the efficiency. Shao (2004) [12] proposed
a non-interactive deniable authentication protocol based
on generalized ElGamal signature scheme. Lu and Cao
(2005) [10, 11] proposed two deniable authentication pro-
tocols based on bilinear pairing and IFP respectively but
their protocol is still unable to achieve the second char-
acteristic of being a deniable authentication protocol.

Later, in 2008, Hwang and Ma [8] proposed deniable
authentication protocol with anonymous sender protec-
tion. The sender’s anonymity is also used to protect the
sender’s privacy. Though the sent message is forgeable
by the receiver, but the sender can provide evidence to
prove the message was really sent by him. Hence, to re-
duce the computational cost of proposed protocols with
anonymous sender protection, Hwang and Chao (2010) [7]
proposed a new deniable authentication protocol with
anonymous sender protection in an efficient way based
on Schnorr signature scheme.

Then, Zhang et al. (2011) [13] proposed a new non-
interactive deniable authentication protocol based on gen-
eralized ElGamal signature scheme, which is more effi-
cient than the previous two protocols (Shao 2004, Lee
et al. 2007) [9, 12] both in computation and commu-
nication. To authenticate the source of a message, al-
though the proposed protocol needs one more modular
exponentiation than Shao’s protocol, but as to the length
of the communicated messages, just 2|h| are required to
be transmitted compared to 3|h| in Shao’s protocol. Lee
et al.’s protocol needs five exponentiation computations
altogether compared to proposed protocol which needs
only four. The transmitted bits of the proposed protocol
are reduced to 320 bits compared to Lee et al.’s protocol
which is 1184 ∼ 2208 bits.

In this paper, we propose a new non-interactive deni-
able authentication protocol based on the Bivariate Func-
tion Hard Problem (BFHP) (Ariffin et al. 2013) [1]. We
prove our protocol is secure against forgery attack, imper-
sonation attack and man-in-the-middle attack and prove
the properties of completeness and deniability of this pro-
tocol. With its guaranteed security, we also show that the
performance of the protocol requires reasonable numbers
of operation in both sign and verify phases.

The layout of the paper is as follows. In Section 2, we
will first review the definition of the BFHP. Proof will be
given on the uniqueness and intractability of the BFHP.
We will also review in this section, deniable authentica-
tion protocol in the standard model. In Section 3, we
propose the standard model of the deniable authentica-
tion protocol followed by the security analysis in which
proof is given. In Section 4, we provide efficiency anal-
ysis and comparison of the protocol. In Section 5, the
conclusion about our deniable authentication protocol is
made.

2 Preliminaries

2.1 Linear Diophantine Equations with
Infinitely Many Solutions

Definition 1. The successful process of prf-solving a Dio-
phantine equation which has infinitely many solutions is
the process of determining a preferred solution from a set
of infinitely many solutions for the Diophantine equation.

To further understand and obtain the intuition of Def-
inition 1, we will now observe a remark by Herrmann
and May (2008) [6]. It discusses the ability to retrieve
variables from a given linear Diophantine equation. But
before that we will put forward a famous theorem of
Minkowski that relates the length of the shortest vector
in a lattice to the determinant.

Theorem 1. In an ω-dimensional lattice, there is exists
a non-zero vector with

‖υ‖ ≤ √
ωdet(L)

1
ω

We now put forward the remark.

Remark 1. There is a method for finding small roots of
linear modular equations a1x1+a2x2+...+anxn ≡ 0 (mod
N) with known modulus N . It is further assumed that
gcd(ai, N) = 1. Let Xi be upper bound on |xi|. The ap-
proach to solve linear modular equation requires to solve
the shortest vector in a certain lattice. We assume that
there is only one linear independent vector that fulfills
Minkowski bound (Theorem 1) for the shortest vector.
Herrmann and May (2008) [6] showed that under heuris-
tic assumption that the shortest vector yields the unique
vector (y1, ..., yn) whenever

n∏

i=1

Xi ≤ N.

If in turn we have
n∏

i=1

Xi ≥ N1+ε.

Then the linear equation usually has N ε many solutions,
which is exponential in the bit-size of N . So, there is no
hope to find efficient algorithms that in general improve
on this bound, since one cannot even output all roots in
polynomial time. We now put forward a corollary.

Corollary 1. A linear Diophantine equation

f(x1, x2, ..., xn) = a1x1 + a2x2 + ... + anxn

= N

with
n∏

i=1

xi ≥ N1+ε

is able to ensure secrecy of the preferred sequence x =
{xi}.
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Remark 2. In fact if one were to try to solve the linear
Diophantine equation N = a1x1+a2x2+ ...+anxn, where

n∏

i=1

xi ≥ N1+ε

any method will first output a short vector x= {xi} as the
initial solution. Then there will be infinitely many values
from this initial condition that is able to reconstruct N .

2.2 Bivariate Function Hard Problem

The following proposition gives a proper analytical
description of the Bivariate Function Hard Problem
(BFHP).

Definition 2. We define Z+
(2m−1,2m−1) as a set of pos-

itive integers in the interval as a set of positive inte-
gers in the interval (2m−1, 2m − 1). In other words, if
x ∈ Z+

(2m−1,2m−1), then x is a m-bit positive integer.

Proposition 1. (Ariffin et.al (2013)) Let F (x1, x2, ..., xn)
be a multiplicative one-way function that maps F :
Zn → Z+

(2m−1,2m−1). Let F1 and F2 be such func-
tion (either identical or non-identical) such that A1 =
F (x1, x2, ..., xn), A2 = F (y1, y2, ..., yn) and gcd(A1, A2) =
1. Let u, v ∈ Z+

(2n−1,2n−1). Let (A1, A2) be public param-
eters and (u, v) be private parameters. Let

G(u, v) = A1u + A2v (1)

with the domain of the function G is Z2
(2n−1,2n−1) since

the pair of positive integers (u, v) ∈ Z2
(2n−1,2n−1) and

Z+
(2m+n−1,2m+n−1) is the codomain of G since A1u+A2v ∈
Z+

(2m+n−1,2m+n−1).
If at minimum n−m− 1, where (n,m) is chosen such

that the value k results in 2k to be accepted as exponen-
tially large for any probabilistic polynomial time (PPT)
adversary to sieve through all possible answers, it is infea-
sible to determine (u, v) over Z from G(u, v). Furthermore
(u, v) is unique for G(u, v) with high probability.

Remark 3. We remark that the preferred pair (u, v) in Z,
is prf-solution for Equation (1). The preferred pair (u, v)
is one of the possible solutions for Equation (1) given by

u = u0 + A2t (2)

and
v = v0 −A1t (3)

for any t ∈ Z.

Remark 4. Before we proceed with the proof, we remark
here that the Diophantine equation given by G(u, v) is
solved when the preferred parameters (u, v) over Z are
found. That is the BFHP is prf-solved when the preferred
parameters (u, v) over Z are found.

Proof. We begin by proving that (u, v) is unique for each
G(u, v) with high probability. Let u1 6= u2 and v1 6= v2

such that
A1u1 + A2v1 = A1u2 + A2v2 (4)

We will then have

Y = v2 − v1 =
A1(u1 − u2)

A2

Since gcd(A1, A2) = 1 and A2 ≈ 2m, the probability that
Y = v1 − v2 is an integer solution not equal to zero is

2−m. Thus, we have v1 = v2 with probability 1 − 1
2m

.

(i.e. 1− 1
2m

is the probability that A2 divides u1 − u2).
Next we proceed to prove that to prf-solve the Dio-

phantine equation given by Equation (1) is infeasible to
be prf-solved. From the general solution for G(u, v) is
given by Equation (2) and Equation (3) for some integer
t to find u within the stipulated interval u ∈ (2n−1, 2n−1)
we have to find the integer t such that the inequality
2n−1 < u < 2n − 1 holds. This gives

2n−1 − u0

A2
< t <

2n − 1− u0

A2
.

Then, the difference between the upper and the lower
bound is

2n − 1− 2n−1

A2
=

2n−1 − 1
A2

≈ 2n−2

2m
= 2n−m−2.

Since n−m−1 = k where 2k is exponentially large for any
probabilistic polynomial time (PPT) adversary to sieve
through all possible answers, we conclude that the differ-
ence is very large and finding the correct t is infeasible.
This is also the same scenario for v.

Example 1. Let A1 = 191 and A2 = 229. Let u = 41234
and v = 52167. Then G = 19821937. Here we take m = 8
and n = 16. We now construct the parametric solution
for this BFHP. The initial points are u0 = 118931622 and
v0 = −99109685. The parametric general solution are
u = u0 + A2t and v = v0 −A1t. There are approximately

286 ≈ 29 (i.e.
216

229
) values of t to try (i.e. difference

between upper and lower bound), while at minimum the
value is t ≈ 216. In fact, the correct value is t = 519172 ≈
219.

Case 1. For (t′, v′ /∈ Z), we can find the value of t′ which
u′ = u0 + A2t

′ such that u ≈ 2n. Let u′ = 43571 ≈ 28.
Then t′ = 519161.7948 and the value of v′ /∈ Z since v′ =
50217.79913 which clearly results v will not be integer if
u is not the prf-solution.

Case 2. For (t′, v′ ∈ Z), we will obtain v′ ∈ Z with

probability
1

2m
which u′ = u0 + A2t

′ such that t′ = t0

and u ≈ 2n. Let u′ = 44211 ≈ 28. Then the value of
v′ ∈ Z since v′ = 49684 for t′ = 519159. Even we get
(t′, u′, v′ ∈ Z) but u′ 6= u and v′ 6= v. In fact there are 219

choices in the example.
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2.3 Deniable Authentication Protocol in
Standard Model

A deniable authentication protocol in standard model
consists of four phases (Setup, Key Generation, Signing,
Verifying) which are defined as follows:

1) Setup: The authority determines the parameters
that can be used by sender and the receiver to gen-
erate their private and public key.

2) Key Generation: An algorithm that generates pri-
vate and public key. The private key which is ran-
domly chosen and remain secret, to be used to gen-
erate the public key that will be published in public.

3) Signing: An algorithm that generates message au-
thentication code (MAC) from the original message
which involves hash function.

4) Verifying: An algorithm that involves verification
of the new MAC generated with the MAC that has
been sent by the sender. If both hold, the original
message is authentic and has not been altered.

3 The Standard Model of De-
niable Authentication Protocol
Based on the BFHP

3.1 Proposed Deniable Authentication
Protocol

Setup. The authority randomly chooses the following
public parameters:

1) p is a large prime number of n-bit size.

2) g is a primitive root in Zp.

3) H(·) is a collision free hash function with an
output is n bits.

Key Generation. When a user wishes to join the sys-
tem, he chooses a random number t ∈ Zp as his pri-
vate key and compute v = gt(mod p) as his public
key. The public key of each user is certificated by cer-
tification authority. The sender, S chooses his secret
key ts ∈ Z+

(22n−1,22n−1) and computes vs = gts(mod
p) as his public key. The reason why ts is chosen out
of Zp can be observe in step 2(i) of signing phase in
order for BFHP to hold.

The receiver, R chooses his secret key tR ∈ Zp and
computes vR = gtR(mod p) as his public key.

Signing. When S wants to deniably authenticate a mes-
sage M to the intended receiver R, he computes the
following protocol:

1) Chooses randomly value α ∈ Z+
(22n−1,22n−1).

2) Computes

a. σ = H1(M)ts + H2(M)α;

b. k1 = (vR)−H1(M)ts
2
(mod p);

c. k0 = (vR)αH2(M)ts(mod p);
d. MAC = H(k0‖M).

Then, S sends (k1, σ,MAC) together with message
M to R.

Verifying. After receiving (k1, σ,MAC) together with
message M from S, receiver, R computes

1) k1
∗ = (vs)σtR ;

2) k0
′ = k1 · k1

∗;

3) MAC = H(k0
′‖M).

R verifies whether H(k0‖M) = H(k0
′‖M). If two

equations hold, R accepts the received information.
Otherwise, R rejects it. Note that ‖ is the concate-
nate operator of strings.

Proposition 2. (Completeness) If the sender and the
receiver follow the protocol, the receiver is able to calculate
k0
′ and then identify the source of the message.

Proof. From the proposed protocol, we have

k0
′ = k1 · k∗1
= (vR)−H1(M)ts

2 · (vs)σtR(mod p)

= g−tRH1(M)ts
2 · gts

2H1(M)tR · gH2(M)tsαtR(mod p)

= gH2(M)tsαtR(mod p)

= (vR)H2(M)tsα(mod p)
= k0

So, H(k0
′‖M) = H(k0‖M).

Example 2. The authority randomly chooses p = 137
and g = 101 as a primitive root in Zp. The sender, S
chooses his secret key ts = 781 and computes vs = 118
as his public key. The receiver, R chooses his secret key
tR = 157 and computes vR = 11.

When S wants to deniably authenticate a message M =
888 to the intended receiver R, he chooses randomly value
of α = 813. He computes σ = 35228 since H1(M) =
17 and H2(M) = 27. Then, he computes k1 = 37 and
k0 = 36. Next, he generates MAC by applying the hash
function to the concatenation between M and k0. He gets
MAC = 1dfc4f553a94cfbf96633b16b2b6e1b5. Then, S
sends (k1, σ,MAC) together with message M to R.

After receiving (k1, σ,MAC) together with message M
from S, receiver, R computes k1

∗ = 38, k0
′ = 36 and

MAC = 1dfc4f553a94cfbf96633b16b2b6e1b5 R verifies
whether H(k0‖M) = H(k0

′‖M ′). If two equations hold,
R accepts the received information. Otherwise, R rejects
it.
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3.2 Security Analysis of Deniable Au-
thentication Protocol

Proposition 3. The proposed protocol is deniable.

Proof. If the receiver can simulate all the transmitted in-
formation between him and the sender, then he cannot
prove to any third party where the message is from be-
cause the third party cannot identify whether the message
is from the sender or is forged by receiver himself.

So, if the receiver tells a third party that the data is
from the sender, then the sender can deny it and claims
that the receiver himself forge the data. Hence the third
party cannot identify who tells the truth.

After receiving (k1, σ,MAC), the receiver can identify
the source of the (k1, σ,MAC) with his own private key,
tR. However, he cannot prove the source of the message
to any party because the receiver can calculate k0, so he
can select any other message M ′ and construct MAC ′ =
H(k0

′‖M ′) and tells the third party (k1, σ,MAC ′) is the
information he gets from S.

Without the randomly selected α ∈ Z+
(22n−1,22n−1), the

secret key ts of S and secret key tR of R, the third party
cannot derive k0 and k′0. So he cannot prove whether the
receiver is telling the truth.

Proposition 4. If the attacker cannot personate as the
sender by using another pair of (α′, ts′) in order to com-
municate with the intended receiver, then the proposed
protocol can withstand forgery attack.

Proof. The attacker chooses his secret key ts
′ ∈

Z+
(22n−1,22n−1). When attacker wants to deniably authen-

ticate a message M ′ to the intended receiver R, he com-
putes as follows:

1) Chooses randomly value α′ ∈ Z+
(22n−1,22n−1).

2) Computes

a. σ = H1(M)ts′ + H2(M)α′;

b. k1 = (vR)−H1(M)(ts
′)2(mod p);

c. k0 = (vR)α′H2(M)(ts
′)(mod p);

d. MAC = H(k0‖M ′).

Then, attacker sends (k1, σ,MAC) together with message
M ′ to R. After receiving (k1, σ,MAC) together with mes-
sage M ′ from attacker, receiver, R computes

1) k1
∗ = (vs)σtR ;

2) k0
′ = k1 · k1

∗;

3) MAC = H(k0
′‖M ′).

Hence, H(k0‖M ′) 6= H(k0
′‖M ′). The message authen-

tication code, H(k0‖M ′) 6= H(k0
′‖M ′) since k0 6= k0

′

and the receiver always uses the sender?s public key vs

to calculate k1
∗ and identify the source of the message as

follows:

k0
′ = k1 · k∗1
= (vR)−H1(M)(ts

′)2 · (vs)σtR(mod p)

= g−tRH1(M)(ts
′)2 · gts(H1(M)ts

′+H2(M)α′)tR(mod p)

= g−tRH1(M)(ts
′)2 · g(ts

′)tsH1(M)tR · gH2(M)tsα′tR(mod p)

= g−tRH1(M)(ts
′)2 · g(ts

′)tsH1(M)tR · (vR)H2(M)tsα′(mod p)

6= k0

The session secret key k0 = (vR)H2(M)tsα(mod p) is pro-
tected by BFHP. That is, the pair (α, ts) is protected by
BFHP on σ. If the BFHP surrounding σ is prf-solved,
then both (α, ts) are found. Hence, no third party can
forge a valid k0 to cheat the receiver although he uses
another pair of (α, ts).

Remark 5. On the other hand, if the DLP is solved,
ts ∈ Zp would be found. However, the corresponding
preferred α would not be obtained. In fact, both the
preferred integers (α, ts) is still not obtained.

Observed from vs = gts(mod p). Solving the DLP, we
will get ts0 ∈ Zp. If ts ≡ ts0(mod p), then the attacker
may initiate search for ts since ts = ts0 + pj for some
j ∈ Z. Observe that since ts0, p ∼ 2n and ts ∼ 22n, we
have j ∼ 2n Hence the probability to obtain the correct j

is
1
2n

.

If ts 6≡ ts0(mod p), the attacker may not initiate search
for ts since he cannot find j ∈ Z as j is the number of
time ts0 is reduced by p until ts is obtained.

The following is an example continued from Example 2
in which we illustrated an attacker utilities attacked pa-
rameters (t′s, α

′) as depicted in Proposition 4.

Example 3. The authority randomly chooses p = 137
and g = 101 as a primitive root in Zp. The attacker, A
chooses his secret key ts

′ = 727. The receiver, R chooses
his secret key tR = 157 and computes vR = 11.

When A wants to deniably authenticate a message
M ′ = 555 to the intended receiver R, he chooses randomly
value of α = 847. He computes σ = 35228 since H1(M) =
17 and H2(M) = 27. Then, he computes k1 = 37 and
k0 = 126. Next, he generates MAC by applying the hash
function to the concatenation between M ′ and k0. He gets
MAC = 7306b18193e101e4e2b9a5bff79241e1. Then, A
sends (k1, σ,MAC) together with message M ′ to R.

After receiving (k1, σ,MAC) together with message
M ′ from A, receiver, R computes k∗1 = (vS)σtR us-
ing sender’s public key, vs = 118. He gets k∗1 =
38 and k0

′ = 36. Then he computes MAC =
4eca496522032ec8a7132e441c6725d1. R verifies that
H(k0‖M ′) 6= H(k0

′‖M ′). Then, R does not accept the
information he gets from attacker.

Proposition 5. If an attacker wants to impersonate as
the intended receiver in order to identify the source of a
given message, then the proposed protocol can withstand
such an impersonation attack.
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Table 1: The comparison among deniable authentication protocols

Fan et al. protocol Zhang et al. protocol The proposed protocol
S R S R S R

Exponentiation 2+1 2+2 2 3 2 1
Hashing Computation 1+1 1+1 2 2 3 1

Data Transmission Overhead 2|n|+ 2|h| 2|h| 3|n|+ |r|
Interactive Yes No No

Proof. In our protocol, any third party want to imperson-
ate as the intended receiver cannot identify the source of
the message even if he obtains (k1, σ,MAC). If he can
verify the message authenticator, he must find k0 and k0

′.
As we prove above, he cannot forge k0 and k0

′ as

k0
′ = k1 · k∗1
= (vR)−H1(M)ts

2 · (vs)σtR(mod p)

= g−tRH1(M)ts
2 · gts

2H1(M)tR · gH2(M)tsαtR(mod p)

= gH2(M)tsαtR(mod p)

= (vR)H2(M)tsα(mod p).

It is shown that tR is required in each step to calculate
k0
′. Without the receiver’s private key, tR, it is impossible

for the attacker to forge k0
′.

Proposition 6. The proposed protocol is secure against
man-in-the-middle attack if man-in-the-middle cannot es-
tablish any session key with either the sender or the re-
ceiver.

Proof. Objective of the man-in-the-middle attack is to
pretend to be the sender and cheat the receiver. In order
to pretend as a sender, he needs to compute σ′ for the
corresponding M ′. But this is infeasible because the pair
(α, ts) is protected by BFHP within the initial σ. On the
other hand, the man-in-the-middle cannot pretend to be
the receiver to cheat the sender because he needs to obtain
the receiver’s private key, tR to compute k1

∗ = (vS)σtR .
This is also infeasible because tR is protected by the DLP
within vR. Therefore, the attacker is unable to pretend
to be the sender or the receiver.

4 Comparison

To study the performance of the proposed protocol, we
compare it with some previous proposed deniable authen-
tication protocols. We make comparison against the most
known efficient interactive protocol (Fan et al. 2002) and
non-interactive protocol (Y. Zhang et al. 2011). The
comparison is summarized as in Table 1.

To authenticate the source of a message in Fan et al.’s
interactive protocol, two modular exponentiation compu-
tation and one hashing computation are required by both
sender and receiver. In addition, the sender needs to com-
pute a signature with a message recovery which requires
one modular and one hash function computation. The

receiver needs to verify the signature which requires two
modular exponentiation computation and one hash func-
tion computation. The data transmission overhead for
Fan et al.’s protocol is 2|n|+ 2|h| bits which 2|n| is the
modular size and 2|h| is output size of hash function.

Our proposed protocol is non-interactive so that the
communication process is shorter than in any interactive
protocol. In signing phase, the sender needs two modu-
lar exponentiation computation and three hash function
computation. The receiver needs one modular exponen-
tiation computation and one hash function computation
in verifying phase. Data transmission overhead for our
proposed protocol is 3|n|+ |r| bits, |r| denotes the size of
α and ts while Y. Zhang et al.’s protocol is 2|h| bits.

5 Conclusion

A new deniable authentication protocol based on the bi-
variate function hard problem has been developed. One
can observe from the Table 1 that the number of expo-
nentiation computation needed is less that known efficient
deniable authentication schemes. This suggested that the
proposed method has better computational complexity on
both the sender and the receiver’s end.

The proposed protocol is proved to have the follow-
ing characteristics which only intended receiver can be
authenticated and it is deniable. Some possible attacks
have also been considered and we showed that our pro-
posed protocol is secure against forgery attack, imperson-
ation attack and man-in-the-middle attack. Hence, our
proposed deniable authentication protocol is more desir-
able than existing schemes. In the future studies, we will
focus to improve the efficiency while still maintain the
security of the protocol.
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