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Abstract

Medium Field Equations (MFE), which is a type of multi-
variate public key encryptions scheme proposed by Wang
et al., was broken by Ding et al. using high order lineariza-
tion equation (HOLE) attack. Recently, many people at-
tempt to modify the second order matrices structure in
the central map of MFE to resist HOLE attack. In this
paper, we gave deeply analysis of all possible construc-
tions by products of the second order matrices and their
variants with transpose and adjoint in the central map of
MFE. We proved that any modification with transpose
and adjoint would satisfy the First Order Linearization
Equations or the Second Order Linearization Equations.
As an example, we gave a practical cryptanalysis of an
improved MFE scheme.
Keywords: Linearization equation, MFE, multivariate
public key cryptosystem, second order matrix

1 Introduction

Public key cryptosystem played an important role in our
modern communication system. But with the rapid de-
velopment of the quantum computer, the traditional pub-
lic key cryptosystems based on the number theory hard
problem, such as RSA and ElGamal cryptosystems, are
all insecure under the quantum computer attack. Mul-
tivariate public key cryptosystem (MPKC) is one of the
promising alternatives to the traditional public key cryp-
tosystem against the quantum computer attack [8]. The
security of the MPKC relies on the difficulty of solving
a random system of nonlinear polynomial equations on a
finite field, which is an NP-hard problem in general.

Let K be a finite field and m, n be two positive inte-
gers. The public key of MPKC is a set of multivariate
polynomials, which are the expressions of the following

map,

(y1, · · · , ym) = F̄ (x1, · · · , xn)
= T ◦ F ◦ S

= (f̄1, · · · , f̄m),

where {y1, · · · , ym} are ciphertext variables and {x1, · · · ,
xn} are plaintext variables. The two invertible affine
transformations T and S are the private keys of the
MPKC, which are defined on Km and Kn respectively.
The map F is called central map. The key point in con-
structing an secure MPKC is to design a proper central
map.

Medium Field Equation (MFE) [12] is a type of multi-
variate public key cryptosystem proposed by Wang et al.
in 2006. The inventor of MFE used products of second
order matrices to derive quadratic polynomials in its cen-
tral map. To avoid the Paratin relation or linearization
equations of form

n,m∑

i=1,j=1

aijxiyj +
n∑

i=1

bixi +
m∑

j=1

cjyj + d = 0,

the inventors used a transposed matrix instead of the orig-
inal one in the central map of MFE. But the original
MFE was broken by High Order Linearization Equation
(HOLE) attack [2] in 2007. Given a public key, the attack
can successfully recover the plaintext corresponding to a
valid ciphertext.

In order to resist existing attack, many modifications
of MFE were proposed. In 2009, Wang et al. [13] modified
MFE and raised the public key from quadratic to quartic
equations. It is indeed this case can avoid HOLEs attack.
However, from their quartic public key, many so-called
Quadratization Equations (QEs) can be found and can
be used to break them [1]. In 2009, Tao et al. gave an
improvement of MFE [9]. They introduced a new ratio-
nal map in composition of the improvement and claimed
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that the new scheme can resist SOLEs attack. But there
are still many SOLEs existing in this new scheme. Given
a public key and a valid ciphertext, we can recover its
corresponding plaintext [14]. In 2009, Huang et al. gave
an improvement of MFE by redesigning the central map
with transpose matrix and adjoint matrix [3]. After the-
oretical analysis, we found that it satisfied both Second
Order Linearization Equations (SOLEs) and First Order
Linearization Equations (FOLEs) [6].

In this paper, we summarize the steps of HOLEs at-
tack. And then, we analyzed the construction based on
the second order matrices in the central map of MFE. We
found that if one want to remain degree two polynomi-
als in the public key and ensure successfully decryption,
one could only use the transpose matrices and the ad-
joint matrices. Given a second order matrix M over a
finite field of characteristic 2, there are only 8 second or-
der matrices with the same determinant of M . And these
8 matrices can be separated into two equivalent class with
the matrix M and its transpose MT . We list all possible
constructions with a matrix M and its transpose MT in
the form of multiplication of two matrices. We found that
all constructions will satisfy the SOLEs or FOLEs. So it
is impossible to improve MFE by changing the form of
second order matrices with their transpose and adjoint.

At last, we show how to find FOLEs satisfied by an im-
provement of MFE scheme [3] proposed by Jiasen Huang
et al. After finding all the FOLEs, we use linearization
equation attack breaking this improved version.

This paper is organized as follows. We introduce the
MFE scheme, the idea of HOLEs attack on it and an
improvement of MFE in Section 2. In Section 3, we give
an analysis of the structure of the second order matrices
in MFE scheme. Then we present a FOLEs attack on an
improvement of MFE in Section 4. Finally, we conclude
this paper in Section 5.

2 Preliminaries

In this section, we will introduce the MFE public key
cryptosystem and the previous attack on MFE. Then, we
will introduce one modification of MFE.

2.1 MFE Public Key Cryptosystem

We use the same notations as in [12]. Let K be a finite
field of characteristic 2 and L be its degree r extension
field. In MFE, we always identify L with Kr by a K-linear
isomorphism π: L → Kr. Namely we take a basis of L
overK, {θ1, · · · , θr}, and define π by π(a1θ1+· · ·+arθr) =
(a1, · · · , ar) for any a1, · · · ar ∈ K. It is natural to extend
π to two K-linear isomorphisms π1: L12 → K12r and π2:
L15 → K15r.

In MFE, its encryption map F : K12r → K15r is a
composition of three maps φ1, φ2, φ3. Let

(u1, · · · , u12r) = φ1(x1, · · · , x12r),

(v1, · · · , v15r) = φ2(u1, · · · , u12r),

(y1, · · · , y15r) = φ3(v1, · · · , v15r),

where φ1 and φ3 are invertible affine maps, φ2 is its central
map, which is equal to π1 ◦ φ̄2 ◦ π−1

2 .
φ1 and φ3 are taken as the private key, while the ex-

pression of the map (y1, · · · , y15r) = F (x1, · · · , x12r) is
the public key.The map φ̄2: L12 → L15 is defined as fol-
lows.





Y1 = X1 + X5X8 + X6X7 + Q1;
Y2 = X2 + X9X12 + X10X11 + Q2;
Y3 = X3 + X1X4 + X2X3 + Q3;
Y4 = X1X5 + X2X7; Y5 = X1X6 + X2X8;
Y6 = X3X5 + X4X7; Y7 = X3X6 + X4X8;
Y8 = X1X9 + X2X11; Y9 = X1X10 + X2X12;
Y10 = X3X9 + X4X11; Y11 = X3X10 + X4X12;
Y12 = X5X9 + X7X11; Y13 = X5X10 + X7X12;
Y14 = X6X9 + X8X11; Y15 = X6X10 + X8X12,

where Q1, Q2, and Q3 form a triple (Q1, Q2, Q3) which
is a triangular map from K3r to itself, more detail please
see [12].

The method of computing φ̄−1
2 is listed as follows:

Write X1, · · · , X12, Y4, · · · , Y15 as six 2× 2 matrices:

M1 =
(

X1 X2

X3 X4

)

M2 =
(

X5 X6

X7 X8

)

M3 =
(

X9 X10

X11 X12

)

Z3 = M1M2 =
(

Y4 Y5

Y6 Y7

)

Z2 = M1M3 =
(

Y8 Y9

Y10 Y11

)

Z1 = MT
2 M3 =

(
Y12 Y13

Y14 Y15

)
.

Then





det(M1) · det(M2) = det(Z3),
det(M1) · det(M3) = det(Z2),
det(M2) · det(M3) = det(Z1).

When M1, M2, and M3 are all invertible, we can get
values of det(M1), det(M2), and det(M3) from det(Z1),
det(Z2), and det(Z3), for instance, det(M1) =

(
det(Z2) ·

det(Z3)/det(Z1)
)1/2.

With the values of det(M1), det(M2), and det(M3),
we can use the triangular form of the central map to get
X1, X2, · · · , X12 in turn. Then we can recover the plain-
text corresponding the given ciphertext. More detail of
decryption are presented in [12].
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2.2 High Order Linearization Equation

High Order Linearization Equation (HOLE) is an type of
equation of the following form:

n,t∑
i=1,j=1

aijxigj(y1, y2, · · · , ym)

+
l∑

k=1

ckhk(y1, y2, · · · , ym) + d = 0,

(1)

where hk, 1 ≤ k ≤ l, gj , 1 ≤ j ≤ t, are polynomial
functions in the ciphertext variables. The highest degree
of gj , 1 ≤ j ≤ l and hk, 1 ≤ k ≤ l is called the order of
the HOLE.

For example, the First Order Linearization Equation
(FOLE) and the Second Order Linearization Equation
(SOLE) are of the following forms, respectively.

n,m∑

i=1,j=1

aijxiyj +
n∑

i=1

bixi +
m∑

j=1

cjyj + d = 0.

∑

i

xi


∑

j≤k

aijkyjyk +
∑

j

bijyj + ci




+
∑

j≤k

djkyjyk +
∑

ejyj + f = 0.

Note that, given a valid ciphertext y′ = (y′1, y
′
2, · · · , y′m),

we can substitute it into Equation (1) to get a linear equa-
tion in the plaintext variables. By finding all these equa-
tions we get a linear system in the plaintext variables,
which can be solved by Gaussian Elimination. After hav-
ing found a solution, we can do elimination on the public
key or solve System (2).





F1(x1, · · · , xn) = y′1;
· · ·

Fm(x1, · · · , xn) = y′m.
(2)

Then, we can also check whether there are some HOLEs
satisfied by the eliminated public key and the form of
HOLEs.

The steps of LE attack are listed in Algorithm 1.

2.3 Previous Attack on MFE

In designing the MFE scheme, the inventors have taken
into account the LE attack. They used MT

2 instead of M2

to avoid the FOLEs.
But Ding et al. found that there are many SOLEs

satisfied by the MFE scheme. Denote by M∗ the adjoint
matrix of a second order matrix. From

Z3 = M1M2, Z2 = M1M3,

we have

M3M
∗
3 M∗

1 M1M2 = M3Z
∗
2Z3 = det(Z2)M2. (3)

Expanding Equation (3), we get four equations of the form
∑

a′ijkXiYjYk = 0. (4)

Algorithm 1 Steps of LE Attack
1: Input: public key F of a MPKC, ciphertext y′ ∈ Km

2: Output: corresponding plaintext x′ ∈ Kn

3: Check whether there are some LEs satisfied by public
key.

4: Determine the form of LEs and find all the LEs.
5: Substitute the ciphertext y′ into the linearization

equations and find all linear equations in the plaintext
variables. Solve the system to find linear relations be-
tween plaintext variables. In other words, some plain-
text variables can be written as linear expressions in
the remaining variables.

6: Substitute the linear expressions of plaintext variables
into the public key polynomials to get a ”eliminated”
public key expression (it is in fewer unknown plaintext
components).

7: Check whether there are some LEs satisfied by the
eliminated public key. If there are, goto Step 2.

8: Directly solve the last eliminated System (2).
9: Use the linear relations between plaintext variables to

get the values of remained plaintext components.

In [2], 24 equations of this form can be found.
Substituting (X1, · · · , X12) = π−1

1 ◦ φ1(x1, · · · , x12r)
and (Y1, · · · , Y15) = π−1

2 ◦ φ−1
3 (y1, · · · , y15r) into Equa-

tion (4), we get 24r equations of the form

∑
i

xi

(
∑
j≤k

aijkyjyk +
∑
j

bijyj + ci

)

+
∑
j≤k

djkyjyk +
∑
j

ejyj + f = 0.

These equations are SOLEs.
Given a public key and a valid ciphertext, after find-

ing all the SOLEs, one can recovered the corresponding
plaintext efficiently.

2.4 Improvement of MFE

To avoid the SOLE, Jiasen Huang et al. proposed a modi-
fication of MFE. They modified only the matrix equations
as follows.

M1, M2 and M3 are defined as same as the origin MFE,
while Z1, Z2 and Z3 are defined as follows:

Z3 = M1M
∗
2 =

(
Y4 Y5

Y6 Y7

)
,

Z2 = M∗
1 M3 =

(
Y8 Y9

Y10 Y11

)
,

Z1 = MT
2 M∗

3 =
(

Y12 Y13

Y14 Y15

)
,

where M∗
i (1 ≤ i ≤ 3) are the adjoint matrices of M∗

i .
These matrices are also satisfied





det(M1) · det(M2) = det(Z3),
det(M1) · det(M3) = det(Z2),
det(M2) · det(M3) = det(Z1).
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so the decryption process is very similar to the original
MFE. See [3] for more detail.

3 Analysis of the Structure Based
on Second Order Matrices

In this section, we consider the second order matrices over
a finite field K of characteristic 2.

In order to resist HOLE, many people try to improve
the MFE scheme by modifying the second order matrices
of the central map. To ensure the decryption successfully,
they need keep the determinants unchanged.

Now we give two Propositions on the constructions by
using the second order matrices.

Proposition 1. Given a square matrix M =(
X1 X2

X3 X4

)
, where X1, X2, X3, X4 ∈ K, there are eight

square matrices which satisfy:

1) Components in these matrices are all constituted of
X1, X2, X3, X4 ∈ K;

2) The determinants of these matrices are equal to
det(M).

And all matrices above can be transformed by M or MT

through row transformations and column transformations.

Proof: Given X1, X2, X3, X4 ∈ K of characteristic 2,
there are 24 different matrices. We can calculate their
determinate one by one. Clearly, there are eight matri-
ces (including the matrix M) whose determinate equal to
det(M). We list as follows:

(
X1 X2

X3 X4

)
,

(
X2 X1

X4 X3

)
,

(
X3 X4

X1 X2

)
,

(
X4 X3

X2 X1

)
,

(
X1 X3

X2 X4

)
,

(
X2 X4

X1 X3

)
,

(
X4 X2

X3 X1

)
,

(
X3 X1

X4 X2

)
.

Among the matrices above, the first four matrices can
be easily derived from the matrix M through row trans-
formation and column transformation. And the last four
matrices can be gotten from MT .

Let us consider the following equations:





Y4 = X1X5 + X2X7;
Y5 = X1X6 + X2X8;
Y6 = X3X5 + X4X7;
Y7 = X3X6 + X4X8.

(5)

The Equation (5) can be expressed by the following

four matrices equations.
(

Y4 Y5

Y6 Y7

)
=

(
X1 X2

X3 X4

)(
X5 X6

X7 X8

)
,

(
Y4 Y5

Y6 Y7

)
=

(
X2 X1

X4 X3

)(
X7 X8

X5 X6

)
,

(
Y6 Y7

Y4 Y5

)
=

(
X3 X4

X1 X2

)(
X5 X6

X7 X8

)
,

(
Y6 Y7

Y4 Y5

)
=

(
X4 X3

X2 X1

)(
X7 X8

X5 X6

)
.

So, we can say that the matrices
(

X2 X1

X4 X3

)
,

(
X3 X4

X1 X2

)
,

(
X4 X3

X2 X1

)
are equivalent to the ma-

trix
(

X1 X2

X3 X4

)
.

Similarly, the matrices
(

X2 X4

X1 X3

)
,

(
X4 X2

X3 X1

)
,

(
X3 X1

X4 X2

)
are equivalent to the matrix

(
X1 X3

X2 X4

)
.

Notice that the matrix
(

X4 X2

X3 X1

)
is the adjoint ma-

trix of the matrix
(

X1 X2

X3 X4

)
. So, we can only consider

a matrix and its transpose in the matrices form of the cen-
tral map in MFE.

Proposition 2. Given a square matrix M =(
X1 X2

X3 X4

)
, where X1, X2, X3, X4 ∈ K. Mi, i =

1, · · · , 4 are random second order matrices on finite field
K, define a set as follows:

Q = {MM1,M2M,MT M3,M4M
T },

then any two elements in Q can be deduced high order
linearization equations in constructing the central map in
MFE.

Proof: There are 6 forms of combination (Z1, Z2) in Q,
we analysis of them respectively.

1) If Z1 = MM1, Z2 = M2M , we can derive

Z2M1 = M2Z1;

2) If Z1 = MM1, Z2 = MT M3, we can derive

ZT
2 M1 = MT

3 Z1;

3) If Z1 = MM1, Z2 = M4M
T , we can derive

det(Z2)M1 = MT
4 (ZT

2 )∗Z1;

4) If Z1 = M2M,Z2 = MT M3, we can derive

det(Z1)(MT
3 )∗ = M∗

2 Z1(ZT
2 )∗;
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5) If Z1 = M2M, Z2 = M4M
T , we can derive

Z1M
T
4 = M2Z

T
2 ;

6) If Z1 = MT M3, Z2 = M4M
T , we can derive

Z2M3 = M4Z1;

In Cases 1), 2), 5), and 6), we can derive FOLEs. In Cases
3) and 4), we can derive SOLEs.

The original MFE scheme satisfied Case 3) and 4) in
the proof of Proposition 2.

As to the improved MFE, the matrices equation Z2 =
M∗

1 M3 can be changed into
(

Y10 Y11

Y8 Y9

)
=

(
X1 X3

X2 X4

)(
X11 X12

X9 X10

)
.

This equation and Z3 = M1M
∗
2 satisfy Case 2). Simi-

larly, according to the Proposition 1, we can deduce that
the central map of the improved MFE scheme satisfy
Cases 1), 5) and 6).

From Proposition 1 and Proposition 2 above, we can
make sure that all the modifications of MFE by changing
the form of matrices in MFE with their transpose and
adjoint will fail to resist the HOLEs attack.

4 Linearization Equation Attack
on Improvement of MFE

In this section, we give an example of Linearization Attack
on Improvement of MFE. This work was presented on The
10th International Conference on Cryptology and Net-
work Security (CANS 2011). The authors of [3] claimed
their improvement of MFE can resist SOLEs attack. But
according to Section 3, we know that this scheme satisfied
the FOLEs. In this section, we will describe how to get
the FOLEs and present the whole FOLE attack on this
improvement.

4.1 Finding FOLEs

Note that, for any square matrices M1 and M2, we have

(M∗
1 )∗ = M1,

(M1M2)∗ = M∗
2 M∗

1 ,

(M∗
1 )T = (MT

1 )∗.

From
Z3 = M1M

∗
2 , Z2 = M∗

1 M3

we can derive

M∗
3 Z3 = M∗

3 M1M
∗
2 = (M∗

1 M3)∗M∗
2 = Z∗2M∗

2

and hence,
Z∗2M∗

2 = M∗
3 Z3

Expanding it, we have
(

Y11 −Y9

−Y10 Y8

)(
X8 −X6

−X7 X5

)

=
(

X12 −X10

−X11 X9

)(
Y4 Y5

Y6 Y7

)
.

That is,




X8Y11 + X7Y9 = X12Y4 −X10Y6

−X6Y11 −X9Y5 = X12Y5 −X10Y7

−X8Y10 −X7Y8 = −X11Y4 + X9Y6

X6Y10 + X5Y8 = −X11Y5 + X9Y7.

(6)

Applying (X1, · · · , X12) = π1 ◦ φ1(x1, · · · , x12r) and
(Y1, · · · , Y15) = π−1

2 ◦φ−1
3 (y1, · · · , y15r) into Equation (6),

we get 4r equations of the form
∑

i,j

aijxiyj +
∑

i

bixi +
∑

j

cjyj + d = 0, (7)

where the coefficients aij , bi, cj , d ∈ K, and the summa-
tions are respectively over 1 ≤ i ≤ 12r and 1 ≤ j ≤ 15r.
These equations are FOLEs. Apparently, these 4r equa-
tions are linearly independent.

Using the same technique, we can derive other 8r
SOLEs. Note that

Z1M1 = MT
2 M∗

3 M1 = MT
2 Z∗2

Z∗1MT
1 = (MT

2 M∗
3 )∗MT

1 = M3(MT
2 )∗MT

1

= M3(M∗
2 )T MT

1 = M3Z
T
3 .

That is,

Z1M1 = MT
2 Z∗2

Z∗1MT
1 = M3Z

T
3 .

Expanding them and substituting (X1, · · · , X12) =
π1 ◦ φ1(u1, · · · , u12r) and (Y1, · · · , Y15) = π−1

2 ◦
φ−1

3 (z1, · · · , z15r) into them, we get another linearly in-
dependent 8r FOLEs.

To find all the FOLEs, we randomly generate sufficient
plaintext/ciphertext pairs and substitute them into the
FOLE to get a system of linear equations on the unknown
coefficients a1,1, · · · , a12r,15r, b1, · · · , b12r, c1, · · · , c15r, d.
In this case, the number of unknown coefficients in these
equations is equal to

12r × 15r + 12r + 15r + 1 = 180r2 + 27r + 1.

Suppose we derive D linearly independent FOLEs. Let
Ek(1 ≤ k ≤ D) denote these equations:

12r,15r∑

i=1,j=1

a
(k)
ij xiyj +

12r∑

i=1

b
(k)
i xi +

15r∑

j=1

c
(k)
j yj + d(k) = 0.

We used computer experiments to find all linearization
equations. In one of our experiments, we choose K =
GF (216), r = 4. In this case, the number of unknown
coefficients is equal to 2989.

Our experiments show that it take about 22 minutes
on the execution of this step. And D = 48.

Note that, this step is independent of the value of the
ciphertext and can be done once for a given public key.
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4.2 Ciphertext-only Attack

Now we have derived all FOLEs. Our goal is to find cor-
responding plaintext (x′1, · · · , x′12r) for a given valid ci-
phertext (y′1, · · · , y′15r).

Substitute (y′1, · · · , y′15r) into basis equations Ek, we
can get k equations in following form:





∑
i,j

a
(k)
ij xiy

′
j +

∑
i

b
(k)
i xi +

∑
j

c
(k)
j y′j + d(k) = 0

1 ≤ k ≤ D.
(8)

Suppose the dimension of the basis of System (8) so-
lution space is s. Then, we can represent s variables of
x1, · · · , x12r by linear combinations of other 12r− s. De-
note w1, · · · , w12r−s are remainder variables. Our exper-
iments show s = 32, when r = 4.

Now substitute the expressions obtained above into
Fj(x1, · · · , x12r), we can get 15r new quadratic functions
F̃j(w1, · · · , w12r−s), j = 1, · · · , 12r. Then, our attack
turn to solve the following system:

{
F̃i(w1, · · ·w12r−s) = y′i
1 ≤ i ≤ 15r.

(9)

There are 4r unknowns and 15r equations in Sys-
tem (9). We can solve this system by Gröbner basis
method and recover the corresponding plaintext.

Our experiments show that it takes about 6 second to
solve System (9) and our experiments recover the corre-
sponding plaintext successfully.

All of our experiments were performed on a normal
computer, with Genuine Intel(R) CPU T2300@1.66GHz,
504MB RAM by magma.

5 Conclusion

In this paper, we verified that all modifications of MFE by
changing the form of matrices with transpose and adjoint
will satisfy the SOLEs or FOLEs. Hence, they are all
insecure.

In order to enhance the security of MPKCs, many
enhancement methods were proposed such as Piece in
hand [10], Extended Multivariate public key Cryptosys-
tems (EMC) [11] etc. All of these methods are subjected
to different levels of attacks [4, 5]. Recently, Qiao pro-
posed three security enhancement methods on MPKC [7].
The security of their methods will be considered in the fu-
ture.
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