International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

182

Malicious Behavior Analysis for Android
Applications

Quan Qian, Jing Cai, Mengbo Xie, Rui Zhang
(Corresponding author: Quan Qian)

School of Computer Engineering & Science, Shanghai University
99 Shangda Rd., Baoshan District, Shanghai, China
(Email: qqian@shu.edu.cn)
(Received Oct.31, 2013; revised and accepted Jan. 10 & Mar. 4, 2015)

Abstract

Android, as a modern popular open source mobile plat-
form, makes its security issues more prominent, especially
in user privacy leakage. In this paper, we proposed a two-
step model which combines static and dynamic analysis
approaches. During the static analysis, permission com-
bination matrix is used to determine whether an appli-
cation has potential risks. For those suspicious applica-
tions, based on the reverse engineering, embed monitoring
Smali code for those sensitive APIs such as sending SMS,
accessing user location, device ID, phone number, etc.
From experiments, it shows that almost 26% applications
in Android market have privacy leakage risks. And our
proposed method is feasible and effective for monitoring
these kind of malicious behavior.

Keywords: Android security, malicious behavior monitor-
ing, permissions filtering, privacy leakage

1 Introduction

With the rapid development of network technology, the
mobile Internet has been the development trend of the
information age. According to the market research com-
pany Canalys released data, the global intelligent mo-
bile phone shipments in 2011 has outpaced PC, reached
487,700,000 [6]. About the proportional share of the
smartphone, Android OS has been in a rising trend.
The first quarter shipments report of smartphone from
Canalys showed that Android OS reached 75.6%, and
there has been some increase compared with 69.2% of
the previous quarter [5]. With the popularity and rapid
development of Android OS, its security issues are also
increasingly prominent. For instance, the security report
from NetQin Company shows that they detected more
than 65,227 new malware in 2012, a 263% increase over
2011. And the vast majority of malicious software is de-
signed to attack Android and Symbian devices. Moreover,
Android devices accounted for the number of devices be-

ing attacked 94.8%, and software for the purpose of steal-
ing user’s privacy data reached as high as 28%, ranking
first in all types of malicious behavior [18].

The main purpose of this paper is to analyze the An-
droid applications accurately and comprehensively based
on combining static and dynamic method to reveal the
malicious behaviors of applications leaking user’s privacy
data. Privacy leakage mentioned in this paper refers to
Android applications using sensitive permissions granted
by user during the installation to collect user’s privacy
data, including user’s device ID, IMEI, phone number,
contacts, call records, location information, etc., and send
user’s privacy data via SMS or network.

Currently, the method for detecting user privacy data
leakage in intelligent mobile phone platform mainly has
two categories, static and dynamic. Static analysis meth-
ods mainly focused on the control flow, data flow and
structural analysis [15]. But Android application mostly
written with Java, the program will inevitably exist a
large number of implicit function calls, and the static
analysis methods cannot effectively handle it. At the
same time, static method can obtain the concrete execu-
tion path of the application without executing the source
code, but it does not determine whether the path will
actually be performed, which can only be verified by dy-
namic method. Concerning about the dynamic method,
there are traditional sandbox and dynamic taint tracking
technology. Sandbox technology is a kind of isolated op-
erating mechanism, is currently widely used in software
testing, virus detection and other software security related
areas [2]. Some background research on Android security
is briefly introduced as follows.

Kui Luo proposed an byte code converter for malicious
code of leakage privacy, converting DVM (Dalvik Virtual
Machine) byte code into Java code, and putting the Java
code into the Indus (a static analysis of Java code and slice
tool) to analyze [17]. Leonid Batyuk proposed a method
by decompiling sample applications, in the premise of not
affecting the program core function, through modifying
the binary code to separate the malcode [1]. Although

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

this method can analyze the sample malcode effectively,
it is unsatisfactory when the target program has been ob-
fuscated. Enck implemented a Dalvik decompiler, DED,
by using the static analysis package tool. The tool use
Fortify SCA (a kind of white-box source code security
testing software) to analyze the application’s control flow,
data flow, structure and semantics [19]. Qian et al also
depends on Dalvik decompiling and gives a basic two-step-
famework for Android malware behavior monitoring [22].
ComDroid analyzes the DEX byte code disassembled by
Dedexer, and checks the Intent creation and transmis-
sion to identify the program broadcast hijacking vulnera-
bilities [7]. ScanDroid extracts the security specification
from configuration files of Android application and checks
the consistency between the application data flow and the
specification [10]. ScanDroid is based on the WALA anal-
ysis framework, can only evaluate the open source appli-
cations.

Static analysis method can help to identify Android
applications that applied unnecessary extra permissions
or opened some interfaces for outer access without any
protection. However, this method is easily confused by a
variety of technologies, for instance obfuscation. While
dynamic technology can make up for this. Enck pro-
posed TaintDroid [8], which is a tracking framework to
detect privacy leakage using dynamic taint. It modified
the DVM layer of Android to complete the function of
tainting data, and add Hooks to API interface of tainted
sources to achieve infecting the private data accessed by
applications, and finally got private data leakage through
monitoring the socket of the network interface. In [3], it
places a LKM module (Loadable Kernel Module) in the
Android simulator, builds a sandbox system, intercepts
and records all the underlying system calls from the ker-
nel layer. However, modifying Linux kernel will lead to
the Android emulator running extremely unstable, and
the paper only uses automatic tools to simulate user in-
teractions, not used in actual environment. Isohara uses a
kernel based behavior analysis which depends on a log col-
lector in the Linux layer of Android device and logs anal-
ysis application deployed on remote server [16]. However,
the behavior understandability based on kernel level log
is not good. Also, the server side uses regular expressions
based signatures to detect the malware, but the signature
maintenance and definition are difficult. Similarly, Peng
et al. analyzes Binder IPC data from the server side to
identify behaviors of different applications. By calculat-
ing the TP (threat point) value of different applications to
evaluate whether an application is a malware or not [21].
However, Binder IPC based monitoring is a kernel based
method and the TP threshold is hard to pre-defined. Asaf
Shabtai designs SELinux [24] and deploys in Android sys-
tem, which makes up for the defects of high level process
and the experiments in HTC G1 show the feasibility of
running SELinux in Android. However, SELinux policy
maintenance is relatively cumbersome, and mobile phones
with limited computing and storage capacity are not very
suitable for deploying this kind of system.

183

Applications

Application Framework

Libraries Android Runtime

‘ OpenGL | ES ‘

Core Libraries

‘ Media Framework ‘
| sqLite | DVM

Linux Kernel(Drivers)

Figure 1: A brief architecture of Android system

The organization of the paper are as follows: Section 2
is about the Android basic framework and its security is-
sues. Section 3 is the security analysis mechanism we pro-
posed for android applications. Experiments are shown in
Section 4. Section 5 summarizes the whole paper includ-
ing the contributions and some future work.

2 Android Security Related Issues

2.1 Android Basic Architecture

Android, as a mobile operating system platform based on
Linux kernel, was developed by the Google Open Handset
Alliance [12]. Android has a layered architecture, includ-
ing the Linux kernel layer, middleware layer and appli-
cation layer, which can provide a uniform service for the
upper layer, masks the differences of the current lay and
lower layer [12]. The core functions of a smartphone are
provided by the middleware layer, implemented by Java
or C/C++. Applications running on Android are written
in Java, and then multiple .class files are converted to
.dex format by the Android DX tool. Each Android ap-
plication is as a separate instance to run in DVM, and has
a unique process identification number. Figure 1 gives a
brief architecture of an Android system.

Among different components of Android, DVM [4], is
the core part of Android platform. It can support Java
applications, which are converted to .dex (Dalvik Exe-
cutable) format. The .dex format is designed for a com-
pressed format of Dalvik, suitable for memory and proces-
sor speed limited system. Dalvik is responsible for process
isolation and threads management. Each Android appli-
cation corresponds to a separate instance of Dalvik virtual
machine, and can be executed in a virtual machine under
its interpretation.

2.2 Android Security Mechanisms

Android security mechanisms are similar to Linux [13].
Android itself provides a series of mechanisms for the

International Journal of Network Security, Vol.18, No.1, PP.182-192,

protection of privacy data. The core of Android security
mechanism mainly includes the sandbox, application sig-
nature and permission mechanism. The permission mech-
anism limits applications to access user’s privacy data (i.e.
telephone numbers, contacts etc.), resources (i.e. log files)
and system interface (i.e. Internet, GPS etc.). In per-
mission mechanism, the phone’s resources are organized
by different categories, and each category corresponds to
one kind of accessed resource. If an application requires
access to certain resources, it needs to have the corre-
sponding permissions. Android permission mechanism is
coarse-grained and belongs to a kind of stated permissions
before installing. Although this mechanism is simple, it
also has some defects that cannot protect the user’s pri-
vacy information adequately. Early in the conference of
the ACSAC in 2009, Ontang et al questioned Android se-
curity model, and pointed out that the current Android
permissions model cannot meet certain security require-
ments [20]. Enck proposed Kirin [9], a detection tool,
to enhance existing Android permissions model. Based
on a set of policy, Kirin is used to determine whether
to grant the requested permissions to applications, and
through the analysis of the Android application’s Mani-
fest file to ensure the granted permission in accordance
with system strategy. Android permissions mechanism
is coarse-grained and inflexible [13]. The application re-
quired permissions must be granted all before installed
and cannot be changed after installation. This permis-
sion model leads to certain potential security threats. On
the one hand, permissions to access private data will be
decided by users. For those non-security awareness users,
the permission granting process is casual and blind. Dur-
ing the installation phase, if the program obtains permis-
sions to access privacy information, then can be arbitrary
abuse of user privacy sensitive data at any time; On the
other hand, the mechanism cannot effectively prevent per-
mission elevation attacks. Applications can take advan-
tage of a combination of permissions to steal the user’s
sensitive data.

In order to reveal Android apps leaking user privacy
information behavior, according to the Android OS secu-
rity mechanism, this paper proposed a malicious behavior
analysis model combining the dynamic and static method,
which will be discussed in detail in the next sections.

3 Android Malicious
Analysis Framework

Behavior

Generally speaking, methods for malware analysis mainly
include static and dynamic approach. Static analysis is a
kind of method based on program’s source code. It has
the advantages of being wide coverage and can analyze
the source code comprehensively. However static method
is based on source code. And if we cannot get the target
source code, through decompiling or reverse engineering,
it is hard to analyze the program accurately, especially
in the occasion that the target program has been obfus-

Jan. 2016 184

APK Static
Decompiler

4

—‘ Smali Files

A

‘ AndroidManifest.xml ‘

v

Permission Filter
Module

YES

Match Security Policies ?

v

Dynamic Monitoring

Module
v | v
Monitoring
Report DDMS Logs
| |
v

Manual Analysis

Figure 2: Malicious behavior analysis framework for an-
droid App

cated. Dynamic analysis refers to the tracking and mon-
itoring its run-time behavior through running the pro-
gram. This kind of method is more accurate for capturing
the actual malicious program behavior. Meanwhile, the
dynamic method has its own disadvantages because of its
limited execution coverage, that is to say we cannot guar-
antee all of the running paths have been trigged during
the test.

In this paper, we present a combination of static and
dynamic security analysis model that can make up for
their shortcomings with each other, enable the analysis of
malicious behavior more comprehensively and accurately.
Figure 2 shows the whole steps.

Before analyzing the Android application, APK (an-
droid application package) needs to be statically de-
compiled to get the corresponding configuration and
Smali [14] files. Among them, the configuration file with
the format of AndroidManifest.xml is mainly used for per-
missions filtering stage, and the Smali files are mainly
applied to dynamic monitoring module. First of all, we
choose those suspicious applications with great potential
to leak user’s privacy. Then if a program is suspicious,
enter into the dynamic monitoring module, where input
the target Smali codes, embed some tracking code, re-
package and re-sign the APK. In future, once the APK
is running, we can dynamically monitor the behavior of
privacy leakage and give immediate alarm for users. And
those alerts or logs can be used for further detailed anal-

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

ysis manually or automatically. Next, we will discuss the
three core components of the framework: APK Static
Decompiler, Permission Filtering Module and Dynamic
Monitoring Module.

3.1 APK Static Decompiler

Before permission filtering and dynamic monitoring, we
need to extract the Android application’s AndroidMan-
ifest.xml file and Smali files corresponding to the target
APK. The Android application is an installation package
ended with suffix .apk (an acronym for Android Package).
APK is similar to .exe executable file in PC, after installed
can be executed in Android OS immediately. APK is ac-
tually a compressed file compliance with the ZIP format,
which can be extracted by popular .zip compatible decom-
pression tools. In addition, it must be noted that most
applications are code-obfuscated, and the unzipped file is
not able to analyze directly. It should be decompiled to
extract its resource, permissions, the intermediate repre-
sentation files. In this paper, we use the apktool [23] for
decompiling. The file structure of Android application
after decompiled is shown in Table 1.

Table 1: The file structure after APK decompiled

Directory/File Description
Application’s resource file, in-

res cluding pictures, sound, video
and etc.

smali Dalvik register bytecode files
of APK

The global configuration file
of APK including the pack-
age name, permissions, refer-
enced libraries and other re-
lated information of the ap-
plication.

The configuration file of Ap-
ktool

AndroidManifest.zml

Apktool.yml

3.2 Permission Filtering Module

Some permissions may not exist risks by itself, but if there
are some permissions combined there may exist a security
risk. For example, an application applies for permissions
to read phone state and sending messages, then there may
exist the threat of sending the phone number or IMEI out.
Permissions filtering module is based on a set of security
policies to determine whether an application has some
special risk permission combinations. For Android per-
missions, there are four different security levels. Those are

Normal, Dangerous, SignatureandSignatureOrSystem.

e Normal lower-risk permissions that present minimal
risk to Android apps and will be granted automat-

185

Security
policies
JLC <
AndroidManifest.xml - Permission set ‘\/P/ Secur{ty /
matrix i

Violate security
policies?

Figure 3: The procedure of permissions filtering module

ically by the Android platform without asking for
user’s explicit approval.

e Dangerous higher-risk permissions that would give
access to the user’s personal sensitive data and even
control over the phone device that can negatively
impact the user. Applications requesting dangerous
permissions can only be granted if the user approves
the permission explicitly.

e Signature permissions that the system grants only
if the requesting application is signed with the same
certificate as the application declared the permission.
Signature permissions are automatically grant with-
out user explicit approval if the certificates match.

e SignatureOrSystem permissions are only granted
to applications that are in the Android system image
or are signed with the same certificate as the appli-
cation that declared the permission. Permissions in
this category are used for certain special situation
where multiple vendors have applications built into
a system image and need to share specific features
explicitly because they are being built together.

From the above four permission levels, we mainly con-
cern the Dangerous level which has great potential risks
for leaking user privacy data. Moreover, through ana-
lyzing the malware samples, we find the process of pri-
vacy leakage has two steps: read the privacy informa-
tion and send out. Accordingly, the potential causing
privacy leakage permissions are also divided into two cat-
egories. One is mainly used to read the privacy data,
such as android.permission. READ_PHONE_STATE,
which allows to read phone state, such as SIM card, phone
numbers, phone’s IMEI (International Mobile Equip-
ment Identity) and some others. The other is mainly
used to send out privacy information. At present, we
are only focused on two leakage ways, one is SMS
(Short Message Service), and the other is network trans-
mission, namely android.permission.SEND_SMS and
android.permission INTERNFET. Figure 3 shows the
procedure of permission filtering module.

In Figure 3, the security policy is the core part, where
each security policy is a cross combination of the above
two kinds of permission set. The first one is READ_P =
{a-1,a2,...,an},n € N and the second one SEND_P =

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

{b-1,b2,....,b.n},n € N . The security policy is S =
{azi,bi},i € N. The set of all security policies are
SECURITY_P = {S51,52,...,8Sn},n € N. After the
first step of static decompile, we can extract the applica-
tion permissions set APP_P = {p_1,p2,....,p.n},n € N
from the App’s configuration file AndroidManifest.xml.
We define a permission matrix, the column for accessing
privacy data permissions and the row for sending permis-
sions. Through the values of matrix we can determine
whether some risky combination of two permissions ex-
ists. Matrix model can represent a combination of per-
missions, not only can reflect the presence or absence of
permissions, but also can demonstrate the relationship
between permissions in detail. Matrix model is shown in
Table 2.

Table 2: An example of permissions matrix model

.. Send Permission
Read Permission

SEND_SMS | INTERNET
ACCESS_FINE_LOCATION | 1 0
READ_CALENDAR 0 0
READ_PHONE_STATE 0 1
READ OWNER_DATA _ _
READ_SMS _ -

During the static decompiling phase, we extract the
permissions set APP_P form AndroidManifest.xml,
and then classify APP_P into two categories, read and
send defined above. We assume that if APP_P set on
matrix has a valid value (here is 1), that is to say, the
APK requested permissions have the higher-risk, and then
the app can be regarded as suspicious. For example,
the second row of table 2, “0” means that the applica-
tion did not violate the security policy of leaking user
calendar data risk because there are no permission com-
binations of (READ_ CALENDAR,SEND_SMS) and
(READ CALENDAR,SEND_INTERNET). Con-
versely, “1” indicates that the APP_P set of an appli-
cation holds the risk of phone state and user location
leakage.

3.3 Dynamic Monitoring Module

This module is to monitor the call information of sensitive
APIs in APK. We implement dynamic real-time monitor-
ing by inserting monitoring code to the decompiled APK.
The Android developers write the application in Java,
compiles it into Java bytecode, and finally transfers to the
Dalvik bytecode which can be executed in DVM. So it is
straightforward to do the monitoring reversely by convert-
ing the Dalvik bytecode to Java bytecode, then rewrite
the Java bytecode, and finally convert the rewritten Java
bytecode back to Dalvik bytecode. However, this kind
of approach sometimes does not work. First of all, there

186

LIBRARIES

Smali files

Y

Embeding Monitoring
Smali bytecode library Smali bytecode module
of sensitive APIs #

Smali files

v

APK Compiling Module

Monitoring bytecode
library of APIs call
information ‘

Y
Running logs and
Monitoring reports

Figure 4: The procedure of dynamic monitoring module

are several important differences between JVM(Java Vir-
tual Machine) and DVM. The most obvious one is that
JVM is based on stack whereas DVM is register based.
Several tools, such as dex2jar [14] and ded [19], attempt
to convert Dalvik bytecode back to Java bytecode. How-
ever this is not a lossless converting, that is to say, some
information from the Java bytecode is lost when being
converted to Dalvik. These tools try to infer the missing
details based on the context, but sometimes the inference
is unreliable (as described by Reynaud et al. [23]). Even
though these errors may not prevent static analysis on
the converted Java bytecode, in our experience they of-
ten lead to invalid Java bytecode or later invalid Dalvik
bytecode. In other words, after we converted an applica-
tion’s Dalvik bytecode to Java bytecode (e.g. dex2jar)
and then back to Dalvik bytecode, the resulting applica-
tion sometimes failed to run. So the feasible way is to
directly use the Dalvik bytecode.

Smali and baksmali are an assembler and disassembler
respectively for the dex format used by the DVM. Its syn-
tax is loosely based on Jasmin’s syntax [11]. Smali is an
intermediate representation of Dalvik bytecode. Smali
can fully realized all the features of dex format (an-
notations, debug information, thread information, etc.).
Moreover, dex and Smali can convert lossless between
each other. So, in this paper in order to avoid the differ-
ences between JVM and DVM, we try to directly rewrite
Dalvik bytecode, insert the monitoring Smali bytecode
into the decompiled Smali files. The procedure of dy-
namic monitoring module is shown in Figure 4.

In Figure 4, we can obtain Smali files from the static
decompiling. Then locate the concrete position of the
sensitive API, and embed monitoring Smali bytecode to
each different sensitive API. After that we use apktool to
repackage the modified Smali bytecode to create a new
APK and use the signature tool to re-sign it. Running
the new APK on Android emulator, we can use logcat
to view the runtime logs. It can generate a log on SD
card which records the detailed call information of those

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

187

Table 3: Descriptoin of Smali syntax

Type Syntax Meaning
\Y% void
Z boolean
B byte
o S short
Primitive Types C har
I int
J long (64 bits)
F float
D double (64 bits)
Reference | Object Lpackage/name/ObjectName | Package.name.ObjectName
types Array [primitive type signature [I, represents a array of int, like int[] in java
‘ Array of Objects | Lpackage/name/ObjectName | [Ljava/lang/String, represents a array of String Objects

sensitive APIs.

)

Smali Bytecode. Smali [11] is an Intermediate
Representation(IR) for Dalvik Bytecode. Smali code
is a kind of register based language which can shield
the source code level differences. For instance, mal-
ware sometimes use source code obfuscation to avoid
detection. But in Smali code, the core sensitive APIs
are inevitably exposed. So, we can monitor these sen-
sitive APIs to track the behavior of those suspicious
programs.

In DVM, although all the register is 32 bits, it can
support any data types. In order to represent a
64 bits type (Long/Double), it uses two registers.
Dalvik bytecode has two types, primitive types and
reference types. Reference types are only Objects
and Arrays. The Smali syntax is indicated briefly in
Table 3.

Objects take the form Lpackage/name/ObjectName,
where the leading L indicates that it is an Ob-
ject type, package/name is the package that the
object is in, ObjectName is the name of the ob-
ject. For example, Ljava/lang/String; is equivalent
to java.lang.String. Arrays take the form [I, i.e. int[]
in java. Methods take the form as below:

Lpackage/name/Object Name;—
MethodsName(I11)Z.

In this example, MethodsName is obviously the
name of the method. (III)Z is the signature
of the method. III are the parameters (in this
case, three integers), and Z is the return type .
For example, method(I; [[II; Ljava/lang/String;
[Ljava/lang/Object;) Ljava/lang/String; is equiv-
alent to a string method(int, int[][-], String,
Object|]) in java.

Smali bytecode library for sensitive APIs. The
Smali bytecode library stores sensitive APIs and their

corresponding Smali bytecode. The main function
of the library is to locate the detailed position of
sensitive APIs in Smali files after the target APK was
decompiled. According to the typical sensitive APIs
that malwares often used for leaking Android user’s
privacy data, we choose five and their class name,
function name, and Smali bytecode are indicated in
Table 4.

Monitoring bytecode library for Sensitive
APIs. The monitoring bytecode library is to store
the sensitive APIs calling information when the APK
is running. For different APIs, monitoring infor-
mation to be recorded are different. Such as SMS
sending text messages, we need to record the mes-
sage recipients as well as the content of the message.
The unique part of each API is its input and output.
According to APT’s function prototypes and register
naming principles in Smali syntax, we can obtain the
Smali register number of each API parameters. Ac-
cording to Smali syntax, there are two ways to deter-
mine a method that how many registers are available,
which can be shown in Table 5 .

When a method is invoked, its parameters will be
placed in the last N available registers. For exam-
ple, supposing a method has two parameters and
five available registers (v0 « wv4), then the param-
eters will be placed in the last two registers (v3 and
v4). Moreover, the first argument of the non-static
method is always the object which call the method,
and for static methods except there is no implicit
this parameter, others are the same. For example,
the method for sending text messages is as follows:

public sendTextMessage (String destinationAd-
dress, String scAddress, String text, Pendinglntent
sentIntent, PendingIntent deliveryIntent).

The above method has 5 parameters, defined as
“public” which means it is a non-static method and
the first register v0 is the object used to call the

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

Table 4: Smali bytecode library for sensitive API

188

Class Name

Function Name

Smali Bytecode

android. telephony.

SmsManager

send TextMessage
(String, String, String,
Pendinglntent, Pending-
Intent)

Description
Send mes-
sages

Landroid/telephony/SmsManager;
—sendTextMessage(Ljava/lang/String;
Ljava/lang/String;Ljava/lang/String;
Landroid/app/Pendinglntent;
Landroid/app/PendingIntent;)V

android.location. Lo-

getLastKnownLocation

Get location

Landroid/location/LocationManager; — getLast-

cationManager (String) KnownLocation(Ljava/lang/String)

android. telephony. | getDeviceld() Get ID, IMEI | Landroid/telephony/TelephonyManager; — get-
TelephonyManager of phone Deviceld()Ljava/lang/String

android.location. Lo- | getSimSerialNumber() Get SIM se- | Landroid/telephony/TelephonyManager; — get-
cationManager rial Number SimSerialNumber () Ljava/lang/String
android.telephony. getLinelNumber() Get phone | Landroid/telephony/TelephonyManager; — get-
TelephonyManager Number LinelNumber () Ljava/lang/String

method, namely, it stores “this” parameter. Mean-
while, for sendTextMessage we need to record the
SMS destination address (corresponding to the desti-
nationAddress parameter) and the SMS content (text
parameter). According to the principle of register
allocation in Smali syntax, the first parameter des-
tinationAddress stored in registers v1 and the third
parameter text stored in the register v3.

For other sensitive APIs, sometimes we need to
record the return value of the method. And the in-
struction for the return value is the last instruction in
the method. The basic bytecode for return instruc-
tion is return and there are four return instructions
in total, which are shown in Table 6.

Table 5: Dalvik bytecode for registers

Table 6: Dalvik bytecode for return value

Instruction

Description

return-void

Return from a void method

return vAA

Return a 32-bit non-object value
and the return value register is

an 8-bit register, vAA

return-wide vAA

Return a 64-bit non-object value
and the return value register is

an 8-bit register, vAA

return-object vAA

Return a Object value and the
return value register is an 8-bit

register, vAA

Instruction | Description
. Specifies the total number of registers
.registers .
in a method
Indicates the number of nonparameter
.locals register in a method, which appears in
the first line of the method

Table 7: Monitoring code for sensitive APIs of Table 4

After we have got the syntax of Smali, the monitoring
code for sensitive APIs in Table 4 can be provided in
Table 7.

So far, we have introduced the mechanisms of our
static-dynamic analysis method. Next, detailed ex-
periments will show how it works.

4 Experiments

Before experiment, some necessary tools such as Eclipse,
JDK6, JRE6, Android SDK, Python2.7, and other tools
will be installed. APK static decompiler and permissions

Return Function Name Register
type
sendTextMessage(String desti- | v1,v3
nationAddress, String scAd-
void dress, String text, PendinglIn-
tent sentIntent, Pendinglntent
deliveryIntent)
. getLastKnownLocation(String | VAA
Location .
provider)
string getDeviceld() vAA
string getSimSerialNumber() vAA
string getLinelNumber() vAA

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

filtering module were implemented with Java. Among
them, APK static compiling module is to call apktool [23].
Permissions filtering module mainly implements security
policy settings, extract permissions features from An-
droidmanifest.xml that generated by static decompiling
module. Dynamic monitoring module is to scan the Smali
files generated by APK static decompiling module, embed
monitoring bytecode, repackage and re-sign the Smali files
to generate a new APK. Then we run the new APK in
Android emulator, it will generate some running logs or
monitoring report to show what has happened.

4.1 Android Markets
Analysis

API

Sensitive

To illustrate Android users facing the growing threat of
information leakage, we choose 642 popular applications
to conduct experiments in the permissions filtering mod-
ule. These 642 applications mainly come from Android
online markets such as shouji.com.cn, appchina.com, mar-
ket.goapk.com, and eoemarket.com. APK samples chose
in this paper are popular applications coming from differ-
ent app markets, and they mostly have more than half of
Android users.

Meanwhile, in these experiments we only concern user’s
privacy data including: Location, SMS, Contacts, Ad-
dress book, phone Number, IMEI (International Mobile
Equipment Identity) and ICCID (Integer Circuit Card
Identity). Leakage ways includes sending messages and
network. We handled 642 APK samples by permissions
filtering module and found that almost 26% apps have se-
curity risks for leakage user’s sensitive data. Here, reveal-
ing user’s privacy information refers to the app handled
by permissions filtering, and it is considered to be suspi-
cious. The specific statistical data is shown in Table 8.

Table 8: Analysis of suspicious Apps

Market App Suspicious | Ratio
Number | Number (%)
shouji.com.cn 59 6 10.17
appchina.com 283 53 18.73
market.goapk.com | 66 25 37.89
eoemarket.com 234 85 36.32
Total 642 169 26.32

Then we analyze the permissions requested by APK
through permissions filtering module. According to the
security policies matrix proposed in section 3, we count
the number of applications corresponding to each type of
privacy information. The specific statistical results are
shown in Table 9.

From Table 9, the security policy violated by most of
those 642 apps is about IMEI permission combinations.
Namely, the most common information leakage is IMEI.
The reason may be the IMEI can determine phone type

189

Table 9: Analysis of privacy information leakage

Leakage corresponding | App Ratio(%)
to security policies amounts

Location 15 2.34

SMS text 1 -
Contacts 17 2.64
PhoneNumber 61 9.50
IMEI 199 31.01
ICCID 7 1.09

and device parameters, and can provide accurate user
identity information for developers and advertisers. The
next is phone Number, Contacts, and Location. If these
sensitive information are used illegally, it will possibly
bring huge losses to users.

4.2 Sensitive API Monitoring

To verify effectiveness and feasibility of dynamic monitor-
ing module, we did experiments on the Android emulator
in Windows7. Android source code version is Android
2.3.4_r1, and the kernel is Linux kernel 2.6.29 goldfish.
The monitoring report generated by dynamic monitoring
module is TXT, and the output position is in Android em-
ulator SD card. We designed an APK, showLog.apk (also
can use message box or phone ringing), to show the mon-
itoring log. We chose an APK, SendSM S _example.apk,
that will automatically send text message in the back-
ground. showLog.apk and SendSMS_example.apk suc-
cessfully installed in Android emulator are shown in Fig-
ure 5.

For different sensitive API, through context we need to
find its relative registers, the return value and then call
different log functions to record the information while the
app runs. For send text message API, sendT extMessage,
the Smali code is shown in Figure 6.

From Figure 6, it shows the sendTextMessage func-
tion has 5 parameters. Among them we only focus on the
recipient number and the message contents. From the
context, it is obvious that register v1 stores the recipient
number and v3 stores the message contents. The other 3
registers v2, v4, v5 are null. So, we just need to pass the v1
and v3 to log function (Smali format) to record the SMS
information while it runs. After embedding the log mon-
itoring bytecode, we again used the apktool to repackage
the modified Smali files, and then call signapk.jar to re-
sign the new APK. The monitoring report was stored in
external SD card. In order to view the log, we designed
showLog.apk to show the recipient number, messages con-
tents and timestamps. An example of detailed monitoring
report on Android emulator is shown in Figure 7.

The above experiments show that the dynamic moni-
toring module was successfully embedded into the Smali
files of original APK. The log records the detailed infor-

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

@ ST eI T

15:

Showiag

Figure 5: Running interface of installed show Log.apk and
SendSM S _example.apk

iget-object vi, p0),
Lcom/example/sendsms_example/SendSMS_ExampleMainActivity;
->phoneNumber:Ljava/lang/String;

iget-object v3, p0,

Lcom/example/sendsms_example/SendSMS _ExampleMainActivity;
->SMSContext:Ljava/lang/String;

move-object v4, v2

move-object v5, v2

invoke-virtual/range {v0 .. v5}, Landroid/telephony/SmsManager;
->sendTextMessage(Ljava/lang/String, Ljava/lang/String; Ljava/lang/
String; Landroid/app/Pendinglntent; Landroid/app/PendingIntent;)V

Figure 6: An example of Smali code for sendTextMessage

@) 5554:android2.2
_ Gl @ 6:00am

testlog. B F 2:

20135065120 05:52:24
15901894411 this is a message sent
background for test

Figure 7: An Example of monitoring log for send TextMes-

sage

190

mation related to the sensitive API. Once we have found
the suspicious behavior of an app, any further deep anal-
ysis, such as DDMS (Dalvik Debug Monitor Server), can
analyze it more accurately and comprehensively.

5 Conclusion

A two-step malicious Android application detection
method was proposed in this paper. First of all, we use
permission combination matrix to discover those potential
risk applications. And then those suspicious applications
are further sent into the dynamic monitoring module to
track the call information of the sensitive APIs while it
is running. As a conclusion, it shows some advantages of
our approach:

1) Using Smali bytecode, it is based on intermediate
language, which shows some advantages over Java
source code method and it possesses anti-obfuscation
to a certain degree.

2) The method is simple, just insert some monitoring
Smali bytecode, and the performance influence can
be ignored.

3) This method can be used in a wide scale, which can
deploy remotely and provide monitoring service au-
tomatically.

Further research directions include considering more
sensitive APIs and provide a real App on Android market
for fans to use. Also, we need integrate others malware
detection method, such as dynamic taint analysis to con-
duct some cross-field deep research.

Acknowledgments

This study was supported by Shanghai Municipal Natural
Science Foundation under grant No.13ZR1416100. The
authors gratefully acknowledge the anonymous reviewers
for their valuable comments.

References

[1] L. Batyuk, M. Herpich, S. A. Camtepe, and K. Rad-
datz, “Using static analysis for automatic assessment
and mitigation of unwanted and malicious activities
within android applications,” in Proceeding of the
6th International Conference on Malicious and Un-
wanted Software, pp. 66-72, Fajardo, Oct. 2011.

[2] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan,
“Mockdroid: Trading privacy for application func-
tionality on smartphones,” in Proceedings of the 12th
Workshop on Mobile Computing Systems and Appli-
cations, pp. 49-54, Phoenix, USA, Mar. 2011.

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016

[3] T. Blasing, L. Batyuk, A. D. Schmidt, S. A.
Camtepe, and S. Albayrak, “An android applica-
tion sandbox system for suspicious software detec-
tion,” in Proceeding of the 5th International Confer-
ence on Malicious and Unwanted Software, pp. 55—
62, Nancy,France, Oct. 2010.

D. Bornstein, Dalvik VM Internals,
(https:/ /sites.google.com /site/io/dalvik-vm-
internals)

Canalys, Mobile Device Shipments Survey Re-
port in the First Session of 2013, May 2013.
(http://cn.engadget.com/tag/canalys)

Canalys, Smartphone Shipments Survey Report
in the Fourth Session of 2011, May 2013.
(http://cn.engadget.com/tag/canalys)

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner,
“Analyzing inter-application communication in an-
droid,” in Proceedings of the 9th International Con-
ference on Mobile Systems, Applications and Service,
pp- 239252, Washington, USA, June 2011.

W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: An
information-flow tracking system for realtime pri-
vacy monitoring on smartphones,” in Proceedings
of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation, pp. 1-6, Vancou-
ver, Canada, Oct. 2010.

W. Enck, M. Ongtang, and P. McDaniel, “On
lightweight mobile phone application certification,”
in Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, pp. 235-245,
Chicago, USA, Nov. 2009.

A. P. Fuchs, A.Chaudhuri, and J. S. Foster, “Scan-
droid: automated security certification of android
applications,” Technical Report of University of
Maryland, 2009. (http://www. cs. umd. edu/ avik/
projects/ scandroidascaa)

Google, Smali, July 11, 2015. (http://code. google.
com/ p/ smali/)

Google, Android Home Page, 2009. (http://www. an-
droid. com)

Google, Android Security and Permissions, 2013.
(http://d.android.com/guide/topics /security /secu-
rity.html)

Google, Dex2jar: Tools to Work with Android .dex
and java .classfiles, 2013. (http://code. google. com/
p/ dex2jar/)

P. Hornyack, S. Han, J. Jung, S. schechter, and
D. Wetherall, “These aren’t the droids you’re looking
for: Retrofitting android to protect data from impe-
rious applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Se-
curity, pp. 639-652, Chicago, USA, Oct. 2011.

T. Isohara, K. Takemori, and A. Kubota, “Kernel-
based behavior analysis for android malware detec-
tion,” in Seventh International Conference on Com-
putational Intelligence and Security, pp. 1011-1015,
Hainan, China, Dec. 2011.

2008.

8]

[10]

191

[17] K. Luo, “Using static analysis on android applica-
tions to identify private information leaks,” Master
Dissertation of Kansas State University, 2011.
Netqin, Mobile Security Report in 2012, May 2013.
(http://cn.ng.com/anquanbobao)

D. Octeau, W. Enck, and P. McDaniel, The DED
Decompiler, 2011. (http://siis. cse. psu. edu/ ded/
papers/ NAS-TR-~0140-2010.pdf)

M. Ongtang, S. McLaughlin, W. Enck, and P. Mc-
Daniel, “Semantically rich application-centric secu-
rity in android,” in Proceedings of the 25th An-
nual Computer Security Applications Conference,
pp. 340-349, Honolulu, USA, Dec. 2009.

G. Peng, Y. Shao, T. Wang, X. Zhan, and H. Zhang,
“Research on android malware detection and inter-
ception based on behavior monitoring,” Wuhan Uni-
versity Journal of Natural Sciences, vol. 17, no. 5,
pp. 421-427, 2012.

Q. Qian, J. Cai, and R. Zhang, “Android malicious
behavior detection based on sensitive api monitor-
ing,” in 2nd International Workshop on Security,
pp- 54-57, Nov. 2013.

D. Reynaud, D. Song, T. Magrino, E. Wu, and
R. Shin, “Freemarket:shopping for free in android
applications,” in 19th Annual Network € Distributed
System Security Symposium, Hilton San Diego, USA,
Feb. 2012.

A. Shabtai, Y. Fledel, and Y. Elovici, “Secur-
ing android-powered mobile devices using selinux,”
IEEE Security & Privacy, vol. 8, no. 3, pp. 36—44,
2010.

[18]

[19]

Quan Qian is a Professor in Shanghai University, China.
His main research interests concerns computer network
and network security, especially in cloud computing, data
privacy protection and wide scale distributed network
environments. He received his computer science Ph.D.
degree from University of Science and Technology of
China (USTC) in 2003 and conducted postdoc research
in USTC from 2003 to 2005. After that, he joined
Shanghai University and now he is the lab director of
network and information security.

Jing Cai is a master degree student in the school of
computer science, Shanghai University. Her research
interests include Android security and software security
analysis.

Mengbo Xie is a master degree student in the school
of computer science, Shanghai University. Her research
interests include data privacy, privacy based data mining,
computer and network security.

Rui Zhang received her B.E. and Ph.D. degree from
Department of Electronic Engineering & Information Sci-
ence, University of Science and Technology of China, in
2003 and 2008, respectively. After that, she joined the
School of Computer Engineering and Science, Shanghai

International Journal of Network Security, Vol.18, No.1, PP.182-192, Jan. 2016 192

University. Now, she is an associate professor and her
main research interests include computer networks, net-
work coding for wireless networks and wireless communi-
cation, etc.

