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Abstract

It is necessary that the linear complexity of a key stream
sequence in a stream cipher system is not less than half of
a period. This paper puts forward the linear complexity
of a class of binary interleaved sequences with period 4N
over the finite field with characteristic 2. Results show
that the linear complexity of some of these sequences sat-
isfies the requirements of cryptography.

Keywords: Interleaved sequence, linear complexity, mini-
mal polynomial, stream cipher

1 Introduction

Sequences with good autocorrelation and large linear
complexity have many applications in CDMA communi-
cation systems and cryptography [2, 4, 13].

Given two binary sequences a = a(t) and b = b(t) of
period n, the periodic correlation between them is defined
by

Ra,b(τ) =

n−1∑
t=0

(−1)a(t)+b(t+τ), 0 ≤ τ < n,

where the addition t + τ is performed modulo n. If a =
b, Ra,b(τ) is called the (period) autocorrelation function
of a, denoted by Ra(τ), otherwise, Ra,b(τ) is called the
(periodic) cross-correlation function of a and b [12].

Binary sequences with optimal autocorrelation values
can be classified into four types as follows according
to the remainders of n modulo 4: (1) Ra(τ) = −1 if
n ≡ 3 mod 4; (2) Ra(τ) ∈ {−2, 2} if n ≡ 2 mod 4; (3)
Ra(τ) ∈ {1,−3} if n ≡ 1 mod 4; (4) Ra(τ) ∈ {0,−4} if
n ≡ 0 mod 4, where 0 < τ < n [5]. In the first case,
Ra(τ) is often called ideal autocorrelation. For more de-
tails about optimal autocorrelation, the reader is referred
to [1, 4, 11].

The linear complexity of a sequence is often described
in terms of the shortest linear feedback shift register
(LFSR) that generates the sequence. Generally speaking,
a sequence with large linear complexity is favorable for
cryptography to resist the well-known Berlekamp-Massey
algorithm [7, 16], and the sequence can be recovered easily
if it has low linear complexity [5].

Some results have been gotten based on the interleaved
structure [8, 15]. More precisely, Tang and Gong investi-
gated the interleaved sequences of the form

u = I(a0 + b(0), L
1
4+η(a1) + b(1),

L
1
2 (a2) + b(2), L

3
4+η(a3) + b(3)), (1)

where I and L denote the interleaved operator and the left
cyclic shift operator respectively [5]. (b(0), b(1), b(2), b(3))
is a binary perfect sequence which satisfies Rb(τ) = 0 for
0 < τ < 4. And ai

′s, i = 0, 1, 2, 3, are binary sequences
of period N taken from the following sequence pairs:

• (l, l′): l and l′ are the two types of Legendre se-
quences;

• (t, t′): t is a twin-prime sequence, and t′ is its modi-
fied version.

Based on the two pairs of sequences, Tang and Gong
constructed several kinds of sequences of period 4N with
optimal autocorrelation value/magnitude, then Li and
Tang obtained the linear complexity of these sequences
in [5]. But in application, sequences with low autocorre-
lation values rather than optimal autocorrelation values
also play an important role. In this paper, using the inter-
leaved technique, we consider a class of sequences in the
form of (t′, t, t′, t) defined by Equation (1). In [14], Yan
and Gong have proved that the autocorrelation values of
these sequences are low. Besides, this paper determine
both the linear complexity and minimal polynomial of u
of period 4N with low autocorrelation value/magnitude.
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The remainder of this paper is organized as follows.
Section 2 gives some preliminaries. Section 3 determines
both the minimal polynomials and linear complexities
of the sequences u obtained from twin-prime sequences.
Conclusions and remarks are given in Section 4.

2 Preliminaries

Let {a0, a1, · · · , aT−1} be a set of T sequences of period
N . An N×T matrix U is formed by placing the sequence
ai on the ith column, where 0 ≤ i ≤ T − 1. Then one
can obtain an interleaved sequence u of period NT by
concatenating the successive rows of the matrix U . For
simplicity, the interleaved sequence u can be written as

u = I(a0, a1, · · · , aT−1).

In this paper, Legendre sequence and two-prime se-
quence are mentioned. Let QRN and NQRN denote
all the nonzero squares and non-squares in ZN respec-
tively, where N is a prime. The Legendre sequence
l = (l(0), l(1), · · · , l(N − 1)) of period N is defined as

l(i) =

 0 or 1, if i = 0;
1, if i ∈ QRN ;
0, if i ∈ NQRN .

Specifically, l is called the first type Legendre sequence
if l(0) = 1 otherwise the second type Legendre sequence.
For simplicity, we employ l and l′ to describe the first and
second type Legendre sequence, respectively.

Let p and p+2 be two primes. The twin-prime sequence
t = (t(0), t(1), · · · , t(N − 1)) of period N = p(p + 2) is
defined as

t(i) =

 0, if i = 0(mod p+ 2);
1, if i = 0(mod p);
lp(i) + lp+2(i), otherwise.

where lp, lp+2 are two Legendre sequences of period p and
p+ 2 respectively.

Let s = (s(i))∞i=0 be a sequence over a field F. A poly-
nomial of the form

f(x) = 1 + c1x+ c2x
2 + · · ·+ crx

r ∈ F[x]

is called the characteristic polynomial of the sequence s if

s(i) = c1s(i− 1) + c2s(i− 2) + · · ·+ crs(i− r),∀i ≥ r.

Among all the characteristic polynomials of s, the
monic polynomial ms(x) with the lowest degree is called
its minimal polynomial. The linear complexity of s is de-
fined as the degree of ms(x), which is described as LC(s).

Let s = (s(0), s(1), · · · , s(n− 1)) be a binary sequence
of period n and define the sequence polynomial

s(x) = s(0) + s(1)x+ · · ·+ s(n− 1)xn−1. (2)

Then, its minimal polynomial and linear complexity
can be determined by Lemma 1.

Lemma 1. [6] Assume a sequence s of period n with
sequence polynomial s(x) is defined by Equation (2). Then

• The minimal polynomial is ms(x) = xn−1
gcd(xn−1,s(x)) ;

• The linear complexity is LC(s) = n − deg(gcd(xn −
1, s(x))),

where gcd(xn − 1, s(x)) denotes the greatest common di-
visor of xn − 1 and s(x).

For the sequence polynomial, we have the following
results.

Lemma 2. [9] Let a be a binary sequence of period n,
and sa(x) be its sequence polynomial. Then

1) sb(x) = xn−τsa(x), if b = Lτ (a);

2) sb(x) = sa(x) +
xn − 1

x− 1
, if b is the complement

sequence of a;

3) su(x) = sa(x4) + xsb(x
4) + x2sc(x

4) + x3sd(x
4),

if u = I(a, b, c, d).

3 Minimal Polynomial and Linear
Complexity

If N is an odd integer and m is the order of 2 modulo N ,
then the finite field F2m is the splitting field of xN − 1.
Therefore, F2m has a primitive Nth root of unity, say β,
and the set {1, β, · · · , βN−1} of roots of xN−1 can form a
cyclic group of order N with respect to the multiplication
in F2m [5].

Let u(x) be the sequence polynomial of u defined by
Equation (1). By Lemma 1, it is equivalent to discuss
the gcd(x4N − 1, u(x)) for determining the minimal poly-
nomial and linear complexity of u. Without loss of gen-
erality, from now on we assume that the binary perfect
sequence is b = (0, 1, 1, 1) and the sequence polynomials
of ai

′s are sai(x), 1 ≤ i ≤ 3.
By 1) and 2) in Lemma 2 and the fact 1

4 =
N+1
4 (mod N) if N ≡ 3 (mod 4), the sequence polynomi-

als of L
1
4+η(a1) + b(1), L

1
2 (a2) + b(2), L

3
4+η(a3) + b(3)

are xN−
N+1

4 −ηsa1(x) + xN−1
x−1 , xN−

N+1
2 sa2(x) + xN−1

x−1 ,

xN−
3N+3

4 −ηsa3(x) + xN−1
x−1 , respectively. Then accord-

ing to 3) in Lemma 2, the sequence polynomial of u for
N ≡ 3 (mod 4) is

u(x) = sa0(x4) + xN−4ηsa1(x4)

+ x2Nsa2(x4) + x3N−4ηsa3(x4)

+
x4N − 1

x4 − 1
(x+ x2 + x3). (3)

In what follows, we focus on the discussion of
gcd(x4N −1, u(x)) in terms of (a0, a1, a2, a3) = (t′, t, t′, t),
then compute both the linear complexity and minimal
polynomial of u.
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Let N = pq where p and p + 2 are two primes, and
s(x) be the sequence polynomial of twin-prime sequence
t of period N . By Lemma 2, the sequence polynomial of

modified twin-prime sequence t′ is s(x) + xN−1
xq−1 . Then,

Equation (3) can be reduced to

u(x) = s(x4)(1 + x2N )(1 + xN−4η)

+
x4N − 1

x4q − 1
(1 + x2N )

+
x4N − 1

x4q − 1
(x+ x2 + x3). (4)

Since N is odd, we have u(1) = 1, i.e., gcd(x− 1, u(x)) =
1. Then, Equation (4) can be rewritten as

gcd(x4N − 1, u(x))

= gcd(
x4N − 1

x4 − 1
, u(x))

= gcd(
x4N − 1

x4q − 1

x4q − 1

x4 − 1
, s(x4)(1 + x2N )(1 + xN−4η)

+
x4N − 1

x4q − 1
(1 + x2N ))

=
x2N − 1

x2q − 1
gcd(

x2N − 1

x2q − 1

x4q − 1

x4 − 1
, s(x4)(x2q − 1)

(1 + xN−4η) +
x2N − 1

x2q − 1
(1 + x2N ))

=
x2N − 1

x2q − 1

x2q − 1

x2 − 1
gcd(

x2N − 1

x2q − 1

x2q − 1

x2 − 1
,

s(x4)(x2 − 1)(1 + xN−4η) + (
x2N − 1

x2q − 1
)2(x2 − 1)).

It follows from gcd(
x2N − 1

x2 − 1
, x2 − 1) = 1 that

gcd(x4N − 1, u(x))

=
x2N − 1

x2 − 1
gcd(

x2N − 1

x2 − 1
, s(x4)(1 + xN−4η)

+ (
x2N − 1

x2q − 1
)2). (5)

Since N and N − 4η are odd, xN − 1 and xN−4η − 1
have no repeated roots in their splitting field.

For simplicity, define

P = {p, 2p, · · · , (q − 1)p}, Q = {q, 2q, · · · , (p− 1)q}.

Lemma 3. [3] Let s(x) be the sequence polynomial of the
twin-prime sequence of period N and Dj be the generalized
cyclotomic classes of order 2 with respect to p and p + 2
for j = 0, 1. Then, for 0 ≤ i ≤ N − 1,

1) If p ≡ 1 (mod 4), s(βi) = 0 if i = 0, otherwise
s(βi) 6= 0.

2) If p ≡ 3 (mod 4), s(βi) = 0 if i = 0, i ∈ P ∪ Q or
i ∈ D0 (by choice of β), otherwise s(βi) 6= 0.

Further, xN − 1 =
(xq − 1)(xp − 1)d0(x)d1(x)

x− 1
, where

dj(x) =
∏
i∈Dj

(x− βi) ∈ F2[x], j = 0, 1.

We discuss the results of Equation (5) by Lemma 3 as
follows,

• (x
N−1
x−1 )2|βi =

(
(xq−1)(xp−1)d0(x)d1(x)

(x−1)2

)2
|βi = 0 if i ∈

P ∪Q ∪D0 ∪D1.

•
(
xN−1
xq−1

)4
|βi = 0 if i ∈ Q ∪D0 ∪D1.

Nextly, we will discuss the roots of s(x4) and (1 +
xN−4η) according to the distinct values of η and p by
Lemma 3, then gcd(x4N − 1, u(x)) is determined.

Case 1. η = 0, p ≡ 1 (mod 4).
By Lemma 3, we have s(x4)|βi = 0 if i ∈ {0}, and
(1 + xN )|βi = 0 if i ∈ {0} ∪ P ∪Q ∪D0 ∪D1. Then

gcd

(
x2N − 1

x2 − 1
, s(x4)(1 + xN ) +

(
x2N − 1

x2q − 1

)2
)

=
xN − 1

xq − 1
,

gcd(x4N − 1, u(x)) =
x2N − 1

x2 − 1

xN − 1

xq − 1

Case 2. η = 0, p ≡ 3 (mod 4).
By Lemma 3, we have s(x4)|βi = 0 if i ∈ {0}∪P∪Q∪
D0, and (1 +xN )|βi = 0 if i ∈ {0}∪P ∪Q∪D0∪D1.
Then

gcd

(
x2N − 1

x2 − 1
, s(x4)(1 + xN ) +

(
x2N − 1

x2q − 1

)2
)

=

(
xp − 1

x− 1
d0(x)

)2

d1(x),

gcd(x4N − 1, u(x))

=
x2N − 1

x2 − 1

(
xp − 1

x− 1
d0(x)

)2

d1(x)

Case 3. η ∈ Q, p ≡ 1 (mod 4).
By Lemma 3, we have s(x4)|βi = 0 if i ∈ {0}, and
(1 + xN−4η)|βi = 0 if i ∈ {0} ∪ P . Then

gcd

(
x2N − 1

x2 − 1
, s(x4)(1 + xN−4η) +

(
x2N − 1

x2q − 1

)2
)

= 1,

gcd(x4N − 1, u(x)) =
x2N − 1

x2 − 1

Case 4. η ∈ Q, p ≡ 3 (mod 4).
By Lemma 3, we have s(x4)|βi = 0 if i ∈ {0} ∪ P ∪
Q∪D0, and (1 + xN−4η)|βi = 0 if i ∈ {0} ∪P . Then

gcd

(
x2N − 1

x2 − 1
, s(x4)(1 + xN−4η) +

(
x2N − 1

x2q − 1

)2
)

=

(
xp − 1

x− 1
d0(x)

)2

,

gcd(x4N − 1, u(x)) =
x2N − 1

x2 − 1

(
xp − 1

x− 1
d0(x)

)2
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Case 5. η ∈ P , p ≡ 1 (mod 4).
By Lemma 3, we have s(x4)|βi = 0 if i ∈ {0}, and
(1 + xN−4η)|βi = 0 if i ∈ {0} ∪Q. Then

gcd

(
x2N − 1

x2 − 1
, s(x4)(1 + xN−4η) +

(
x2N − 1

x2q − 1

)2
)

=
xp − 1

x− 1
,

gcd(x4N − 1, u(x)) =
x2N − 1

x2 − 1

xp − 1

x− 1

Case 6. η ∈ P , p ≡ 3 (mod 4).
By Lemma 3, we have s(x4)|βi = 0 if i ∈ {0} ∪ P ∪
Q∪D0, and (1 + xN−4η)|βi = 0 if i ∈ {0} ∪Q. Then

gcd

(
x2N − 1

x2 − 1
, s(x4)(1 + xN−4η) +

(
x2N − 1

x2q − 1

)2
)

=

(
xp − 1

x− 1
d0(x)

)2

,

gcd(x4N − 1, u(x)) =
x2N − 1

x2 − 1

(
xp − 1

x− 1
d0(x)

)2

In the following two cases, as for η ∈ Z∗N , one can
deduce that (1 + xN−4η)|βi = 0 for any 1 ≤ i ≤
N − 1.

Case 7. η ∈ Z∗N , p ≡ 1 (mod 4).
By Lemma 3, we have s(x4)|βi = 0 if i ∈ {0}. Then

gcd

(
x2N − 1

x2 − 1
, s(x4)(1 + xN−4η) +

(
x2N − 1

x2q − 1

)2
)

= 1,

gcd(x4N − 1, u(x)) =
x2N − 1

x2 − 1

Case 8. η ∈ Z∗N , p ≡ 3 (mod 4).
By Lemma 3, we have s(x4)|βi = 0 if i ∈ {0} ∪ P ∪
Q ∪D0. Then

gcd

(
x2N − 1

x2 − 1
, s(x4)(1 + xN−4η) +

(
x2N − 1

x2q − 1

)2
)

=

(
xp − 1

x− 1
d0(x)

)2

,

gcd(x4N − 1, u(x)) =
x2N − 1

x2 − 1

(
xp − 1

x− 1
d0(x)

)2

By Lemma 1, substituting the results discussed above

into mu(x) =
x4N − 1

gcd(x4N − 1, u(x))
, we can determine the

minimal polynomial and linear complexity of u that ob-
tained from the twin-prime sequence as follows.

Theorem 1. Let the integer N = pq where p and q =
p + 2 are two primes, (a0, a1, a2, a3) = (t′, t, t′, t) and
b = (0, 1, 1, 1). Then the interleaved sequence u defined
by Equation (1) has the following properties:

• The minimal polynomial is

mu(x) =

(xN − 1)(x2 − 1)(xq − 1),

if η = 0 and p≡ 1 (mod 4);

(x2N − 1)(x4 − 1)

(x2p − 1)d20(x)d1(x)
,

if η = 0 and p≡ 3 (mod 4);

(x2N − 1)(x2 − 1),

if η ∈ Q and p≡ 1 (mod 4);

(x2N − 1)(x4 − 1)

(x2p − 1)d20(x)
,

if η ∈ Q and p≡ 3 (mod 4);

(x2N − 1)(x− 1)3

xp − 1
,

if η ∈ P and p≡ 1 (mod 4);

(x2N − 1)(x4 − 1)

(x2p − 1)d20(x)
,

if η ∈ P and p≡ 3 (mod 4);

(x2N − 1)(x2 − 1),

if η ∈ Z∗N and p≡ 1 (mod 4);

(x2N − 1)(x4 − 1)

(x2p − 1)d20(x)
,

if η ∈ Z∗N and p≡ 3 (mod 4).

• The linear complexity of u is

LC(u) =

p2 + 3p+ 4,if η = 0 and p≡ 1 (mod 4);

p2

2
+ 2p+

11

2
,if η = 0 and p≡ 3 (mod 4);

2p2 + 4p+ 2,if η ∈ Q and p≡ 1 (mod 4);

p2 + 2p+ 5,if η ∈ Q and p≡ 3 (mod 4);

2p2 + 3p+ 3,if η ∈ P and p≡ 1 (mod 4);

p2 + 2p+ 5,if η ∈ P and p≡ 3 (mod 4);

2p2 + 4p+ 2,if η ∈ Z∗N and p≡ 1 (mod 4);

p2 + 2p+ 5,if η ∈ Z∗N and p≡ 3 (mod 4).

Example 1. Let p = 3 and q = 5, then the twin-prime
sequence of period N = 15 is

t = (0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1)

and the modified twin-prime sequence is

t′ = (1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1).

If one takes η = 5 ∈ Q, then 1
4 + η = 9 mod 15, 1

2 =
8 mod 15, and 3

4 + η = 2 mod 15. By Equation (1), the



International Journal of Network Security, Vol.18, No.2, PP.244-249, Mar. 2016 248

sequence u of period 4N = 60 is

t = (1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,

0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1,

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1).

By Magma program, the minimal polynomial of u is
mu(x) = x20 + x16 + x12 + x6 + x2 + 1 and the linear
complexity of u is LC(u) = 20, which are compatible with
the results given by Theorem 1.

Example 2. Let p = 5 and q = 7, then the twin-prime
sequence of period N = 35 is

t = (0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,

0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)

and the modified twin-prime sequence is

t′ = (1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0,

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1).

If one takes η = 7 ∈ Q, then 1
4 + η = 16 mod 35, 1

2 =
18 mod 35, and 3

4 + η = 34 mod 35. By Equation (1),
the sequence u of period 4N = 140 is

t = (1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,

1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,

1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1,

1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0,

1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,

1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,

1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1).

By Magma program, the minimal polynomial of u is
mu(x) = x72 + x70 + x2 + 1 and the linear complexity
of u is LC(u) = 72, which are compatible with the results
given by Theorem 1.

4 Conclusion

In this paper, based on the discussion of roots of the se-
quence polynomials in the splitting field of xN − 1, both
the minimal polynomials and linear complexities of the
binary interleaved sequences of period 4N with low auto-
correlation value/magnitude are completely determined.
When p ≡ 1 (mod 4) and η ∈ Q ∪ Z∗N , the linear com-
plexity of u is greater than half of a period, then it is as
strong as the sequences defined by Tang et al. [5].

Most recently, Xiong and Qu investigated 2-adic com-
plexity of some binary sequences with interleaved struc-
ture [10]. Similarly, we will compute 2-adic complexity of
interleaved sequences defined in this paper.
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