
International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 345

A New Iterative Secret Key Cryptosystem Based
on Reversible and Irreversible Cellular Automata

Said Bouchkaren, Saiida Lazaar
(Corresponding author: Said Bouchkaren)

Department of Mathematics and Computer Science/LTI, ENSA of TANGIER, AbdelMalek Essaadi University

P.O. Box 1818 Principal Tangier, Tangier, Morocco

(Email: saidbouchkaren1@hotmail.com)

(Received Jan. 27, 2015; revised and accepted May 5 & July 13, 2015)

Abstract

Many cryptosystems have been released to secure elec-
tronic data on internet. Some data are very critical to
be transmitted as plaintext. Thus, to ensure the data
confidentiality and integrity, a list of cryptosystems have
been elaborated. The most important ones are divided
into two categories: symmetric algorithms encrypting and
decrypting data in blocks using a single secret key; and
asymmetric algorithms using public keys to cipher texts
and secret keys to reconstruct plaintexts. The of the
present work is the design and implement a new secret key
cryptosystem encrypting and decrypting data in blocks
according to a number of iterations. Each plaintext block
is encrypted using cellular automata and a list of sub keys
deduced from a secret key through cellular automata. To
demonstrate the feasibility, the proposed scheme is com-
pared with AES algorithm, the well-known symmetric
block cipher. We prove that our algorithm resists against
statistical attacks and it is faster than AES-256 achieving
good confusion and diffusion tests.

Keywords: Block ciphers, cellular automata, reversible,
irreversible, secret key

1 Introduction

In the modern world everything is handled by smart de-
vices which are in general connected to each other and
communicate via a network. Each network is connected
to other networks in order to simplify and to improve
the relationship between distant communities. Most in-
ternet applications send and receive critical data such as
logins and passwords, credit card number and PIN, bank
account details, personal identity, etc. These data can
be intercepted by malicious people and can be used for
passive or active attacks.

In this context, a number of researches have been car-
ried out in the field of cryptography, and leads to a num-
ber of methods to guaranty confidentiality and integrity of

data, and to ensure authentication and non-repudiation.
The researches focus on four components: Confidential-
ity: only authorized may access data. Integrity: to ensure
that transmitted data were not altered. Authentication:
to identify correctly the two parts of a communication.
And the forth component is non-repudiation which vali-
dates the signature.

The new generation of cryptography methods are di-
vided into three types: asymmetric cryptosystems in
which the processes of encryption and decryption use a
pair of keys: the public key used to perform the cipher
text and the secret one used to reconstruct the plain-
text, these systems are used in general to exchange se-
cret keys and to sign documents; we remind that RSA is
the most popular asymmetric algorithm in cryptography
world [16]. The second type of modern cryptography con-
cerns symmetric cryptosystems which uses single secret
keys as for instance block algorithms which encrypt and
decrypt data in blocks within a number of iterations or
rounds; the well-known algorithms are AES, DES, 3DES,
RC4 [3, 11, 16]. The third type is signature systems used
to sign documents and to guaranty the integrity of data.
The three systems types complete each other to achieve
the four components of data security.

However, in cryptanalysis field, many attacks were car-
ried out on these algorithms making them sometimes vul-
nerable. This vulnerability increases with technological
advances and changing profiles pirates; these principal
reasons motivate researchers to build robust and reliable
cryptosystems.

To contribute to this research, we propose a new itera-
tive symmetric cryptosystem based on reversible and irre-
versible cellular automata. First, the plaintext is divided
into blocks, the principal secret key is given randomly by
a first irreversible cellular automaton, and then a number
of sub keys are generated and used for each iteration to
cipher each block with a reversible cellular automata. the
proposed cryptosystem is compared with AES algorithm,
the well-known iterative symmetric block cipher, the com-
putational results prove that it resists against statistical



International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 346

attacks and it is faster than AES-256.
The remainder of this paper is organized as follows:

The second section presents some contributions in the
domain, the third section describes the proposed system,
and the forth part explains in details the sub keys schedul-
ing process. To test the reliability of the present algo-
rithm, various numerical tests are presented on the fifth
section, and in the last section a conclusion and perspec-
tives are given.

2 Brief Presentation of Cellular
Automata and Related Works

Cellular automata (CA) are discrete dynamical systems
widely used to simulate complex phenomena in several
areas including physics, biology, chemistry, computer sci-
ence and cryptography without defining analytical solu-
tions of the problems. More precisely, on a given grid, CA
are an evolution of a collection of cells on discrete time
steps according to some rules based on the state of the
neighbors of cells.

Mathematically, a cellular automaton A of dimension
d is defined by A = {S,ZZd, f, V } where S is the set of
states, ZZd is the space of the CA and f : Sn 7→ S is
the transition rule; n = card(V ) where V is the set of
neighborhoods. More details on CA supported by many
illustrations can be found in [14, 21].

In cryptography field, CA allows ciphering texts and
generating secret keys starting from a chaotic and com-
plex state. The first algorithm based on CA belongs to
S.Wolfram; the work presented in [20] gives interesting
explanations about CA concept and since this first work,
numerous contributions on the field were released.

In [6], a public-key cryptosystem is constructed with
inhomogeneous cellular automata and according to the
author the time to break the algorithm grows exponen-
tially with the length of message blocks. Reversible cel-
lular automata (RCA) was proposed in [8] with some ef-
ficiency due to parallelism property and this kind of CA
was used to construct public and secret key cryptosys-
tems. In [17], a novel secret key cryptosystem using RCA
was developed.

To secure medical data sent over the internet, a block
encryption method based on hybrid additive cellular au-
tomata was implemented in [1] where results demonstrate
the power of CA encryption. In [13], an encryption
method was built upon layered cellular automata, and
used a number of layered grids applying a list of reversible
transition rules [9, 10] to produce the cipher text. In [5], a
generic strategy to design new block encryption methods
based on CA is presented with an evolutionary compu-
tation mechanism to create new, fast and secure cryp-
tosystems using non-uniform second-order CA. In [2] a
description of a new and fast private key cryptosystem
using two-dimensional reversible CA based on Margolus
neighborhoods is presented, this algorithm can be used to
encrypt any kind of data as for instance image data. also

the paper [19] present a novel lightweight block cipher
algorithm based on cellular automata.

This non-exhaustive overview on CA is closed by other
works related to image encryption [4, 7, 12, 22].

3 Proposed Algorithm

In this proposed algorithm, which we call Cellular Au-
tomata Encryption System (CAES), two reversible CA
are used to encrypt and decrypt plaintext and one irre-
versible CA to generate sub keys starting with the se-
cret key. The concept of reversibility is well explained
in [9, 10].

3.1 Algorithm Specifications

The proposed algorithm encrypts and decrypts data in
blocks according to a number of iterations (rounds) in-
troducing for each round the corresponding sub key; each
block cipher and each sub key are generated by cellular
automata. The specifications are the following: Data are
divided into blocks of 256-bits, the size of the principal
key is equal to 256-bits and the round number to encrypt
or to decrypt each block corresponds to 12.

3.2 Encryption and Decryption Pro-
cesses

Encryption process starts by dividing the plaintext into
blocks of 256-bits and by copying the data into a matrix
M of size 4x8 (4x8 bytes=256-bits) then M passes through
a number of transformations named Shift(), IMix(),
PMix() and Addkey(), the pseudo-code for the encryp-
tion is shown in Algorithm 1.

Algorithm 1 Encryption algorithm

1: procedure Encrypt(M,Key) . M is the plaintext
message block and Key is the encryption key

2: SKeys[12]← SubKeys(K); . Generating 12 sub
keys

3: for i from 0 to 11 do
4: M = Shift(M)
5: M = IMix(M)
6: M = PMix(M)
7: M = AddKey(M,SKeys[i])
8: end for
9: return M . M contains the encrypted message

10: end procedure

For the decryption process, the inverse transfor-
mations: invShift(), invIMix(), invPMix() and
AddKey() are applied. The decryption process can be
written in Algorithm 2.



International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 347

Algorithm 2 Decryption algorithm

1: procedure Decrypt(Mc,Key) . Mc is the
encrypted message block and Key is the encryption
key

2: SKeys[12]← SubKeys(K); . Generating 12 sub
keys

3: for i from 11 downto 0 do
4: Mc = AddKey(Mc, SKeys[i])
5: Mc = invPMix(Mc)
6: Mc = invIMix(Mc)
7: Mc = invShift(Mc)
8: end for
9: return Mc . Mc contains the plaintext

10: end procedure

In the following, we describe the transformations used
in encryption and decryption algorithms: ENCRY PT ()
and DECRY PT ().

3.3 Shift() and invShift() Transforma-
tions

The Shift() transformation acts on the bytes of data for
each row, it is implemented using reversible cellular au-
tomaton defined as:

• States are the bytes of the row L.

• Transition rule is: each byte B[i] becomes B[(i +
L)%8].

The invShift() is the reverse transformation of
Shift(). The cellular automaton used in Shift() (respec-
tively) in invShift() is a byte left (respectively) right ro-
tation of a row L by 8 bits. Figure 1 demonstrates these
transformations.

53 41 49 44 20 42 4F 55

43 48 4B 41 52 45 4E 20

43 52 59 50 54 4F 2D 53

59 53 54 45 4D 20 42 41

41 49 44 20 42 4F 55 53

4B 41 52 45 4E 20 43 48

50 54 4F 2D 53 43 52 59

4D 20 42 41 59 53 54 45

Shift()invShift()

Figure 1: Shift()/invShift() illustration

3.4 IMix(), PMix(), invIMix() and
invPMix() Transformations

These transformations act on the entire block of 256-
bits. They use a reversible cellular automaton of two
dimensions which is built using MARGOLUS neighbor-
hoods [18] and defined as follow:

• Convert the entire data block of 256-bits to binary,
and fit this bits into a matrix Mb[4][64].

• Partition Mb to blocks B of 4-bits (2x2).

• Look up Y = f(X) where f is the transition rule
with X = B00B01B11B10.

• Put Y into the block B.

• The transition rule f is: {15, 2, 3, 5, 7, 11, 13, 4, 6, 8,
10, 12, 14, 9, 1, 0} for PMix() and {0, 1, 9, 14, 12, 10,
8, 6, 4, 13, 11, 7, 5, 3, 2, 15} for IMix().

• Use periodic conditions on the edges of the matrix
Mb.

For further details on this process we can refer to [2].
Figure 2 illustrates the effects of PMix() and IMix().

1 1 0 0 0 0 1 1

0 1 0 1 0 1 0 1

1 0 0 0 1 0 1 1

1 1 1 0 1 1 0 0

Figure 2: Acts of PMix() and IMix()

The PMix() transformation is applied on the dashed
line blocks (Figure 2), however the IMix() is applied on
the solid line blocks. For example the first dashed line
block is 1110 in binary which is equal to 14 in decimal
representation and using the transition rule of PMix(),
we get the value 1 in decimal or 0001 in binary repre-
sentation so we replace 1110 with 0001. After applying
PMix() and IMix() on the data in (Figure 2), we get the
data represented in Figure 3.

1 1 0 0 0 0 1 1

0 1 0 1 0 1 0 1

1 0 0 0 1 0 1 1

1 1 1 0 1 1 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0

1 1 1 0 0 1 1 0 1

1 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 0 0 0 1 1 1 0

PMix()

IMix()

invPMix()

invIMix()

Figure 3: PMix() and IMix() acts illustration

The invPMix() is the reciprocal transformation of
PMix() and it uses the same cellular automaton used
in PMix() but it uses the transition rule expressed as
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. invIMix()
is the reciprocal transformation of IMix(). it follows the



International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 348

same logic as invPMix() it uses the cellular automaton
used in IMix() except it uses the transition rules defined
as {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. instead of
{0, 1, 9, 14, 12, 10, 8, 6, 4, 13, 11, 7, 5, 3, 2, 15}. Figure 4 il-
lustrates the act of IMix(), PMix() and their inverses

41 49 44 20 42 4F 55 53

4B 41 52 45 4E 20 43 48

50 54 4F 2D 53 43 52 59

4D 20 42 41 59 53 54 45

B6 B6 BD DF B4 DA BE B6

F4 F3 D1 45 FE 15 C0 C5

B7 DF B8 DA A4 BC AD BE

CD 23 F7 47 F5 DC F4 CB

DD 2F F5 17 E1 9C F4 DF

0D 15 B0 BA 10 12 23 3C

E5 D7 D1 15 EC B1 CB D5

2C EC 11 3F 8A 3B 95 AC

PMix()

IMix()

invPMix()

invIMix()

Figure 4: Example of PMix() and IMix() and their in-
verses

3.5 AddKey Transformation

This transformation takes two parameters, 32 bytes (256-
bits) data block M and a sub key Ki of 32 bytes; then
it calculates M ′ = M ⊕Ki where ⊕ represents the XOR
operator. This transformation can be written in Algo-
rithm 3.

Algorithm 3 AddKey() procedure

1: procedure AddKey(M,Ki)
2: for i from 0 to 31 do
3: M [i] = M [i]⊕Ki . M [i] is the ith byte of M
4: end for
5: return M
6: end procedure

4 Key Scheduling

As mentioned above, the AddKey() transformation needs
sub keys to be applied on the given data. These sub keys
are generated from the encryption key using a function
called SubKeys(). This function aims to generate sub
keys to be used by the transformation AddKey(). These
sub keys are derived recursively from the global encryp-
tion key K as follow:{

Ki = next(Ki−1)/i ∈ {1, 2, . . . , 11}
K0 = K.

The function next() is executed in three steps.

4.1 Step 1: Irreversible Cellular Automa-
ton

In this step, we apply an irreversible cellular automaton
of one dimension defined as:

• Neighbors of a cell i are i− 1, i, i + 1;

• A state for a given cell is 0 or 1;

• Periodic conditions on edges;

• Transition rule is 110.

The rule 110 has been chosen because it is classified
as fourth class of cellular automata [15] and it produce a
chaotic behavior. Figure 5 gives an example for this step.

53 45 44 20 4F 4E 20 43

45 4C 4C 55 4C 41 52 20

41 55 54 4F 4D 41 54 41

2C 20 45 4E 53 41 54 2E

F7 CF CC 60 DF DE 60 C7

CF DC DC FF DC C3 F6 60

C3 FF FC DF DF C3 FC C3

7C 60 CF DE F7 C3 FC 7E

Rule 110

Figure 5: Rule 110 effect example

4.2 Step 2: Applying IMix()

In this step the resulting data from the step 1 is taken
and then the IMix() transformation described above is
applied. For illustration purpose we get the results shown
in Figure 6.

53 45 44 20 4F 4E 20 43

45 4C 4C 55 4C 41 52 20

41 55 54 4F 4D 41 54 41

2C 20 45 4E 53 41 54 2E

F7 CF CC 60 DF DE 60 C7

CF DC DC FF DC C3 F6 60

C3 FF FC DF DF C3 FC C3

7C 60 CF DE F7 C3 FC 7E

75 4D 8C CA D7 96 E8 CF

31 DD 5B 9F BD 27 F0 01

87 DD D8 DF 9D 83 F4 C3

E5 87 39 55 97 BD 76 17

Rule 110

IMix()

Figure 6: Rule 110 and IMix() illustration

4.3 Step 3: Bytes XORing

Let E2 be the data from Step 2.

E2[i] = E2[i− 1]⊕ ∼ E2[32− i] 1 ≤ i ≤ 31



International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 349

where E2[i] denotes the ith byte of E2 and ∼ denotes the
binary negation. The Figure 7 an example presentation.

75 4D 8C CA D7 96 E8 CF

31 DD 5B 9F BD 27 F0 01

87 DD D8 DF 9D 83 F4 C3

E5 87 39 55 97 BD 76 17

75 9D 14 56 3E 94 52 2A

30 0C 07 7B 19 39 1E 3C

44 87 66 A0 46 C2 3A C9

06 D3 7E 15 D4 7D 96 F4

XOR

Figure 7: Data XORing example

5 Numerical Tests

To prove the algorithm reliability, three tests are pro-
posed: a test of bits change rates, and confusion and dif-
fusion tests. All these tests are compared to AES-256.

5.1 Bits Change Rate

This test measures the bits changing rate between the
clear message and the encrypted message. To carry out
this test a random key of 256 bits is chosen, and then
a list of plaintext message, which have variable length,
is randomly generated, finally each message is encrypted
using the same key. Figure 8 shows the results of this
test using the proposed algorithm CAES and the AES-256
algorithm. We observe that the proposed algorithm gives
almost the same rates compared to AES with marginal
improvement.

5.2 Confusion Test

In this test, we measure the confusion property which
make the relationship between the encryption key and the
cryptogram as complex as possible, it measures the num-
ber of changed bits in an encrypted message by changing
some bits in the encryption key. To achieve this test, a
plaintext message and an encryption key are randomly se-
lected, the message is kept unchanged while some key bits
are flipped, and then the encryption algorithms (CAES
and AES-256) are performed. Figure 9 illustrates the re-
sults of the test.

It is clear that the proposed algorithm is better than
AES-256, the changing rate is between 48.44 and 52.15
for CAES and between 48.44 and 51.96 for AES-256.

5.3 Diffusion Test

In cryptography, the diffusion property makes the rela-
tionship between plaintext and encrypted message. It
evaluates the impact of changing some bits in a plain-
text message on the resulting cipher text while keeping

the encryption key unchanged. To accomplish this test,a
plaintext message and a key are randomly chosen. Fig-
ure 10 shows that the proposed system improves the dif-
fusion property compared to AES-256.

5.4 Performance Test

This test evaluates the proposed algorithm performance
regarding the CPU time consumption. It is performed
as follows: a random key of size 256 bits is given and a
list of messages of different sizes are generated. For each
message the encryption process is ran and the time to
complete the operation is calculated. For this test, the
same keys are used for the proposed system CAES and
AES-256 algorithm.

Figure 11 shows the results carried out on a PC of Intel
CPU i5/2.5MHz, and 4GB of RAM. The CPU time of the
proposed algorithm is compared to that of AES-256.

According to the numerical simulation, we can con-
clude that the proposed system consumes much lower time
than AES-256 to accomplish encryption and decryption
processes.

5.5 Key Scheduling Example

In the following example we consider the encryption key:

5341494420424F5543484B4152454E20

414E44205341494441204C415A414152

And we consider the plaintext message:

43525950544F53595354454D20424153

4544204F4E2043454C4C554C4152204

The key and message are written in hexadecimal represen-
tation. Table 1 shows the encryption process and shows
data for each round.

5.6 CAES Robustness

The proposed algorithm uses 256-bits keys, it implies
2256 usable keys. Suppose that we have a sophisticated
machine that can test a validity of a key in 10−20 sec-
onds, this machine will take approximately 10−20 ∗2256 ∼=
1.15∗10578 seconds which means more than 3∗1049 years,
we deduce then that a brute force attack with an exhaus-
tive key search is impossible.

According to confusion and diffusion test we can as-
sume that statistical attacks can not lead to any positive
results.

6 Conclusion and Perspectives

This paper presented a new secret key cryptographic al-
gorithm based on three cellular automata (CA); two re-
versible CA of 2-dimension , and one irreversible CA of



International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 350

47

47.5

48

48.5

49

49.5

50

50.5

51

51.5

52
25
6

44
8

64
0

83
2

10
24

12
16

14
08

16
00

17
92

19
84

21
76

23
68

25
60

27
52

29
44

31
36

33
28

35
20

37
12

39
04

40
96

42
88

44
80

46
72

48
64

50
56

52
48

54
40

56
32

58
24

60
16

62
08

64
00

65
92

67
84

69
76

71
68

73
60

75
52

77
44

79
36

81
28

C
ha

ng
in

g 
ra

te
 in

 c
ip

he
r 

te
xt

 (%
)

Randomly chosen messages size (bits)

AES-256

CAES

Figure 8: Proposed system CAES and AES-256 changing bits rate

46.00

47.00

48.00

49.00

50.00

51.00

52.00

53.00

1 2 3 4 5 6 7 8 9 10

Bi
ts

 ra
te

 ch
an

ge
d 

in
 en

cr
yp

te
d 

m
es

sa
ge

(%
)

Number of bits changed in the key 

AES-256

CAES

Figure 9: Confusion results of CAES and AES-256

48.50

49.00

49.50

50.00

50.50

51.00

1 2 3 4 5 6 7 8 9 10

C
ha

ng
e 

ra
te

 in
 c

ip
he

r 
te

xt
 (%

)

Changed bits in the plaintext message

AES-256

CAES

Figure 10: Diffusion results of CAES and AES-256



International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 351

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

1 2 4 8 16 32 64 96 128 192 256 384 512 768 1024

C
P

U
 T

im
e 

(m
s)

Message size (Kilo Byte)

CAES

AES-256

Figure 11: CPU time comparison between CAES and AES-256

Table 1: Encryption example

Round number Sub key Cipher message on current round

0
5341494420424F5543484B4152454E20
414E44205341494441204C415A414152

0E264E9879636A0C5B05689B07C8C951
121D03F6461511191C572B97E61B3FEF

1
CFC7055ED408CC328035552D350B680B
738710E42EFC569CE32E1DEAC1609AA2

C507745F4F1F9C0CE2F01D5502219689
9246620B8B8B3466F6CACEA240966452

2
D74701A78383BB4222E0E240C043CF0F
3DCDFD417EC1DCC31EA3E79BE7BF41F9

A952F8334BB0486712BBEFE840CD3A67
6C9A04484427CB8FF84B3F33F93D3B57

3
7F14361E360EA0D9F9280A7258242C06
8E77A47FD855A077715708F930D118F3

9BD1F8FA1959D017C439FCBA0FF7885A
3B413D6DA1F7CEA60149166674B2EEA3

4
F7F957FDF51717F1FADA4D4F4840E361
21BFA31CAB1BA98C89876F878D8F2721

69F6558838FE4FB5269F7F029E89BCAA
4B410B368CCB9C0C112C6AF624A698B8

5
DF4F27C6C7CFCFC1C38B83A98B291919
896F895F2B7D0175497747774F76AE1E

8E153003FA2E8DEF460F227AC80BACC4
21BCE1BEC61615E658A952FFC4DC69BC

6
DF91F191C9B1117052D226A707076F4F
279707FF075F86AB068967291F717F11

043E35306AED77B3EAA749F8321FE6C9
E387EC9F8EE93D977C5F12D67065BE65

7
5FEC1203C53D2B535B7B3B9B6B6A3A33
BB77B227B3D71397339F4B89B34FA2B1

D671F7716C1157AC54716734701BDF80
5A16BDEE3BEB4BB4C5823C3F147BA19D

8
7765E54435DF0721A92129282020A9A9
A9FFA976A97EA87620FE0626EC574DD7

E9E96619233DCCAF7D210183B3CDD2FB
2BB40CB2B039F5FA0202D2968D699CA3

9
75FB62E36107071F9F9F99139F1D9911
15FB9D7F1FF395F595758D75EBF76A6E

46208C7529D5BB23649E129543DBD91E
FD56D86239B7D22DFEDE935F1D47D737

10
FF9F269F9098909030B8F870B0387878
B83FB87F30BFB8FF305F3057385881E1

156EBDD30EBA87C1586FA904D075F608
C4710AE8045C89F1A6A0CDF9F957506B

11
750674926C8C9C7D757771F36D676062
ED70EF77E5E967EF65E784F76409827B

F778A842E791633BAAF78F73DFD5DCB7
E02F3AF0C1B78A370C9A606B01CF87FC



International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 352

1-dimension. The cryptosystem (named CAES) consid-
ered 256-bits for both key and message block and it was
executed into 12 rounds evolving 12 sub keys. To prove
the reliability of the proposed algorithm, various compu-
tational results were presented including confusion, diffu-
sion and CPU times comparison. The most advantageous
features of the algorithm include fastness and robustness
against a brute force attack. Further work is now to im-
plement CAES in a smart card and to realize side channel
attacks.

References

[1] P. Anghelescu, S. Ionita, and E. Sofron, “Block en-
cryption using hybrid additive cellular automata,” in
IEEE 7th International Conference on Hybrid Intel-
ligent Systems (HIS’07), pp. 132–137, 2007.

[2] S. Bouchkaren and S. Lazaar, “A fast cryptosys-
tem using reversible cellular automata,” Interna-
tional Journal of Advanced Computer Science and
Applications, vol. 5, no. 5, pp. 207–210, 2014.

[3] R. H. Brown, M. L. Good, and A. Prabhakar, “Data
encryption standard (DES),” Federal Information
Processing Standards (FIPS) Publication 46, vol. 2,
1993.

[4] K. M. Faraoun, “Fast encryption of RGB color dig-
ital images using a tweakable cellular automaton
based schema,” Optics & Laser Technology, vol. 64,
pp. 145–155, 2014.

[5] K. M. Faraoun, “A genetic strategy to design cellular
automata based block ciphers,” Expert Systems with
Applications, vol. 41, no. 17, pp. 7958–7967, 2014.

[6] P. Guan, “Cellular automaton public-key cryptosys-
tem,” Complex Systems, vol. 1, no. 1, pp. 51–56,
1987.

[7] J. Jin, “An image encryption based on elementary
cellular automata,” Optics and Lasers in Engineer-
ing, vol. 50, no. 12, pp. 1836–1843, 2012.

[8] J. Kari, “Cryptosystems based on reversible cellu-
lar automata,” Manuscript, Apr. 16, 1992. (http:
//users.utu.fi/jkari/CACryptoScanned.pdf)

[9] J. Kari, “Reversibility and surjectivity problems of
cellular automata,” Journal of Computer and System
Sciences, vol. 48, no. 1, pp. 149–182, 1994.

[10] J. Kari, “Reversible cellular automata,” in Devel-
opments in Language Theory, pp. 57–68, Springer,
2005.

[11] NIST AES, “Advanced encryption standard,” Fed-
eral Information Processing Standard, FIPS-197,
vol. 12, 2001.

[12] P. Ping, F. Xu, and Z. J. Wang, “Image encryption
based on non-affine and balanced cellular automata,”
Signal Processing, vol. 105, pp. 419–429, 2014.

[13] J. N. Rao, A. C. Singh, “A novel encryption system
using layered cellular automata,” International Jour-
nal of Engineering Research and Applications, vol. 2,
no. 6, pp. 912–917, 2012.

[14] P. Sarkar, “A brief history of cellular automata,”
ACM Computing Surveys, vol. 32, no. 1, pp. 80–107,
2000.

[15] J. L. Schiff, Cellular Automata: A Discrete View of
the World, John Wiley & Sons, 2011.

[16] B. Schneier, Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C, 2nd Edition, John
Wiley & Sons, Inc, 1996.

[17] M. Seredynski and P. Bouvry, “Block cipher based on
reversible cellular automata,” New Generation Com-
puting, vol. 23, no. 3, pp. 245–258, 2005.

[18] T. Toffoli and N. H. Margolus, “Invertible cellular au-
tomata: A review,” Physica D: Nonlinear Phenom-
ena, vol. 45, no. 1, pp. 229–253, 1990.

[19] S. Tripathy and S. Nandi, “LCASE: Lightweight cel-
lular automata-based symmetric-key encryption.,”
International Journal of Network Security, vol. 8,
no. 3, pp. 243–252, 2009.

[20] S. Wolfram, “Cryptography with cellular au-
tomata,” in Advances in Cryptology (CRYPTO’85),
LNCS 218, pp. 429–432, Springer, 1986.

[21] S. Wolfram, A New Kind of Science, Wolfram media
Champaign, 2002.

[22] X. Wu, D. Ou, Q. Liang, and W. Sun, “A user-
friendly secret image sharing scheme with reversible
steganography based on cellular automata,” Journal
of Systems and Software, vol. 85, no. 8, pp. 1852–
1863, 2012.

Said Bouchkaren obtained his state engineer diploma
in software engineering from AbdelMalek Essaadi Uni-
versity, Morocco, in 2010. Actually, his is PhD student
at Natinal School of Applied Sciences of Tangier. In
2011, He joined the department of Computer sciences
and mathematics as a professor. His research focuses on
cryptography and information security.

Saiida Lazaar started her scientific career with a re-
search contract funded by the CNRS in France with which
she prepared a Ph.D. in applied mathematics developing
fast algorithms based on wavelets to solve some numerical
problems. After her Ph.D., she has held various positions
as a researcher with IFP (Institute Franais du Pétrole)
and ONDRAF (Office National des Dchets Radioactifs et
des matires Fissiles) in Belgium. In 2001, she joined Ab-
delMalek Essaadi University in Morocco as a Research-
Professor. Her research area focuses on wavelets, cryp-
tography, numerical analysis, mathematical and numeri-
cal modeling of environment and technological problems.
She has a patent assigned at IFP with Dr. Dominique
Gurillot. She published various works and special issues
in international journals. She participated to national
and international conferences, she organized international
conferences and workshop and she was member of vari-
ous scientific committees and scientific projects. She is
currently Professor at the National School of Applied Sci-
ences of Tangier; she teaches and supervises projects on



International Journal of Network Security, Vol.18, No.2, PP.345-353, Mar. 2016 353

mathematics, cryptography and computer networks secu-
rity. She is also president of the Association ”la Colombe
pour la promotion du progiciel libre”.


