
International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 383

A Measurement Study of the Content Security
Policy on Real-World Applications

Kailas Patil1 and Braun Frederik2

(Corresponding author: Kailas Patil)

Department of Computer Engineering, Vishwakarma Institute of Information Technology1

Survey No: 2/3/4, Kondhwa, Pune-48, Maharashtra, India

(Email: kailas.patil@viit.ac.in)

Mozilla Corporation2

331 E. Evelyn Avenue, Mountain View, CA, 94041, USA

(Received Aug. 03, 2014; revised and accepted Jan. 16 & May 05, 2015)

Abstract

Content Security Policy (CSP) is a browser security mech-
anism that aims to protect websites from content injection
attacks. To adopt CSP, website developers need to man-
ually compile a list of allowed content sources. Nearly all
websites require modifications to comply with CSP’s de-
fault behavior, which blocks inline scripts and the use of
the eval() function. Alternatively, websites could adopt a
policy that allows the use of this unsafe functionality, but
this opens up potential attack vectors. In this paper, our
measurements on a large corpus of web applications pro-
vide a key insight on the amount of efforts web developers
required to adapt to CSP. Our results also identified er-
rors in CSP policies that are set by website developers on
their websites. To address these issues and make adoption
of CSP easier and error free, we implemented UserCSP a
tool as a Firefox extension. The UserCSP uses dynamic
analysis to automatically infer CSP policies, facilitates
testing, and gives savvy users the authority to enforce
client-side policies on websites.

Keywords: Content restrictions, content security policy,
security policy, web security

1 Introduction

The web browser security model is rooted in the same-
origin policy (SOP) [22], which isolates one origin’s re-
sources from other origins. However, attackers can sub-
vert the SOP by injecting malicious content into a vulner-
able website through attacks such as Cross-Site Scripting
(XSS) [3]. According to the OWASP vulnerability assess-
ment in 2013, XSS attacks are among top five vulnera-
bilities [23]. The root cause of code injection problem
on websites is that browsers are unable to distinguish be-
tween legitimate and maliciously injected content in a web
application. To mitigate threats of XSS attacks, Mozilla

proposed Content Security Policy (CSP) [30] a defense-
in-depth. CSP has become a part of W3C specification
and CSP 1.0 is in the state of Candidate Recommenda-
tion [36]. It aims to solve this problem by providing a
declarative content restriction policy in an HTTP header
that the browser can enforce. CSP defines directives asso-
ciated with various types of content that allow developers
to create whitelists of content sources and instruct client
browsers to only load, execute, or render content from
those trusted sources. However, writing an effective and
comprehensive CSP policy for websites is laborious. A
policy can break website functionality if legitimate con-
tent is overlooked during policy generation. Web devel-
opers at large technology companies may not have direct
access to change the CSP header on web servers, making
it difficult to iterate over policies. This is hindering the
adoption of CSP by real-world web applications as shown
by our results in Section 2.

The goal of this paper is to systematically understand
the difficulties in adopting a CSP policy by developers,
discuss probable ways to bypass CSP protection, and de-
velop a basic understanding of CSP usage in large, real-
world web applications today.

Our Study. In this work, we study the usage of CSP
policy on real-world desktop and mobile websites and
identify errors and inconsistency in CSP enforcement. To
do this, we used Scrapy framework to crawl real-world
websites using various user agent strings to record CSP
policies used by websites.

Based on empirical data collected in October 2013, we
draw several inferences about the hurdles in CSP adop-
tion. Our results show that there are three major rea-
sons that are hindering CSP adaption. First, developers
are unwilling to sacrifice functionality for security because
they are worried about losing customers. Second, the lim-
ited knowledge of developers about the correct usage of
CSP, shows that they have made mistakes while setting
CSP policies for their websites. Third, the amount of

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 384

efforts required by developers to make their website com-
patible to CSP is hindering adoption of CSP in the wild.

Moreover, web browsers do not currently expose a pol-
icy enforcement mechanism directly to users, and users
lack control over their own security when websites do not
implement CSP. Security savvy users may prefer secu-
rity over rich functionality. We argue that, if developers
and users do not experiment with CSP, it is difficult for
the community to iterate on the CSP specification [37] to
come to a more usable solution.

To assist website administrators in constructing Con-
tent Security Policies, CSP AiDer [9] uses a crawler to
crawl all the pages associated with a website and recom-
mends a CSP policy based on the types of content found
and the sources of that content. However, CSP AiDer is
unable to recognize dynamically added scripts. It exam-
ines static HTML code to infer CSP policy rather than
running the website in a web browser to infer policy based
on content loaded by the browser.

In this paper, we propose UserCSP, a Firefox exten-
sion to address above mentioned problems and ease in
CSP adoption. It helps developers and users to derive a
CSP policy for a website. UserCSP automatically infers
Content Security Policies, providing the strictest possible
policies without breaking websites. To infer a CSP pol-
icy, UserCSP analyzes the content on a particular page
and recommends a policy based on the types and sources
of content used. UserCSP provides the inferred policy in
the correct syntax for the CSP header, so a developer can
immediately start using the policy for their website. Fur-
thermore, UserCSP allows savvy users to voluntarily spec-
ify their own CSP policies on websites that may not have
implemented CSP. UserCSP is an open-source project
available for download on the Mozilla Add-on gallery [25]
as well as on GitHub [26].

Contributions. The goal in this paper is to study us-
age of CSP on real-world web applications, aware develop-
ers to avoid mistakes observed on real-world web applica-
tions. We propose a solution, UserCSP, to ease adoption
of CSP policy. The goals of UserCSP are two-fold: i) to
allow security savvy users to specify their own CSP poli-
cies, and ii) to allow developers to experiment with CSP
policies on their production pages. Moreover, UserCSP
assists users and developers in constructing comprehen-
sive CSP policies by providing them automatically in-
ferred Content Security Policies that they can use as a
starting point for experimenting with CSP on a website.

In summary, this paper makes the following contribu-
tions:

• We performed a large-scale study on Alexa Top
100,000 websites and 289 mobile websites to find us-
age of CSP in the wild.

• We draw inferences on the likely reasons that are
hindering CSP adoption in real-world websites.

• We design and prototype UserCSP to automatically
generate Content Security Policies and then we eval-

uate the compatibility of the inferred security policies
on websites.

• We propose an approach for applying security poli-
cies on the client-side. Our approach allows savvy
users to specify their own custom Content Security
Policies.

Our experiments show a lack of Content Security Pol-
icy implementations in real-world websites and the ne-
cessity for tools like UserCSP to help promote adoption.
UserCSP provides developers with an easy mechanism to
create an effective, comprehensive, and strict Content Se-
curity Policy that secures their users and does not break
website functionality.

The rest of this paper is organized as follows: Sec-
tion 2 presents our experimental evaluation and analysis.
Section 3 describes the design of UserCSP. Section 4 de-
scribes evaluation of our approach, and we conclude the
paper in Section 6.

2 Experimental Evaluation and
Analysis

We conducted empirical measurements to obtain the data
for evaluating Content Security Policy (CSP) usage in
wild. Our measurements are mainly conducted on a
Dell server running Ubuntu 12.04 64bit, with Xeon 4-core
2.67GHz CPUs and 32GB RAM.

2.1 Measurement Goals

Our measurements aim to measure the following:

Goal 1: Measure inconsistency in real-world websites in
enforcing CSP.

Goal 2: Identify errors in existing CSP policies applied
by developers on their websites that nullify the de-
fense provided by CSP.

Goal 3: Estimate the amount of efforts required by web
developers to adapt to CSP for their websites.

2.2 Measurement over Alexa Top 100,000
Desktop Websites and 289 Mobile
Websites

In our experiments, we used Scrapy framework to crawl
desktop and mobile websites. Our results show that out
of 100,000 Alexa top websites [29] only 27 unique web-
sites are using CSP policies. In particular, only 20 desk-
top websites actually enforced CSP policies and remain-
ing 07 websites using CSP policy in report-only mode.
Similarly, we analyzed 289 mobile websites [1]. In our
experiments we noticed only one mobile website http:

//mobile.twitter.com/ uses a CSP policy.

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 385

We also observed that 24 unique websites are us-
ing unsafe-inline, unsafe-eval or eval-script options. Ac-
cording to W3C standard and effective CSP protection
on website, it is crucial to move all inline scripts and
style sheets to the trusted external sources to allow web
browsers to identify injected scripts by an attacker.

Next, we explain how we measure these metrics and
present their results.

Goal 1: Inconsistency in CSP Enforcement. To
measure the inconsistency in enforcing CSP policies in
real-world websites, we measured different headers used
by developers to send CSP policy to clients. There is
an inconsistency in CSP supporting browsers in CSP en-
forcement headers they obey. Firefox version 4.0 onwards
supports X-Content-Security-Policy header and Google
Chrome and Safari support X-WebKit-CSP header for
CSP enforcement. Whereas, Firefox doesn’t respect X-
WebKit-CSP header and Google Chrome neglects X-
Content-Security-Policy header used by websites for CSP
enforcement.

Due to this inconsistency across web browsers, Candi-
date Recommendation of CSP specification of the W3C
Working group of Web Application Security proposed a
standard header name for CSP enforcement: Content-

Security-Policy. At the time of writing of this paper,
Firefox version 23 and Google Chrome version 25 support
Content-Security-Policy header.

We scanned in total 100,000 Alexa top desktop web-
sites and 289 mobile websites and checked response
for various possible CSP headers such as X-Content-
Security-Policy, X-WebKit-CSP, and Content-Security-
Policy. Web applications can detect user agents and send
appropriate CSP header in the response; therefore, we
scanned all websites multiple times by using separate user
agent strings [35]. The user agent strings we used are
listed in the Table 1.

Figure 1 shows our finding of CSP headers usage on
real-world websites. We observed that out of 28 unique
websites that are using CSP policies some websites are
using multiple headers to set CSP policies. In our exper-
iment we observed,

• One website http://start.funmoods.com/ used all
three headers X-WebKit-CSP, X-Content-Security-
Policy, and Content-Security-Policy.

• Three websites namely http://mega.co.nz/,
https://github.com/EllisLab/CodeIgniter/

wiki, and http://lastpass.com/ used both X-
Content-Security-Policy and Content-Security-Policy
headers.

• Four websites namely http://blog.twitter.com/,
business.twitter.com, demo.phpmyadmin.net,
http://papa.me/ were serving both X-Content-
Security-Policy and X-WebKit-CSP.

• Two websites http://files.acrobat.com/,
http://web.tweetdeck.com/ was serving both

X-WebKit-CSP-Report-Only and X-Content-
Security-Policy-Report-Only headers.

• One website http://support.twitter.com/ used
both X-Content-Security-Policy-Report-Only and
Content-Security-Policy-Report-Only headers.

• One website http://hootsuite.com/ used both
X-WebKit-CSP-Report-Only and Content-Security-
Policy-Report-Only headers.

• One website http://mobile.twitter.com/ used
both X-WebKit-CSP and X-Content-Security-
Policy-Report-Only headers.

Our results indicate that website developers use cus-
tom browser headers as well as CSP header specified by
the W3C CSP 1.0 specification. Inconsistency in sup-
porting CSP header across web browsers creates confu-
sion in web developers. As at a time of writing this pa-
per, Chrome and Firefox web browsers supports Content-
Security-Policy header as per W3C CSP 1.0 specification.
We recommend web developers to transition their web-
sites to using the Content-Security-Policy header.

Furthermore, inconsistency in CSP directive support
at browser level could create confusion among developers
while deriving CSP policy for their website. For example,
Firefox web browser supports frame-ancestors directive
in CSP policy whereas it is not in CSP specification and
it is not supported by other web browsers. The frame-
ancestors directive is not a part of the CSP specification
because web browsers support X-Frame-Options header.
But X-Frame-Options only checked the parent, and not
the grandparent, or great grandparent. However, frame-
ancestors would check all ancestors. Recently, IE changed
their X-Frame-Options support so that it checks all an-
cestors. The other problem with X-Frame-Options is that
you can only list one URI in allow-from whereas, frame-
ancestors lets you have a list of them. Therefore, the we-
bappsec working group is going to put a frame-ancestors
like directive (probable name is frame-options) into CSP
spec [38].

We observed total four (4) websites set frame-ancestors
directive out of 28 websites that use CSP policies includ-
ing report-only mode.

Goal 2: Identify Errors in CSP Policies Enforced
by Websites. We performed an analysis of CSP policies
used by developers to protect the users of their websites
from content injection attacks. The aim of this study
to answer questions such as, Do developers understood
how to use CSP policy? And, how many websites enforce
CSP policy incorrectly and nullify the defense of CSP
mechanism? A summery of our analysis is given below:

• Incomplete Mediation: Our empirical study results
show that 21 websites are using CSP policy to pro-
tect their home pages rather than enforcing it on all
internal web pages.

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 386

Table 1: A list of user agent strings

Browser Version User Agent String
Firefox 23 Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:23.0)

Gecko/20130602 Firefox/23.0
Google Chrome 29.0.1547.2 Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/29.0.1547.2 Safari/537.36
Internet Explorer (IE) 10.6 Mozilla/5.0 (compatible; MSIE 10.6; Windows NT 6.1; Tri-

dent/5.0; InfoPath.2; SLCC1; .NET CLR 3.0.4506.2152;
.NET CLR 3.5.30729; .NET CLR 2.0.50727) 3gpp-gba UN-
TRUSTED/1.0

Figure 1: CSP headers usage on real-world websites

• Non-standard CSP directive usage: We observed that
three (3) websites are using xhr-src directive that is
supported by only Firefox web browser. In addition,
four (4) websites are using frame-ancestors directive
which is also Firefox specific.

• Non-effective CSP policies: We observed websites
are setting CSP policy incorrectly and thus keeping
open doors for content injections. For example,
http://www.metro-partner.ru/ website sets fol-
lowing CSP policy:

X-Content-Security-Policy: allow ’self ’; img-src
*; script-src *; options eval-script inline-script;

The http://www.metro-partner.ru/ website
has defined CSP policy in incorrect way and thus
made it non-effective to protect users from content
injection attacks. It allows scripts to be executed

from any domain and images to be loaded from
any arbitrary domains. Furthermore, it also allows
execution of inline scripts and eval() usage.

We observed CSP policy errors on eight (8) websites.
Table 2 shows a few examples of incorrect policy enforce-
ment on real-world websites. It shows incorrect CSP en-
forcement nullifies the defense-in-depth CSP protection
mechanism.

Our results show that developers have limited knowl-
edge about CSP usage and as a result of that errors made
by them in setting CSP policies nullifies the protection
provided by CSP and provides attackers opportunity to
exploit content injection vulnerabilities.

Goal 3: Estimate the Amount of Efforts. To mea-
sure the amount of developer efforts required to change
their website to adapt to CSP, we measured the number
of inline scripts, and inline event handlers used in real-

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 387

Table 2: A few examples of CSP policy errors on real-world websites

CSP Policy Description
X-WebKit-CSP: default-src * ’unsafe-inline’ ’unsafe-eval’; script-src
’self’ ’unsafe-inline’ ’unsafe-eval’ s.ppsrc.com ’unsafe-inline’ ’unsafe-eval’
www.google-analytics.com ’unsafe-inline’ ’unsafe-eval’ ssl.google-analytics.com
’unsafe-inline’ ’unsafe-eval’ zhushou.360.cn ’unsafe-inline’ ’unsafe-eval’
zs.91.com ’unsafe-inline’ ’unsafe-eval’ zy.91.com ’unsafe-inline’ ’unsafe-eval’
www.wandoujia.com ’unsafe-inline’ ’unsafe-eval’ wandoujia.com ’unsafe-inline’
’unsafe-eval’ js.tongji.linezing.com ’unsafe-inline’ ’unsafe-eval’;report-uri
http://papa.me/csp/report;

1. Developers misunder-
stood the usage of unsafe-
eval and unsafe-inline, and
used them incorrect way.
2. Injected content will
not be prevented by CSP
because inline scripts are
allowed.

X-Content-Security-Policy: allow *; options inline-script eval-script; frame-
ancestor’, ”allow *; options inline-script eval-script; frame-ancestor ’self’;

Arbitrary domains are al-
lowed and inline scripts
are also allowed. Thus
nullifies CSP protection.

X-Content-Security-Policy: allow ’self’; img-src *; script-src *; options eval-
script inline-script;

It allows scripts and im-
ages from arbitrary do-
mains as well as allows in-
line scripts.

Content-Security-Policy: default-src https: ’unsafe-eval’ ’unsafe-inline’ It allows arbitrary https:
sources and inline scripts.

world websites. Inline scripts mean JavaScript code that
is embedded in < script > tag, JavaScript URIs, and
inline event handlers such as onclick, onmouseover, etc.
In our test bed we examined home page as well as three
internal pages of desktop and mobile websites using the
Scrapy framework. We noticed on an average seven inline
scripts and eleven inline event handlers are used on Alexa
top 100,289 desktop and mobile websites.

Moreover, we measured the amount of changes require
to remove inline scripts using phpBB a real-world web
forum application [27]. Our modifications of phpBB were
18 files modified that includes in total 174 line deleted
and 218 lines added.

To regulate inline scripts and allow developers to spec-
ify which script elements on a webpage are intentionally
included, an experimental directive script-nonce is added
to the CSP 1.1 draft specification [37]. The script-nonce
directive allows developers to use inline scripts and inline
event handlers by whitelisting them, and hence reduces
the number of changes required for developers to imple-
ment CSP. There are also recent discussions about an
additional experimental script-hash directive that com-
putes the hash of JavaScript and only allows the script to
execute when its hashed value matches the value in the
directive. Both directives have great potential to reduce
CSP violations and increase CSP adoption.

Evaluation Summary. Our evaluation results show
that only 28 including both desktop and mobile websites
(out of 100,289) are using CSP policies to protect their
users from content injection vulnerabilities. This infers
that web developers are unwilling to sacrifice functional-
ity over security and limited knowledge of CSP among

developers resulted in incorrect CSP policy enforcement.
Moreover, the list of resource origins changes on websites
that use rotating advertisements, DNS load-balancing,
etc. So, there is a need of tool that automatically infers
CSP policy and avoids mistakes that developers can make
such as, only enforcing CSP on the home page, incorrect
CSP policy enforcement, etc. To address above mentioned
challenges we proposed the UserCSP approach.

3 UserCSP Design

The goal of UserCSP is to allow users to specify and apply
security policies on web content. UserCSP helps develop-
ers and users write comprehensive policies for websites
by providing them with a GUI to add and modify CSP
policies.

Web Browser

JS
Engine

DOM
HTML
Parser

Network library

Database Manager

UserCSP
HTTP

Observer

DB

Figure 2: UserCSP architecture

Figure 2 illustrates the architecture of UserCSP.
UserCSP monitors the browser’s internal events (includ-
ing HTML parsing, HTTP requests, and XHR requests

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 388

Table 3: UserCSP behavior

Website CSP User Defined CSP Global CSP Action
Yes No Yes/No No change to browser behavior.

Website CSP is enforced.
No Yes Yes/No Browser enforces User Defined CSP.
Yes Yes Yes/No User selects between Website CSP,

User Defined CSP, or combination of both.
No No Yes Browser enforces Global CSP.
No No No No change to browser behavior.

No CSP policy is enforced.

triggered by scripts running in the JS engine). It then dy-
namically analyzes the content type loaded by a webpage
and the source of that content. The HTML parser com-
ponent in the browser parses the webpage and initiates
HTTP requests to load resources such as images, scripts,
and stylesheets included in the page. The Database man-
ager component is responsible for storing the webpage’s
user specified policy in a local database and later retriev-
ing the policy when the user visits the webpage in the
future.

As shown in Table 3, when users visit a website,
UserCSP performs one of the following actions:

• If the website has defined a CSP policy, but the user
hasn’t, then UserCSP does not interfere with the
website defined policy. However, it does allow the
user the option to amend the website’s policy.

• If a user has specified a CSP policy for a website,
but the website administrator hasn’t, then the user’s
policy is enforced.

• If both a user specified CSP policy and a website de-
fined policy exist, then the user has a choice to either
apply their own policy or adopt the website defined
policy. Moreover, users can choose to combine their
custom policy with an existing website policy by se-
lecting a strict (intersection) or loose (union) combi-
nation policy.

• If neither the user nor the website specify a CSP
policy, but the user has specified a global policy that
can be used for websites that do not have site-specific
policies defined, then UserCSP will apply the global
policy.

• If neither the user nor the website specify a CSP
policy, and there is no global policy, then UserCSP
does not affect the content loading on the website.

3.1 Automatic Policy Enforcement

There are several challenges in automatic CSP policy en-
forcement as listed below.

• Dynamic content on a website that can introduce new
code into the website at run-time after web page load.

• The list of resources origin changes on websites that
use rotating advertisements, DNS load-balancing,
etc.

• Heavy usage of inline-scripts on websites make it dif-
ficult to derive strict CSP policy that blocks inline-
scripts, eval, etc.

• Run-time content injection into websites by browser
extensions.

To allow automatic policy inference for websites,
UserCSP uses an algorithm that performs dynamic anal-
ysis to monitor content loaded by a webpage and rec-
ommends a CSP policy based on the content types and
content sources included in the webpage. It also moni-
tors the resources dynamically added to the webpage by
JavaScript. To record new content introduced by websites
at run-time, UserCSP during learning phase continuously
monitor websites even after website is completely loaded.
It records inferred policy into local database. Next time,
when the user visits the same site UserCSP takes previ-
ously inferred policy and combine it with the currently
inferred policy. Due to rotating advertisements that
change periodically may lead to a load request from dif-
ferent origins, therefore, the continuous inferring process
of UserCSP helps users to detect changes in the resource
origin and apply changed domain to reload resources. Our
inferred policy derives strict CSP policy, which blocks in-
line scripts, styles, eval, and event handlers. However,
UserCSP also provides features to users to allow inline
scripts and eval on their favorite websites manually. In
modern browsers, extensions are high privilege than web-
sites and run with the privileges of the browser. Browser
extensions are used to enhance user experience and pro-
vide new functionality. Therefore, UserCSP honors con-
tent included by extensions into web pages and includes
them into inferred policy.

4 Evaluation of UserCSP

We tested UserCSP’s user defined CSP feature and au-
tomatically infer CSP feature with the Alexa Top 100

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 389

websites2 [29]. Manually defined CSP policies are harder
to evaluate since they require several rounds of refine-
ment and HTML source code inspection to record content
sources. We initially seeded the policies with same-origin
restrictions and then expanded them since many websites
require content from CDN’s and sub-domains.

To test compatibility of the automatically infer CSP
feature of UserCSP, the extension inferred policies for
each of the Alexa Top 100 websites and then applied
the policies onto their respective website home pages (ap-
pendix Section 4 includes some examples). Reports were
created for each website and examined for CSP viola-
tions3.

The number of whitelisted origins per-policy ranged
from 1 to 33, with a mean of just over 7 origins per-policy
and a standard deviation of 6.52. Over 25% of websites
required more than 10 origins, indicating that creating a
comprehensive and effective CSP policy is a challenging
task. When there are more than a handful of resources
to whitelist, developers are likely to whitelist everything
by including ”*” in a directive instead of searching for all
the necessary origins; this makes the policy less restrictive
than it could be. By providing a mechanism to infer the
policy, UserCSP provides a quick, effective, and compre-
hensive policy for developers to set on their websites.

The tests performed for the automatically infer CSP
feature have some limitations. The tests infer a CSP pol-
icy on page load, but do not interact with the page to
determine if further resources are loaded after initial load
time. Certain events like clicks on a page may cause ad-
ditional resources to be loaded. UserCSP can account
for these additional loads, but requires the developer to
interact with the page during policy inference. This lim-
itation is of little impact to webmasters who are familiar
with their website and can make sure that all relevant
documents are visited during UserCSP policy inference.
Since our tests do not interact with the page content, the
average number of origins per-policy is an underestimate
of the number that is actually needed for a comprehen-
sive policy. This indicates that creating a CSP policy is
even more difficult than previously stated and shows the
importance of UserCSP.

After applying UserCSP’s inferred policies, all the
Alexa Top 100 websites generated CSP violation reports
that showed violations for the inline script default restric-
tion. In addition, total 11 websites generated CSP viola-
tion reports for using eval()4. This experimental survey
implies that websites commonly use inline scripts.

2Three websites containing adult content were excluded from our
testing.

3In order to adhere to the same-origin-only report-uri restriction
in Firefox without alerting websites with our custom CSP testing,
we used http-on-modify-request to capture and then cancel HTTP
requests that contained violation reports.

4Websites that generated CSP violation reports for the use of
eval(): http://www.youtube.com/, http://www.qq.com/, http://

bbc.co.uk/, http://adobe.com/, http://sohu.com/, http://aol.

com/, http://youku.com/, http://cnn.com/, http://dailymotion.
com/, http://imgur.com/, http://neobux.com/

default-src ’self’;

script-src http://ads1.msads.net

http://kaw.stj.s-msn.com;

img-src http://udc.msn.com

http://kaw.stb.s-msn.com

http://b.scorecardresearch.com

http://c.in.msn.com

http://www.bing.com

http://kaw.stb01.s-msn.com

http://kaw.stc.s-msn.com

http://kaw.stb00.s-msn.com;

style-src http://kaw.stc.s-msn.com;

frame-ancestors *;

Figure 3: Inferred CSP for msn.com

We used a hack to capture CSP violation reports in
Mozilla Firefox during our evaluation, because Firefox al-
lows sending violation reports only if the web page do-
main and the ”report-uri” directive domain are the same.
Hence to capture violation reports for the test bed web-
sites, “report-uri” was set to the actual domain but with
a fake-path (e.g. http://example.com/fake-report-

path). To prevent alerting websites of this custom CSP
testing, Firefox’s http-on-modify-request event was used
to capture HTTP requests and cancel the HTTP requests
with fake-report-path that contained the violation reports
after collecting the violation data.

default-src ’self’;

script-src http://ads.yimg.com

http://l.yimg.com

http://mi.adinterax.com;

object-src http://ads.yimg.com;

img-src http://l.yimg.com

http://l1.yimg.com

http://ads.yimg.com

http://tr.adinterax.com

http://mi.adinterax.com

http://b.scorecardresearch.com;

style-src http://l.yimg.com;

frame-src http://ad.yieldmanager.com;

frame-ancestors *;

Figure 4: Inferred CSP for in.yahoo.com

Examples of Inferred CSP Policy by UserCSP.
CSP policies that were automatically inferred by UserCSP
for http://msn.com/ and http://in.yahoo.com/ are
shown in Figure 3 and Figure 4 respectively.

5 Related Work

In addition to Content Security Policy, several other so-
lutions exist to mitigate Cross-Site Scripting attacks.

The majority of these solutions use server-side saniti-
zation. Content sanitizers attempt to remove potentially
harmful characters from untrusted data. To be effective,
sanitization must be performed at each and every entry

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 390

point where untrusted data is present in a web applica-
tion; leaving even one untrusted data source unsanitized
makes the web application vulnerable to XSS attacks.
Correct placement of context aware sanitizer routines is
a challenging task for web application developers [39].

Scriptgard [28] uses a mechanism that helps detect
mismatches between sanitization routines and the context
in which the routines are invoked. The XSSAuditor
filter [2], implemented in the Google Chrome browser,
observes HTTP requests and corresponding responses to
detect reflected XSS attacks. However, client-side XSS
filters are limited to detecting reflected XSS attacks only.
Furthermore, recently discovered flaws in the XSSAudi-
tor show that attackers can find complicated bypasses
for these blacklist-based filters [7]. Filtering alone cannot
be relied upon to prevent XSS. Whitelisting trusted re-
sources via an applied security policy like CSP is a safer
choice.

Blueprint [21] uses an alternative approach to pro-
tect against XSS. Blueprint treats the HTML parsing
component of a browser as untrustworthy and instead uses
web servers to parse the document and create output rep-
resenting the structure of the webpage (the blueprint).
This is sent to the browser which uses the blueprint to
build the document. A significant amount of overhead
is created in order to avoid using the browser’s parser.
Content Security Policy does not have this issue, since it
relies on websites to declare a policy, uses the browser’s
parser, and trusts the browser’s enforcement mechanism
to apply the provided policy.

NoScript [20] is a Firefox extension that allows users
to disable JavaScript on a per-domain basis and aims to
mitigate XSS attacks by detecting reflected XSS. No-
Script only blocks scripts, whereas CSP enforcement is
applied to various content types on a per-page basis. With
UserCSP, users can define policies with a finer granularity
and achieve better website usability than with NoScript.

Browser-Enforced Embedded Policies (BEEP) [10] al-
low web applications to specify the scripts that can run
on a website. Similar to the limitations in NoScript,
BEEP can only restrict JavaScript on a website; other
content such as images, frames, and style sheets are not
restricted.

XSS-Guard [3] uses a mechanism to determine which
scripts are intended to be on website and which scripts
are not. To learn which scripts should be allowed, XSS-
Guard first identifies the set of scripts present in the ac-
tual HTTP response from a website. XSS-Guard then
replicates output statements uninfluenced by user input
to get a shadow response. The actual and shadow re-
sponses are then compared to identify scripts that were
injected into the actual response. XSS-Guard is useful
when dynamic and rich HTML content make it challeng-
ing to create a comprehensive set of server-side sanitizers.
However, XSS-Guard is limited because it can only de-
tect reflective XSS attacks and doesn’t protect against
persistent XSS attacks. Content Security Policy, on the
other hand, can prevent both.

Extensive research efforts focus to improved multi-
stage secrete sharing techniques using cryptography [4,
6, 12, 15]. Researchers proposed multi-stage secret shar-
ing techniques based on one-way functions or factorization
problem. These techniques could be used by web servers
to send content security policies to the web browsers se-
curely.

A group of researchers studied and proposed user au-
thentication technqiues [5, 14, 16, 18, 31, 40]. User au-
thentication is the most important protocol for verify-
ing users to get the system’s resources. Password based
authentication is the most convenient mechanism. Such
techniques could be combined in the web server security
mechanisms to extend support for personalized policies
by web servers.

Other research efforts [11, 17, 24, 41, 43] proposed tech-
niques of encryption to delegate authority of signing to the
proxy. They also allow a multi-proxy signature scheme
in certificate-less settings. A rich set of proxy signature
schemes [8, 13, 19, 32, 33, 34, 42] have been widely re-
searched. The proposed mechanisms non only succeeded
in proxy delegations, but also achieved non-repudiation,
revocation, verification properties. The extension of such
techniques could allow to transfer the burden of writing
CSP policies from web server to web proxy.

6 Conclusion

Content Security Policy is an effective mechanism to pre-
vent against content injection attacks. In this paper,
we did a large-scale study of CSP usage and infer diffi-
culties in the CSP adoption. CSP has not been widely
adopted because of the challenges involved in creating a
comprehensive and functional policy, and limited knowl-
edge of CSP among developers. Since adoption is con-
trolled by developers, users lack control over their own
security. Users do not have a mechanism to apply Con-
tent Security Policies on the websites that they visit and
cannot protect themselves from Cross-Site Scripting and
Clickjacking attacks.

UserCSP helped to break down the challenges involved
in adopting Content Security Policy with UserCSP fea-
ture to automatically infer policies and puts control into
the users hands by providing them a mechanism to pro-
tect themselves with custom policies that they can create
and modify.

Our analysis and results show that another barrier
to Content Security Policy adoption is the use of inline
JavaScript. To overcome this, we would like to experi-
ment further with the proposed script-nonce and script-
hash directives that are under discussion for inclusion in
the CSP 1.1 specification.

References

[1] Alexa Internet, Inc., Top Sites, 2013. (http://www.
alexa.com/topsites)

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 391

[2] D. Bates, A. Barth, and C. Jackson, “Regular expres-
sions considered harmful in client-side xss filters,” in
Proceedings of the 19th ACM International Confer-
ence on World Wide Web, (WWW’10), pp. 91–100,
New York, NY, USA, 2010.

[3] P. Bisht and V. N. Venkatakrishnan, “XSS-GUARD:
Precise dynamic prevention of cross-site scripting at-
tacks,” in Proceedings of the 5th international con-
ference on Detection of Intrusions and Malware, and
Vulnerability Assessment, (DIMVA’08), pp. 23–43,
Berlin, Heidelberg, 2008.

[4] T. Yi Chang, M. S. Hwang, and W. P. Yang, “A
new multi-stage secret sharing scheme using one-way
function,” ACM SIGOPS Operating Systems Review,
vol. 39, no. 1, pp. 48–55, 2005.

[5] T. Yi Chang, M. S. Hwang, and W. P. Yang,
“A communication-efficient three-party password au-
thenticated key exchange protocol,” Information Sci-
ences, vol. 181, pp. 217–226, 2011.

[6] T. Yi Chang, M. S. Hwang, and W. P. Yang, “An
improved multi-stage secret sharing scheme based on
the factorization problem,” Information Technology
and Control, vol. 40, no. 3, pp. 246–251, 2011.

[7] G. Heyes, Bypassing XSS Auditor, 2013.
(http://www.thespanner.co.uk/2013/02/19/
bypassing-xss-auditor/)

[8] M. S. Hwang, S. F. Tzeng, and S. F. Chiou, “A non-
repudiable multi-proxy multi-signature scheme,” In-
novative Computing, Information and Control Ex-
press Letters, vol. 3, no. 3, pp. 259–264, 2009.

[9] A. Javed, “CSP aider: An automated recommen-
dation of content security policy for web applica-
tions,” in IEEE Oakland Web 2.0 Security and Pri-
vacy (W2SP’12), 2012.

[10] T. Jim, “Defeating script injection attacks with
browser-enforced embedded policies,” in Proceedings
of the ACM International Conference on the World
Wide Web (WWW’07), pp. 601–610, 2007.

[11] Z. Jin and Q. Wen, “Certificateless multi-proxy sig-
nature,” Computer Communications, vol. 34, no. 3,
pp. 344–352, 2011.

[12] C. C. Lee, M. S. Hwang, and I-En Liao, “On the
security of self-certified public keys,” International
Journal of Information Security and Privacy, vol. 5,
no. 2, pp. 55–62, 2011.

[13] C. C. Lee, T. C. Lin, S. F. Tzeng, and M. S.
Hwang, “Generalization of proxy signature based on
factorization,” International Journal of Innovative
Computing, Information and Control, vol. 7, no. 3,
pp. 1039–1054, 2011.

[14] C. C. Lee, C. H. Liu, and M. S. Hwang, “Guessing
attacks on strong-password authentication protocol,”
International Journal of Network Security, vol. 15,
no. 1, pp. 64–67, 2013.

[15] C. Ta Li and M. S. Hwang, “An online biometrics-
based secret sharing scheme for multiparty cryp-
tosystem using smart cards,” International Journal
of Innovative Computing, Information and Control,
vol. 6, no. 5, pp. 2181–2188, 2010.

[16] I-En Liao, C. C. Lee, and M. S. Hwang, “A pass-
word authentication scheme over insecure networks,”
Journal of Computer and System Sciences, vol. 72,
no. 4, pp. 727–740, 2006.

[17] C. Lin, K. Lv Y. Li, and C. C. Chang, “Ciphertext-
auditable identity-based encryption,” International
Journal of Network Security, vol. 17, no. 1, pp. 23–
28, 2015.

[18] C. W. Lin, C. S. Tsai, and M. S. Hwang, “A new
strong-password authentication scheme using one-
way hash functions,” International Journal of Com-
puter and Systems Sciences, vol. 45, no. 4, pp. 623–
626, 2006.

[19] E. J. L. Lu, M. S. Hwang, and C. J. Huang, “A
new proxy signature scheme with revocation,” Ap-
plied Mathematics and Computation, vol. 161, no. 3,
pp. 799–806, 2005.

[20] G. Maone, Noscript, 2009. (http://noscript.net)
[21] M. T. Louw and V. N. Venkatakrishnan, “Blueprint:

Robust prevention of cross-site scripting attacks for
existing browsers,” in Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, pp. 331–
346, Washington, DC, USA, 2009.

[22] Mozilla, Same Origin Policy for javascript, 2012.
(https://developer.mozilla.org/En/Same_
origin_policy_for_JavaScript)

[23] OWASP, The Ten Most Critical Web Applica-
tion Security Risks, 2013. (https://www.owasp.
org/index.php/Top_10_2013-Top_10)

[24] C. Pan, S. Li, Q. Zhu, C. Wang, and M. Zhang,
“Notes on proxy signcryption and multi-proxy sig-
nature schemes,” International Journal of Network
Security, vol. 17, no. 1, pp. 29–33, 2015.

[25] K. Patil, T. Vyas, F. Braun, and M.
Goodwin, Usercsp: Add-ons for Firefox,
2012. (https://addons.mozilla.org/en-
US/firefox/addon/newusercspdesign/)

[26] K. Patil, T. Vyas, F. Braun, and M. Goodwin,
Usercsp. Github, 2012. (https://github.com/
patilkr/userCSP)

[27] phpBB, Free and Open Forum Software, July 29,
2015. (https://www.phpbb.com/)

[28] P. Saxena, D. Molnar, and B. Livshits, “Scriptgard:
Automatic context-sensitive sanitization for large-
scale legacy web applications,” in Proceedings of the
18th ACM conference on Computer and Communi-
cations Security (CCS’11), pp. 601–614, New York,
NY, USA, 2011.

[29] scottdb56, mobi*list - A List of Mobile Device-
friendly Websites, 2013. (http://mobi.sdboyd56.
com/)

[30] S. Stamm, B. Sterne, and G. Markham, “Reining in
the web with content security policy,” in Proceedings
of the 19th International Conference on World Wide
Web, pp. 921–930, 2010.

[31] C. S. Tsai, C. C. Lee, and M. S. Hwang, “Pass-
word authentication schemes: Current status and
key issues,” International Journal of Network Secu-
rity, vol. 3, no. 2, pp. 101–115, 2006.

International Journal of Network Security, Vol.18, No.2, PP.383-392, Mar. 2016 392

[32] S. F. Tzeng, M. S. Hwang, and C. Y. Yang, “An
improvement of nonrepudiable threshold proxy sig-
nature scheme with known signers,” Computers and
Security, vol. 23, no. 2, pp. 174–178, 2004.

[33] S. F. Tzeng, C. C. Lee, and M. S. Hwang, “A batch
verification for multiple proxy signature,” Parallel
Processing Letters, vol. 21, no. 1, pp. 77–84, 2011.

[34] S. F. Tzeng, C. Y. Yang, and M. S. Hwang, “A
nonrepudiable threshold multi-proxy multi-signature
scheme with shared verification,” Future Generation
Computer Systems, vol. 20, no. 5, pp. 887–893, 2004.

[35] User Agent String.com, User Agent String Explained,
2013. (http://www.useragentstring.com/)

[36] W3C Candidate Recommendation, Content Security
Policy 1.0, 2012. (http://www.w3.org/TR/CSP/)

[37] W3C Editor’s Draft, Content Security Pol-
icy 1.1, 2013. (https://dvcs.w3.org/hg/
content-security-policy/raw-file/tip/csp-

specification.dev.html)
[38] W3C WebAppSec Working Group, User Interface

Safety, 2013. (https://dvcs.w3.org/hg/user-
interface-safety/raw-file/tip/user-

interface-safety.html)
[39] J. Weinberger, A. Barth, and D. Song, “Towards

client-side html security policies,” in Proceedings of
6th USENIX Workshop on Hot Topics in Security
(HotSec’11), pp. 8, 2011.

[40] H. C. Wu, M. S. Hwang, and C. H. Liu, “A se-
cure strong-password authentication protocol,” Fun-
damenta Informaticae, vol. 68, pp. 399–406, 2005.

[41] H. Xiong, Z. Chen J. Hu, and F. Li, “On the security
of an identity based multi-proxy signature schemee,”
Computers and Electrical Engineering, vol. 37, no. 2,
pp. 129–135, 2011.

[42] C. Y. Yang, S. F. Tzeng, and M. S. Hwang, “On the
efficiency of nonrepudiable threshold proxy signature
scheme with known signers,” The Journal of Systems
and Software, vol. 73, no. 3, pp. 507–514, 2004.

[43] M. Zhang and T. Takagi, “Efficient constructions
of anonymous multireceiver encryption protocol and
their deployment in group e-mail systems with pri-
vacy preservation,” Systems Journal, vol. 7, no. 3,
pp. 410–419, 2013.

KAILAS PATIL received the PhD in Computer Sci-
ence, National University of Singapore (NUS), Singapore,
in 2014. He is currently an Associate Professor with
the Department of Computer Engineering at VIIT,
University of Pune, India. He is a Mozilla Rep in
India. His research interests include information security,
cloud security, and web security. He also served as a
reviewer in many SCI-index journals, other journals,
other conferences.

BRAUN FREDERIK is a Security Engineer at
Mozilla, which means testing (and breaking) upcoming
features before release. Frederik also develops security
tools like ScanJS and helps with improving security fea-
tures in Firefox OS. Frederik prefers distributed over cen-
tralized, free over proprietary, and Mate over Cola. He
also takes part in CTF hacking competitions with the
team Fluxfingers.

