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Abstract

In this paper, we cryptanalyze a recently proposed com-
pact certificateless aggregate signature scheme (CCLAS)
and show that it is in fact insecure against a Type-I at-
tack. We also point out that the success of the attack
is due to the inappropriate security model used to prove
that CCLAS is secure.
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1 Introduction

The most important contribution of modern cryptography
is the invention of a way to create digital signatures. A
digital signature is an electronic analogue of a written sig-
nature to be used by the recipient or a third party to iden-
tity of the signatory or to verify the integrity of the data.
To deal with specific application scenarios, digital signa-
ture schemes have evolved into many different variants.
Among them, aggregate signature schemes, which allow a
collection of individual signatures to be compressed into
a single short signature, are most useful for reducing the
size of certificate verification chains and for reducing mes-
sage size in secure routing protocols [2].

Certificateless public key cryptography (CL-PKC) [1]
was proposed in 2003. Since then many cryptographic
schemes have been proposed based on CL-PKC. CL-PKC
solves the key escrow problem of the identity-based cryp-
tography in a way that the full private key of a user is di-
vided into two parts. The first part, called partial private
key, is controlled by a key generator center (KGC). The
second part is chosen by the user himself and remains se-
cret to the KGC. Therefore, to discuss the security issues
of CL-PKC, there are two types of attacks, depending on
which part of the private key is compromised.

In 2014, Zhou et al. proposed a compact certificateless

aggregate signature scheme (CCLAS) [15]. They also de-
fined security models and showed that CCLAS is existen-
tially unforgeable under adaptive chosen-message attacks
and chosen-identity attacks. In this paper, we cryptana-
lyze CCLAS and show that it is in fact insecure against
a Type-I attack.

The organization of this paper is as follows. Section 2
consists of some preliminaries, including a generic con-
struction of a certificateless aggregate signature scheme
and security models. Review of CCLAS is given in Sec-
tion 3. The cryptanalysis of CCLAS is presented in Sec-
tion 4. Finally, we give conclusions in Section 5.

2 Preliminaries

2.1 Generic Construction of a Certifi-
cateless Aggregate Signature Scheme

A certificateless aggregate signature (CLAS) scheme con-
sists of three parts, initial setup InitSetup, signature
generation and aggregation CL-Sign, and signature ver-
ification CL-Verify:

InitSetup. This part consists of the following algo-
rithms:

Setup: This algorithm, run by the KGC, takes a se-
curity parameter as input, then outputs master-
key and system parameter params.

Partial-Private-Key-Extract: This algorithm,
run by the KGC, takes params, master-key and
a user’s identity ID as inputs, then outputs a
partial-private-key DID to that user.

Set-Secret-Value: This algorithm, run by a user,
returns a secret value x.

Set-Private-Key: This algorithm, run by a user,
takes the user’s partial-private-key DID and his
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secret value as inputs, and outputs the full pri-
vate key.

Set-Public-Key: This algorithm, run by a user,
takes params and the user’s full private key as
inputs, and outputs a public key pkID for that
user.

CL-Sign. This part consists of an individual signature
generation algorithm and a signature aggregation al-
gorithm.

IndiSign: The individual signature generation algo-
rithm, run by a signer, takes params, a message
m, and the user’s full private key as inputs, and
outputs σ as the signature for the message m.

SignAggr: The signature aggregation algorithm,
run by any user or a third party, takes n indi-
vidual signatures σi on messages mi generated
by users of identities IDi where i = 1, · · · , n, as
input and returns an aggregate signature σ.

CL-Verify. This part consists of an individual signa-
ture verification algorithm and an aggregate signa-
ture verification algorithm.

IndiVeri: The individual signature verification al-
gorithm, run by a verifier, takes params, a pub-
lic key pkID, a message m, a user’s identity ID,
and a signature S as inputs. The verifier accepts
signature S if and only if S is the signature of
the message m for the public key pkID of the
user with identity ID.

SignVeri: The aggregate signature verification algo-
rithm, run by a verifier, takes an aggregate sig-
natures σi on messages mi generated by users
of identities IDi and public key pkIDi

where
i = 1, · · · , n, as input and accepts the aggre-
gate signature σ if it is valid.

2.2 Security Models

Traditionally, a digital signature scheme is secure if it is
existentially unforgeable against adaptive chosen message
attacks. The attack methods are centered on querying sig-
natures for adaptive chosen messages. For a CLS scheme,
the situation is more complicated since the attackers can
do a lot more than merely querying signatures. For ex-
ample, they can query for the partial private key of any
user.

Therefore, when discussing the security issues of a cer-
tificateless signature scheme, there are two types of adver-
saries, AI and AII corresponding to two types of attack
models Type-I and Type-II respectively. A Type-I attack
model is used to model the case when an adversary AI has
compromised the user secret value or replace the user pub-
lic key. However, he cannot compromise the master-key
nor access the user partial key. Whereas a Type-II attack
model is used to model the case when an adversary AII

(the malicious-but-passive KGC) has gained access to the

master key but cannot perform public key replacement of
the user being attacked. Since our attack is of Type-I, we
describe the attack model in more detail. We refer the
readers to [15] for the Type-II attack model.

The type-I attack model is defined in terms of a game
played between a challenger C and the Type-I adversary
AI as follows.

Initialization. C runs Setup algorithm to generate the
master key and public parameters to AI .

Queries. AI can adaptively perform the following poly-
nomially bounded queries.

Partial-Private-Key query: A1 can query for the
partial private key of any user with identity ID.
C will return the partial private key DID to A1.

Public-Key query: A1 can query for the public
key of any user with identity ID. C will return
the public key pkID of that user.

Secret-Value query: A1 can query for the secret
value of any user with identity ID. C will return
the secret value xID of that user to A1.

Public-Key-Replacement: For any user with
identity ID and public key pk, A can set a new
public key pk′, and then C replaces pk with pk′.

IndiSign query: A1 can query for the signature σi
corresponding to a message mi, a user with
identity IDi and public key pki. C will generate
σi, and return it to A1.

SignAggr query: A1 can query aggregate signa-
ture for multiple signatures, C will return an
aggregate signature σ by the SignAggr algo-
rithm and return it to A1.

Forgery. A1 outputs an aggregate signature σ∗ =
(R∗, S∗) of n individual signatures σi on messages
mi generated by users of identities ID∗i where i =
1, · · · , n. A1 wins the game if and only if the follow-
ing conditions hold.

1) The forged aggregate signature σ∗ is valid.

2) For each i, 1 ≤ i ≤ n, at least one of the secret
value or the partial private key of ID∗i has not
been queried.

3) σ∗ has never been queried by the IndiSign and
SignAggr oracles.

3 CCLAS

Most certificateless signature schemes are based on bilin-
ear pairing [10, 11, 12, 13]. A bilinear map is a mapping
ê : G1 × G1 → G2, where G1 is an additive cyclic group
of prime order q, and G2 is a multiplicative cyclic group
of the same order q. We are interested in bilinear maps
with the following properties:
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1) Computable: given P,Q ∈ G1, there exists a polyno-
mial time algorithm to compute ê(P,Q) ∈ G2.

2) Bilinear: for any x, y ∈ Z∗q , we have ê(xP, yP ) =
ê(P, P )xy for any P ∈ G1.

3) Non-degenerate: if P is a generator of G1, then
ê(P, P ) is a generator of G2.

The CCLAS scheme consists of eight probabilistic-
polynomial time algorithms, namely Setup, PartialKey-
Gen, UserKeyGen, IndiSign, IndiVeri, SignAggr, SignVeri
and ExtAggr.

Setup: The KGC determines a bilinear map ê : G1 ×
G1 → G2 where G1 is a cyclic additive group of
prime order q with a generator P , G2 is a cyclic
multiplicative group of the same order, and three
hash functions H1 : {0, 1}∗ → Z∗q , H2 : {0, 1}∗ →
Z∗q , and H3 : {0, 1}∗ → G1. Then it randomly
chooses s ∈ Z∗q as master-key, and then sets Ppub

as the master-public-key where Ppub = sP . Fi-
nally, it publishes the system parameter params =
〈G1,G2, ê, q, P, Ppub, H1, H2, H3〉.

Partial-Private-Key-Extract: The KGC, based on
params, master-key s and user’s identity IDi, com-
putes and returns a partial-private-key Di = sQi to
the user with identity IDi where Qi = H1(IDi).

UserKeyGen: A user with identity IDi, sets a random
value xi ∈ Z∗q as his secret value and public key Pi =
xiP . The pair (Di, xi) is the user’s full secret key
SKi.

IndiSign: To facilitate the aggregation of individual sig-
natures, a random string ω, called state string, is
chosen by the first signer. Each subsequent signer
checks that it has not used the string ω before. To
sign a message mi using the full secret key (xi, Di),
the signer with identity IDi should perform the fol-
lowing steps:

1) Compute Pω = H2(ω);

2) Pick a random number from ri Z∗q and compute
Ri = riP ;

3) Compute hi = H3(ω);

4) Compute Pω = H2(mi, IDi, ω);

5) Compute Si = riPω +Di + xihi;

6) Output σi =< Ri, Si >.

IndiVeri: To verify a signature σi =< Ri, Si > on the
state string ω and the message mi, the verifier should
perform the following steps:

1) Compute Pω = H2(ω);

2) Compute hi = H3(mi, IDi, ω);

3) Accept the signature if and only if ê(P, Si) =
ê(Ri, Pω)ê(Ppub, Qi)ê(Pi, hi).

SignAggr: For i = 1, · · · , n, to aggregate signatures
σi =< Ri, Si > on state string ω and messages mi

signed by users with identities IDi, one should per-
form the following:

1) Compute S = Σn
i=1Si and R = Σn

i=1Ri;

2) Output the aggregate signature σ =< R,S >.

SignVeri: To verify a signature σi =< Ri, Si > on the
state string ω and the message mi, the verifier should
perform the following steps:

1) Compute Pω = H2(ω);

2) Compute Qi = H1(IDi) and hi = H3(mi, IDi,
ω) for i = 1, · · · , n;

3) Accept the aggregate signature if and only if

ê(P, S) = ê(R,Pω)ê(Ppub,Σ
n
i=1Qi)ê(Π

n
i=1Pi, hi).

The aggregate signature is compact in a sense that its
length is the same as that of an individual signatures. Fur-
thermore, CCLAS scheme introduces another algorithm
called ExtAggr which can be used to extract a valid indi-
vidual signature. When an individual signature is be ex-
tracted from the aggregate signature the remaining part
is also a valid aggregate signature.

4 Cryptanalysis of CCLAS

4.1 A Type I Attack

In this section we will show that is in fact forgeable under
Type I attack. The attack goes as follows.

Suppose an adversary, say Alice, knows the secret value
xi of a user with identity IDi through the Public-Key-
Replacement query or the Secret-Value query query.

Then Alice can issue an IndiSign query to obtain a sig-
nature σi on a message mi and a state string ω such that
σi = (Ri, Si) where Ri = riP , Si = riPω +Di +xihi, and
hi = H3(mi, IDi, ω). Note that Alice cannot compute the
partial private key Di directly. However, from σi, Alice
can compute T = riPω +Di = Si−xihi since xi is known.

Now it is very simple for Alice to forge a signature σ′ =
(R′, S′) for any message m′ under the same state string
ω. She only needs to set R′ = R and S′ = T +xih

′ where
h′ = H3(m′, IDi, ω). Since ê(P, S′) = ê(P, T + xih

′) =
ê(P, riPω+Di+xih

′) = ê(R′, Pω)ê(Ppub, Qi)ê(Pi, h
′), σ′ =

(R′, S′) is indeed a valid signature for message m′.
Hence, given an aggregate signature σ which includes

σi, Alice can use ExtAggr algorithm to extract σi from σ
followed by adding σ′ to it to obtain a forged aggregate
signature σ∗.

4.2 Discussion

The linear equation used to construct the second part
of a signature in CCLAS is similar to that of the CLS
short signature scheme proposed in [5] and attacked by
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Shim in [7]. Therefore, the same attack can also be used
to attack CCLAS. In [6], three kinds of adversaries are
introduced, namely normal, strong, and super. They are
distinguished by their attack power. A strong Type I
adversary can make a strong-sign query which takes as
input (ID,m, sv), where ID denotes the identity that has
been created, m denotes the message to be signed and sv
is the secret value. In the above attack, Alice is a strong
Type-I adversary. Therefore, CCLAS is insecure against
strong Type-I attacks.

Over the years, many provably secure certificateless
signature schemes have been proposed under certain se-
curity models. However, they are shown to be inse-
cure [3, 4, 8, 9, 14]. Therefore, the security models for
certificateless signature schemes are quite subtle. Based
on the security models of CCLAS, to existentially forge
a signature is equivalent to derive the partial private key
of a user. However, as mention in the attack, our attack
cannot derive the partial key but instead forge a signature
based on an existent state string. Therefore, the security
model used to prove that CCLAS is secure is inappropri-
ate.

5 Conclusions

The integration of certificateless public key cryptography
and aggregate signature has many potential applications.
However, for a certificateless aggregate signature scheme
to be used in application environments, we must make
sure that it is secure against attacks. Therefore crypt-
analysis plays a vital role for a cryptographic protocol to
be successfully applied in the real world. In this paper,
we have analyzed CCLAS scheme and showed that it is
not secure against strong Type-I attacks.
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