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Abstract

The main purpose of this paper is to provide a security
proof for the certificateless digital signature scheme found
in [Hassouna, Bashier, and Barry, A short certificateless
digital signature scheme, International Conference of Dig-
ital Information Processing, Data Mining and Wireless
Communications, 2015, pp. 120–127] in the random ora-
cle model. Two types of attacks are considered: The first
type can be carried out by an outsider attacker and re-
ferred to as Type I, whereas the second one can be carried
out by a malicious KGC and referred to as Type II. The
possible oracles for each of the two types of attacks are
discussed, and hence, the security of the proposed digital
signature scheme was proved in the random oracle model.

Keywords: Certificateless cryptography, certificateless sig-
nature, pairings in elliptic curves, public-key replacement
attack

1 Introduction

In 2003, Al-Riyami and Paterson [1] introduced the con-
cept of Certificateless Public Key Cryptography (CL-
PKC) to overcome the key escrow limitation of the
identity-based public key cryptography (ID-PKC). In CL-
PKC a trusted third party called Key Generation Center
(KGC) supplies a user with a partial private key. Then,
the user combines the partial private key with a secret
value (that is unknown to the KGC) to obtain his/her
full private key. In this way, the KGC does not know the
user’s private key. Then the user combines his/her se-
cret value with the KGC’s public parameters to compute
his/her public key.

Al-Riyami and Paterson [1] proved that their certifi-

cateless encryption scheme is secure against fully-adaptive
chosen ciphertext attack (IND-CCA). They also proposed
a certificateless digital signature scheme along with cer-
tificateless key agreement protocol and hierarchal certifi-
cateless encryption scheme (HCL-PKE). Even after using
the binding technique, the scheme does not have trust
level 3 according to Girault’s [11] definition.

Since Al-Riyami and Paterson original CL-PKC
scheme was proposed [1], many certificateless cryptogra-
phy schemes have appeared in literature. These schemes
include the uses of certificateless encryption [7, 14], cer-
tificateless signatures [16, 19, 20] and certificateless sign-
cryption [15, 17, 18].

Hassouna et al. [12] introduced an integrated certifi-
cateless public key infrastructure model. That model
used a different key generation technique with a different
binding method from Al-Riyami and Paterson [1] model.
The integrated certificateless public key infrastructure
model provided many practical features, like two-factor
private key authentication, private key recovery, private
key portability and private key archiving. These features
were provided because Hassouna et al. [12] separated the
process of generating private key from the process of gen-
erating the public key.

The binding technique that was proposed by Hassouna
et al. [12] provided a more robust way to link the user’s
identity with his/her public/private keys. Furthermore,
the binding technique raised very important and non-
mentioned feature: it made the CL-PKC resistant to the
public key replacement attack that can be done by the
KGC or any adversary in case of sending the user’s par-
tial private key in an insecure channel. This was because
the user’s full private key is generated from a different
secret value that used in the user’s public key calculation.

In 2015, Hassouna et al. [13] extended their origi-
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nal model that was proposed in [12], by proposing a
new strong and efficient certificateless digital signature
scheme. They verified its consistency and efficiency.

Furthermore, Hassouna et al. [13], proposed a new dif-
ferent security model that was suitable for their proposed
signature scheme. In their proposed security model, the
definitions of Type I and Type II adversaries had become
different from the definitions introduced by Xiong et al.
in [19]. However, Hassouna et al. [13] stated that their sig-
nature scheme was provably secure against their proposed
security model in the Random Oracle Model (ROM), but
no security proof was provided.

The main purpose of this paper is to prove the secu-
rity of Hassouna et al. [13] certificateless digital signature
scheme against their proposed security model. The secu-
rity scheme that was introduced in [13] was based on two
mathematical hard problems, namely the Computational
Diffie-Hellman Problem (CDHP) and the Bilinear Diffie-
Hellman Problem (BDHP) in addition to using a set of
predefined hash functions. Therefore, we will prove its
security in the Random Oracle Model (ROM).

The rest of this paper is organized as follows. Section 2
gives backgrounds about pairing in elliptic curves and its
related cryptographic primitives, Hassouna et al. [13] dig-
ital signature scheme and their security model are in Sec-
tion 3. In Section 4, we state the security proof of Has-
souna et al.’s [13] signature scheme. Finally, Section 5
concludes the paper.

2 Backgrounds

In this section, we give backgrounds about pairing in elip-
tic curves and its related cryptography primitives that are
used in this paper. Here, G1 denotes an additive group of
prime order q (particulary elliptic curve group) and G2 a
multiplicative group of the same order. We let P denote
a generator of G1.

Definition 1. Elliptic Curve Computational Diffie-
Hellman Problem (ECDHP): Given (P, aP, bP ) in G1

where a, b ∈ Z∗q , compute abP .

2.1 Pairing in Elliptic Curve

A pairing is a map e : G1 × G1 −→ G2 with the following
properties:

1) The map e is bilinear: given Q,W,Z ∈ G1, we have:
e(Q,W + Z) = e(Q,W ) · e(Q,Z) and e(Q + W,Z)
= e(Q,Z) · e(W,Z).
Consequently, for any a, b ∈ Zq, we have
e(aQ, bW ) = e(Q,W )ab = e(abQ,W ), etc.

2) The map e is non-degenerate: e(P, P ) 6= 1G2
.

3) The map e is efficiently computable.

Definition 2. BDH Parameter Generator: As in [4],
a randomized algorithm G is a BDH parameter generator
if G:

1) takes security parameter k ≥ 1,

2) runs in polynomial time in k, and

3) outputs the description of groups G1, G2 of prime or-
der q and a pairing e : G1 ×G1 −→ G2.

Formally, the output of the algorithm G(1k) is
(G1, G2, e). Typically, the map e will be derived from
either the Weil or Tate pairing on an elliptic curve over a
finite field.

We refer to [2, 3, 4, 5, 6, 8, 9, 10] for a more comprehen-
sive description of how these groups, pairings and other
parameters should be selected in practice for efficiency
and security.

Definition 3. Bilinear Diffie-Hellman Problem
(BDHP): Let G1, G2, P and e be as above. The BDHP
in G1, G2, e is as follows: Given P, aP, bP, cP with uni-
formly random choices of a, b, c ∈ Z∗q , compute e(P, P )abc

∈ G2. An algorithm A has advantage ε in solving the
BDHP in G1, G2, e if: Pr[A(P, aP, bP, cP ) = e(P, P )abc]
= ε.

Here, the probability is measured over the random
choices of a, b, c ∈ Z∗q and the random bits of A.

3 Hassouna et al’s Certificateless
Digital Signature Scheme

In this section, we state the certificateless digital signature
scheme that was proposed by Hassouna et al. [13].

• Setup (running by the KGC): The KGC chooses
a secret parameter k to generate G1, G2, P, e where
G1 and G2 are two groups of a prime order q, P
is a generator of G1 and e : G1 × G1 −→ G2

is a bilinear map. The KGC randomly generates
the system’s master key s ∈ Z∗q and computes the
system public key Ppub = sP . Then the KGC
chooses cryptographic hash functions H1 and H2,
where H1 : {0, 1}∗ −→ G1 (Map-to-Point hash
function), and H2 : {0, 1}n −→ Z∗q (any crypto-
graphic hash function like MD5 or SHA family).
Finally, the KGC publishes the system parameters
params=< G1, G2, e, P, Ppub, H1, H2, n >, while the
secret master-key is saved and secured by the KGC.

• Set-Secret-Value (running by the user): The
user m with the identity IDm downloads the system
parameters, picks two random secret values xm, x

′
m ∈

Z∗q . Then, user m computes Xm = x′mP and sends
Xm to the KGC. The proposed scheme enforces the
user to choose a strong password pass, the system
at client hashes the password to be zm = H2(pass),
multiplies the base point P by the hashed password
to be zmP , uses the hashed value zm as key encrypt
the secret value xm and generates the Password-
based Encryption Code(PEC) as PECzm(xm), sends
copy of it to the KGC’s public directory and stores
copy of it along with the point zmP locally.
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• Partial-Private-Key-Extract (running by the
KGC): On receiving Xm computed by user m
with identity IDm, the KGC first computes Qm =
H1(IDm), then it generates the partial private key
of user m as Dm = sQm.

• Set-Public-Key (running by the user): The user
m with identity IDm computes Qm = H1(IDm),
Ym = x′mQm and sets < Xm, Ym > as his/her long-
term public key Pm. Finally, user m sends Ym to the
KGC.

• Set-Private-Key: User m’s private key is Sm =
(xm + zm)Dm = (xm + zm)sQm = (xm +
zm)sH1(IDm). Also, the user generates the secret
term Zm = xmP .

• Sign: The user generates the signature of the mes-
sage M using his/her secret terms {xm, Zm} as fol-
lows:

1) The signer generates big random integer a ∈ G∗2.

2) The signer calculates MPm = H1(m) ∈ G∗1.

3) The signer calculates MP1m = axmMPm ∈ G∗1.

4) The signer calculates sm = e(MPm, Zm)ax
′
m =

e(MPm, P )axmx′m .

5) The signer sends σ = (m,MP1m, sm) as the sig-
nature.

• Verify: After receiving the signature σ =
(m,MP1m, sm), the verifier uses user m’s public key
< Xm, Ym > to verify the signature as follows:

1) The verifier checks whether e(Xm, Qm) =
e(Ym, P ). If it holds then user m’s public key is
authentic, otherwise the signature is rejected.

2) The verifier calculates MP ′m = H1(m) ∈ G∗1.

3) If MP1m = MP ′m or sm = e(H1(m), Xm) then
the verifier rejects the signature.

4) Otherwise, the verifier calculates rm =
e(MP1m, Xm).

5) The verifier accepts the signature iff rm = sm,
otherwise he/she rejects the signature.

3.1 Hassouna et al.’s Security Model

In Hassouna et al. [13] two types of adversaries were con-
sidered: Type I and Type II adversaries according to the
term Zm as follows:

1) Type I Adversary

AI which is allowed to replace the term Zm by a valid
value of his/her choice, but is not allowed to replace
users’ public keys and has not access to the master
secret key s.

2) Type II Adversary

AII which has access to the master secret key s, is
allowed to replace users public keys with valid values
of his/her choice, but is not allowed to replace the
term Zm.

Type I adversary represents outsider attacker and Type
II attacker is a malicious KGC. Two games are defined as
follows.

• Game I. The first game is performed between a chal-
lenger C and a Type I adversary AI as follows.

1) Setup. The challenger C runs Setup algorithm
and generates a master secret key msk and pub-
lic system parameters params. C gives params
to AI , while keeping msk secret.

2) Queries. AI may adaptively issue the following
queries to C.

– Partial private key queries: Upon receiving
a partial private key query for an identity
ID, C returns the partial private key with
respect to identity ID to AI .

– Public key queries: Given an identity ID, C
returns the corresponding public key terms
< XA, YA > to AI .

– Replace public key: Given an identity ID
with a pair of values (x′1ID, pk

1
ID) which are

chosen by AI , C updates the user ID orig-
inal secret/public key (x′ID, pkID) to the
new (x′1ID, pk

1
ID).

– Z − key Extraction queries: This is a new
oracle in this security model, given an iden-
tity ID, C returns the corresponding Z −
key value ZID.

– Replace Z − key: This is a new ora-
cle in this security model which on input
(ID, x1ID, Z

1
ID), C replaces the user ID

original term (xID, ZID) by (x1ID, Z
1
ID).

– Private key queries. Upon receiving a pri-
vate key query for an identity ID, C returns
the corresponding private key skID to AI .

– Sign queries: Proceeding adaptively, AI can
request signatures on any messages m with
respect to an identity ID. C computes sig-
nature, and returns to AI .

3) Forgery. Eventually, AI outputs a certificateless
signature σ∗ on message m∗ corresponding to
public key pkID∗ for an identity ID∗. AI wins
the game if Verify(params, ID∗, pkID∗ , m

∗, σ∗)
= 1 and the following conditions hold:

– AI has never been queried Partial private
key oracle on ID∗.

– AI never replaced the user ID∗’s public key.

– AI has never been queried Private key ora-
cle on ID∗.
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– AI has never been queried Sign oracle on
(ID∗,m∗).

The success probability of AI is defined as the prob-
ability that it wins in Game I.

• Game II. This game is performed between a chal-
lenger C and a Type II adversary AII as follows.

1) Setup. The challenger C runs AII on k and a
special Setup, and returns a master secret key
msk and public system parameters params to
AII .

2) Queries. In this phase, AII can adaptively ac-
cess the Private key oracle, Public key oracle,
Replace public key oracle, Z − key oracle, Re-
place Z − key oracle and Sign oracle, which are
the same as that in Game I.

3) Forgery. AII outputs a certificateless signature
σ∗ on message m∗ corresponding to public key
pkID∗ for an identity ID∗. AII wins the game
if Verify(params, ID∗, pkID∗ ,m

∗, σ∗) = 1 and
the following conditions hold:

– AII has never been queried Private key or-
acle on ID∗.

– AII has never been queried Replace Z−key
oracle on ID∗.

– AII has never been queried Signature oracle
on (ID∗,m∗).

The success probability of AII is defined as the prob-
ability that it wins in Game II.

Accordingly, the security definitions of any certificateless
digital signature scheme in the Random Oracle Model
(ROM) can be given as follows.

Definition 4. A certificateless signature scheme is (t,
qH , qe, qz, qsk, qpk, qs, ε)-existentially unforgeable against
Type I adversary under adaptively chosen message at-
tacks if no t-time adversary AI , making at most qH to
the random oracles, qe partial private key queries, qz to
the Z − key queries, qsk private key queries, qpk public
key queries and qs signature queries, have a success prob-
ability at least ε in Game I.

Definition 5. A certificateless signature scheme is (t,
qH , qz, qsk, qpk, qs, ε)-existentially unforgeable against
Type II adversary under adaptively chosen message at-
tacks if no t-time adversary AII , making at most qH to
the random oracles, qz to the Z − key queries, qsk pri-
vate key queries, qpk public key queries and qs signature
queries, have a success probability at least ε in Game II.

Definition 6. A certificateless signature scheme is ex-
istentially unforgeable under adaptively chosen message
attack (EUF-CMA), if the success probability of any poly-
nomially bounded adversary in the above two games is
negligible.

4 Security Analysis

The main interesting security feature in the Hassouna et
al.’s [13] signature scheme, is that its security does not
depends on the security of the KGC, because the master
secret of the KGC is not involved directly in the signature
generation/verification. This way, the such certificateless
signature schemes can enjoy the same security feature as
the traditional signature scheme that are based on PKI.

This is because in the PKI context, the private key
of the CA does not impact the security of the signatures
that are generated by the users, and that is because the
users’ private keys are not connected directly with the
public/private key of the CA, and the public/private key
of the CA is just used to ensure the authenticity of the
users by signing the users’ certificates.

Furthermore, the security of Hassouna et al.’s [13] sig-
nature scheme depends on the the term Zm which is con-
sidered as one of the private keys of the user m. The term
Zm links the user’s public/private keys and any compro-
mise in the user’s public key leads to compromise in term
Zm and hence in the signature scheme.

Thinking this way, the certificateless schemes can have
better chances in securing real applications, because this
approach will reduce the risk of trusting the KGC without
decreasing the features of the certificateless cryptography
as concept, i.e eliminating the certificates and some of
its management problems and also eliminating the risk of
trust on the KGC.

Now we state the general definition of the security of
Hassouna et al.’s [13] signature scheme in the random or-
acle model (ROM) given that the Adversary A has access
to the oracles that have been described later.

Theorem 1. Hassouna et al.’s [13] short CLS scheme is
secure against existential forgery under adaptively cho-
sen message attacks in the random oracle model with
the assumptions that the ECDHP (Elliptic Curve Com-
putational Diffie-Hellman Problem) and BDHP (Bilinear
Diffie-Hellman Problem) in G1 are intractable.

The proof of Theorem 1 is based on the following two
lemmas.

Lemma 1. Let AI be a Type I Adversary in Game I
that (t, ε)-breaks the proposed CLS scheme. Assume that
AI makes qH queries to a random oracle H1, qe queries
to the partial-private-key extraction oracle, qz queries to
the Z − key extraction oracle, qsk queries to the private-
key extraction oracle, qpk queries to the public-key re-
quest oracle and qs queries to signing oracle and can re-
place Z − key of any user. AI cannot replace the public
key of the challenged user and does not have the master
secret. Then, there exists a (ε′, t′)-algorithm C that is
able to solve the BDHP problem in group G1, G2 where
ε′ < ε( qH−1

qH
)qe+qsk+qs , t′ < t + (qs + qz)tsm + qstp, tsm

denotes the cost of the scalar multiplication in G1 and tp
the cost of calculating one bilinear pairing operation.
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Lemma 2. Let AII be a Type II Adversary in Game II
that (t, ε)-breaks the proposed CLS scheme. Assume that
AII makes qH queries to random oracles H1, qz queries to
the Z − key extraction oracle, qsk queries to the private-
key extraction oracle, qpk queries to the public-key request
oracle, qs queries to signing oracle and can replace the
public key of any user. AII cannot replace Z − key of
the challenged user but have the master secret. Then,
there exists a (ε′, t′)-algorithm C that is able to solve the
ECDHP problem in group G1 where ε′ < ε( qH−1

qH
)qsk+qs

and t′ < t+ (qs + qz)tsm + qstp.

4.1 Proof of Lemma 1

Suppose that C is given a challenge: given Zm = xmP ,
abP and Xm = rmP compute e(P, P )abxmrm after inter-
acting with AI . Now C and AI play the role of the chal-
lenger and the adversary respectively. C will interact with
AI as follows:

• Setup: C runs algorithm Setup, chooses a generator
P and sets Ppub = sP , where s is the system master
key, which is unknown to C. C picks an identity ID∗

at random as the challenged ID in this game, and
gives params =< P,Ppub, H1 > to AI as the public
parameters. For simplicity, we assume that for any
IDi, AI queries H1 before IDi is used as an input
of any query Public-key Extraction, Partial-private-
key Extraction, Private-key Extraction and Signing
oracles.

• H1-Queries: C maintains a hash list H list
1 of tu-

ple (IDi, Qi) as explained below. The list is initially
empty. When AI makes a hash oracle query on IDi,
if the query IDi has already appeared on the H list

1 ,
then the previously defined value is returned. Oth-
erwise, C chooses a random integer a ∈ Z∗q and sets

Qi = aP , inserts the pair (IDi, Qi) in the list H list
1

and returns it to the adversary AI .

• Partial-private-key Extraction Queries: C
maintains a list Elist of tuple (IDi, Qi, Di) which is
initially empty. For any given identity IDi, C recov-
ers the corresponding tuple (IDi, Qi) from the list
H list

1 , if IDi 6= ID∗ then sets Di = sQi and returns
it to the adversary AI and adds (IDi, Qi, Di) to the
list Elist. Otherwise(IDi = ID∗), C aborts and out-
puts ”failure”(denote this event by E1).

• Public-key Extraction Queries: C maintains a
list pklist of tuple (IDi, Qi, ri, pki) which is initially
empty. When AI queries on input IDi, C checks
whether pklist contains a tuple for this input. If it
does, the previously defined value is returned. Oth-
erwise, C recovers the corresponding tuple (IDi, Qi)
from the list H list

1 and picks a random value ri ∈ Z∗q ,
computes pki =< Xi, Yi >=< riP, riQi > and re-
turns pki. Then, adds (IDi, Qi, ri, pki) to the list
pklist.

• Z − key Extraction Queries: C maintains a list
Zlist of tuple (IDi, Zi) which is initially empty. if
Zlist already contains the pair (IDi, Zi), then it re-
turns it to the adversary AI , otherwise C calls the
oracle Private Key Extraction on identity IDi and
gets the value Zi, gives it to the adversary AI and
inserts it in the list Zlist.

• Private-key Extraction Queries: C maintains
the list sklist for query on input IDi. If IDi = ID∗,
C stops and returns ”failure” (denote the event by
E2). Otherwise, C picks a random number xi ∈ Z∗q
and performs as follows:

– If the Elist and the pklist contain the cor-
responding tuple (IDi, Qi, Di) and the tuple
(IDi, Qi, ri, pki) respectively, C sets ski =
xiDi, Zi = xiP , returns (IDi, xi, ski, Zi) to AI

and adds them to the list sklist.

– Otherwise, C makes a partial-private-key Ex-
traction query and a Public-key Extraction
query on IDi, then simulates as the above pro-
cess, sends (IDi, xi, ski, Zi) to AI and adds
them to the list sklist.

• Z − key Replacement (IDi, x
′
i, Z
′
i): When AI

queries on input (IDi, x
′
i, Z
′
i), C checks whether the

tuple (IDi, Zi) is contained in the Zlist . If it is, C
sets Zi = Z ′i and adds (IDi, Z

′
i) to the Zlist. Here,

we assume that C can obtain a replacing secret value
x′i corresponding to the replaced Z − key = Z ′i from
AI . Otherwise, C executes Private Key extraction
to generate (IDi, ski, Zi), then sets Zi = x′iP and
inserts it in the list Zlist.

• Signing Queries: When a signing query (IDi,mj)
is coming, C acts as follows:

– If IDi = ID∗, C stops and returns ”failure sta-
tus” (denote the event by E3).

– Otherwise, C recovers the tuple (IDi, xi, ski,
Zi) from the sklist and the tuple (IDi, Qi, pki)
from the pklist and the tuple (mj , MP ) from
H list

1 .

– Picks a random integer a ∈ Z∗q .

– Computes MP1 = axiMP .

– Computes si = e(MP,Zi)
ari and (MP1, si) is

the signature for the identity IDi on the mes-
sage mj . C returns (MP1, si) to AI as response
to the signing oracle.

Finally, AI stops and outputs a signature σ = (V ∗, S∗)
on the message m∗ for the identity ID∗, which satisfies
the equation Verify(m∗, ID∗, pk∗, S∗) = 1. C recovers the
tuple (ID∗, Q∗, pk) from pklist, the tuple (ID∗, x∗, Z∗),
(m∗,MP ∗) from Zlist and H list

1 picks a random integer
a∗ ∈ Z∗q . Then, we have e(V ∗, Xi) = e(a∗x∗b∗P, rP ) =

S∗, that is: e(P, P )a
∗x∗rb∗ = S∗.
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Hence C can successfully compute and output
e(P, P )a

∗r = S∗1/(x
∗b∗) as solution to the AI ’s challenge.

So, C breaks the BDHP problem in G1, G2. Now we an-
alyze the advantage of C in this game.

Note that the responses to AI ’s H1 queries are in-
distinguishable from the real life. Since each response
is uniformly random and independently distributed in
G∗1. The responses of queries H1 provided for AI are
all valid. The responses of Partial-private-key extraction
queries, Private-key extraction queries and signing queries
are valid if the events E1, E2 and E3 never happen. Fur-
thermore, if AI forges a valid signature and events E1, E2

and E3 do not happen, then C can solve the BDHP prob-
lem. Therefore, if none of the events E1, E2 and E3 hap-
pens, C can solve the BDHP problem successfully. Now,
Let’s bound the probability for these events. From the
description above we have: Pr(¬E1 ∧ ¬E2 ∧ ¬E3) =
( qH−1

qH
)qe+qsk+qs .

In conclusion, challenger’s C advantage is ε′ <
ε( qH−1

qH
)qe+qsk+qs with the running time cost as t′ <

t+ (qs + qz)tsm + qstp, where tsm denotes the cost of the
scalar multiplication in G1 and tp the cost of calculating
one bilinear pairing operation.

4.2 Proof of Lemma 2

Suppose that C is given a challenge: given Zm = xmP and
abP , compute abxmP after interacting with AII . Now C
and AII play the role of the challenger and the adversary
respectively. C will interact with AII as follows:

• Setup: C runs algorithm Setup, chooses generator P
and sets Ppub = sP , where s is the system master key.
C picks an identity ID∗ at random as the challenged
ID in this game, and gives params =< P,Ppub, H1 >
and the master secret s to AII as the public param-
eters. For simplicity, we assume that for any IDi,
AII queries H1 before IDi is used as an input of any
query Public-key Extraction, Private-key Extraction
and Signing oracles.

• H1-Queries: C maintains a hash list H list
1 of tu-

ple (IDi, Qi) as explained below. The list is initially
empty. When AII makes a hash oracle query on IDi,
if the query IDi has already appeared on the H list

1 ,
then the previously defined value is returned. Oth-
erwise, C chooses a random integer a ∈ Z∗q and sets
Qi = aP . Then, he inserts the pair (IDi, Qi) in the
list H list

1 and returns it to the adversary AII .

• Public-key Extraction Queries: C maintains a
list pklist of tuple (IDi, Qi, ri, pki), which is initially
empty. When AII queries on input IDi, C checks
whether pklist contains a tuple for this input. If it
does, the previously defined value is returned. Oth-
erwise, C recovers the corresponding tuple (IDi, Qi)
from the list H list

1 and picks a random value ri ∈ Z∗q ,
computes pki =< Xi, Yi >=< riP, riQi > and re-

turns pki. Then, C adds (IDi, Qi, ri, pki) to the list
pklist.

• Public-key Replacement (IDi, r
′
i, pk

′
i): When

AII queries on input (IDi, pki), C checks whether
the tuple (IDi, Qi, ri, pki) is contained in the pklist .
If it does, C sets pki = pk′i and adds (IDi, Qi, r

′
i, pk

′
i)

to the pklist. Here, we assume that C can obtain a re-
placing secret value r′i corresponding to the replaced
pk′i =< r′iP, r

′
iQi > from AII . Otherwise, C executes

Public Key extraction to generate (IDi, Qi, ri, pki),
then sets pki = pk′i and inserts it in the list pklist.

• Z − key Extraction Queries: C maintains a list
Zlist of tuples (IDi, Zi), which is initially empty. If
Zlist already contains the pair (IDi, Zi), then C re-
turns it to the adversary AII , otherwise C calls the
oracle Private Key Extraction on identity IDi and
gets the value Zi, forwards it to the adversary AII

and inserts it in the list Zlist.

• Private-key Extraction Queries: C maintains
the list sklist, for query on input IDi, If IDi = ID∗,
C stops and outputs ”failure” (denote the event by
E1). Otherwise, C picks a random number xi ∈ Z∗q
and performs as follows:

– If the Elist and the pklist contain the cor-
responding tuple (IDi, Qi, Di) and the tuple
(IDi, Qi, ri, pki) respectively, then C sets ski =
xiDi, Zi = xiP , returns (IDi, xi, ski, Zi) to AII

and adds them to the list sklist.

– Otherwise, C makes a Partial-private-key Ex-
traction query and a Public-key Extraction
query on IDi, then simulates as the above pro-
cess, sends (IDi, xi, ski, Zi) to AII and adds
them to the list sklist.

• Signing Queries: When C receives a signing query
(IDi,mj), it acts as follows:

– If IDi = ID∗, C stops and returns ”failure sta-
tus” (denote the event by E2).

– Otherwise, C recovers the tuple (IDi, xi, ski,
Zi) from the sklist, the tuple (IDi, Qi, pki) from
the pklist and the tuple (mj , MP ) from H list

1 .

– Picks random integer a ∈ Z∗q .

– Computes MP1 = axiMP .

– Computes si = e(MP,Zi)
ari and (MP1, si) is

the signature for the identity IDi on the mes-
sage mj . C returns (MP1, si) to AII as response
to the signing oracle.

Finally, AII stops and outputs a signature σ =
(V ∗, S∗) on the message m∗ for the identity ID∗, which
satisfies the equation Verify(m∗, ID∗, pk∗, S∗) = 1. C
recovers the tuple (ID∗, Q∗, pk∗) from pklist, the tuple
(ID∗, Z), (m∗,MP ∗) from Zlist, H list

1 and picks a ran-
dom integer a∗ ∈ Z∗q . Then, we have e(V ∗, X∗i ) =
e(a∗xb∗P, r∗P ) = S∗, then a∗b∗xP = V ∗.
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Hence C can successfully compute and output
a∗b∗xP = V ∗ as solution to the AII ’s challenge. So, C
breaks the ECDHP problem in G1.

Also, C can solve the ECDHP problem successfully, if
none of the events E1 and E2 happens. Now, we have:

Pr(¬E1 ∧ ¬E2) =

(
qH − 1

qH

)qsk+qs

.

Again, the challenger’s C advantage is ε′ <
ε( qH−1

qH
)qsk+qs with a running time cost as t′ < t + (qs +

qz)tsm + qstp.

Therefore, if the attacker has no advantage in winning
Game I and Game II which are defined as in Lemma 1
and Lemma 2, then the proposed certificateless digital
signature scheme is existential unforgeable against adap-
tively chosen message attacks in the random oracle model
with the assumptions that ECDHP and BDHP in G1 are
intractable.

5 Conclusions and Remarks

In this paper, the security proof of the digital signature
scheme proposed by Hassouna et al. [13] was introduced in
the random oracle model. The proposed signature scheme
is strong, efficient, and resistant to the key-replacement
attack.

Furthermore, since this proven signature scheme does
not depend on the KGC master secret, then any crypto-
graphic system utilizes this signature scheme can provide
authentication and non-repudiation services even if the
KGC is compromised as in the traditional PKI-based sys-
tems.
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