
International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 946

Group Rekeying Scheme for Dynamic Peer
Group Security in Collaborative Networks

Depeng Li1 and Srinivas Sampalli2

(Corresponding author: Srinivas Sampalli)

Department of Information and Computer Sciences, University of Hawaii at Manoa1

1680 East-West Road, Honolulu, HI, USA, 96822

Faculty of Computer Science, Dalhousie University2

6050 University Avenue, Halifax, Nova Scotia B3H 4R2 Canada

(Email: srini@cs.dal.ca)

(Received May 12, 2010; revised and accepted Jan. 10 & Nov. 10, 2013)

Abstract

Contributory group key management schemes are pop-
ularly used for dynamic peer group communications in
collaborative environments. Previous contributory group
key management schemes require every group member
to perform a number of expensive Diffie-Hellman oper-
ations whenever the group membership changes. This is
not always affordable for devices in resource-constrained
networks. In this paper, we present an efficient group
key management scheme, in which most group members
process one way hash functions and only a few members
perform Diffie-Hellman operations. Our proposal is an ex-
tension of the Tree-based Group Diffie-Hellman (TGDH)
technique. Performance analyses and experimental re-
sults show that our approach achieves a new performance
minimum, while guaranteeing the same level of security
as other approaches.

Keywords: Dynamic peer groups, group key management,
resource limited networks

1 Introduction

There has been a growing demand in the past a few
years for security in collaborative environments deployed
for emergency services, as well as many applications in
military, business, government and research organiza-
tions [9, 15, 47]. Examples of such collaborative applica-
tions include tele/video-conferencing, white-boards, and
distributed simulations. Many of these applications in-
volve dynamic peer groups (DPGs) in which the group
size is relatively small (around several hundreds of nodes)
and each group member can simultaneously be the mes-
sage sender and receiver [2, 14]. Group members may
join or leave the group at any time. To provide security
services, a common and efficient solution is to encrypt
group messages with a symmetric group key shared by all

group application participants. Group key management
is the set of processes which supports the establishment of
group keys and the maintenance of ongoing keying rela-
tionships between parties, including replacing older keys
with newer ones as necessary [24]. Efficient management
of group keys generating, distributing, and group rekey-
ing whenever the group composition changes is critical to
the successful implementation of the scheme in networks
in general, and resource-limited networks, in particular.

Group key management schemes should ensure that the
new member and the leaving member should not obtain
the current group key. In other words, two requirements
must be satisfied:

Forward secrecy: Previous group members who know
contiguous subsets of old group keys must not be able
to discover subsequent group keys after they leave the
group.

Backward secrecy: New group members who know a
contiguous subset of current group keys must not be
able to discover preceding group keys.

Furthermore, performance-relevant requirements such
as computational cost, communication overhead, fault-
tolerance, and storage consumption must be considered,
especially in resource-constrained networks.

A number of group key management schemes have been
proposed. They can be classified into two broad cate-
gories, namely, centralized [31, 34, 35, 37, 38, 39, 41, 42,
43, 44, 45, 46] and contributory [4, 5, 6, 8, 15, 16, 18, 21,
33, 36].

In a typical centralized group key management scheme,
a key server is responsible for the generation, encryption,
and distribution of the symmetric group key, auxiliary
keys, and individual keys to all other group members.
Although such a scheme has good performance, the key
server can be a single point of failure/bottleneck.

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 947

In contributory group key management schemes, every
group member contributes to the generation of the group
key. Unlike a centralized scheme which relies on one or
a few key servers, a contributory scheme is supported by
all group members and therefore it is more fault tolerant
than the centralized one. But most existing contributory
schemes e.g. TGDH [15] display poor performance and a
low level of scalability since they have to process expensive
public key operations.

Recently, a number of contributory group key manage-
ments have been proposed for particular network settings
such as [27] for Ad-hoc network, [22] for mobile wireless
networks, and TGDH [15] for collaborative networks in
DPG environments.

To provide the authentication service, some authenti-
cated group key managements have been proposed. As
one of the most popular authentication primitives, ID-
based group key authentication [12] has been widely uti-
lized to design a number of efficient authentication group
key management [17, 21, 32]. They have been evaluated
and analyzed by cryptanalysis [11], attacks [10, 40], and
other security means regarding their security.

1.1 Motivation

Currently, deploying DPGs in wireless and mobile envi-
ronments becomes an attractive choice for not only cus-
tomers but also service providers. Meanwhile, advance-
ments in wireless and mobile communication technologies
together with the significant enhancement of the process-
ing capability of communication devices (e.g. laptops and
wearable computers) enable ubiquitous computing. In
such networks, mobile nodes establish routes dynamically
among themselves to form their own network on the fly
without an existing infrastructure and thus make a good
choice for DPGs.

However, previous group key management schemes [26,
47] cannot be deployed in such networks directly for sev-
eral reasons. First, most mobile networks are resource-
limited and lack a native infrastructure. Hence, they
pose non-trivial challenges for the deployment of group
key schemes. Traditional centralized schemes which rely
on a key server cannot be a practical choice because of
the lack of infrastructure in such networks. Second, such
networks have stringent resource constraints. Some low-
end mobile nodes tend to be restricted in their compu-
tational capability and cannot perform many and fre-
quent computational-intensive operations such as public
key cryptographic operations. Third, the communication
bandwidth is also limited. Given these constraints, group
key management schemes should be lightweight in order
to conserve bandwidths, energy, storage, and computa-
tions. Our paper proposes an efficient contributory group
key management scheme for dynamic peer groups.

1.2 Contributions

Our proposal TGDH+ is an extension of the Tree-based
Group Diffie-Hellman (TGDH) [15]. TGDH uses a binary
key tree for group key updates. We make a number of en-
hancements to TGDH. When group members join, our
approach achieves the group keys update using a one-way
hash function. When a group member leaves, it uses three
efficient techniques, namely, the auxiliary group key, mov-
ing the child key tree, and the dominating algorithm, to
reduce computational costs and communication overhead.

1.3 Assumptions and Scopes

Our proposal assumes that the reliability and message-
in-order service are already provided by group com-
munication systems, such as Extended Virtual Syn-
chrony (EVS) [14, 25].

In this paper, we will specifically focus on developing
efficient group key agreement for DPGs in collaborative
network settings. Though deploying the ID-based authen-
tication scheme [19, 29], the proposed group key manage-
ment TGDH+ will not include any new authentication
means which are out of the scope of this paper. Thus, we
will not analyze TGDH+’s security regarding authentica-
tion in detail.

The rest of this paper is organized as follows. No-
tations and concepts are introduced in Section 2. Our
proposal is described in Section 3. Performance analy-
sis is given in Section 4. Experimental results are pre-
sented in Section 5. Concluding remarks are given in Sec-
tion 6. Detailed performance comparison is discussed in
Appendix A.

2 Preliminaries

Table 1: Notation

‖ Concatenation
Mi Group member i
ri Random integer generated by Mi

{X}y Plaintext X is encrypted with key y
α Exponentiation base shared in advance
C An integer known in advance

H(G) To perform hash function on input G

2.1 Tree-based Group Diffie-Hellman
(TGDH)

TGDH [15] is one of the most efficient contributory
group key management schemes proposed in the litera-
ture. Since our proposal is an extension of TGDH, we
provide an overview of the scheme here.

The crux of the group key management scheme in
TGDH is to use a binary key tree for group key updates.
Let T be a binary tree in which every node is represented
by < h, i > where h is its height (level) and i is its in-
dex. Each node in the binary tree, has two keys, node

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 948

Figure 1: TGDH+: Key tree updates for group members joining – (a) Join protocol, (b) Original tree, (c) M4 joins,
and (d) M5 joins

key (K) and blinded key (BK). The node key associated
with the node < l, v > is K<l,v> and its blinded key
is BK<l,v> = αK<l,v> . In TGDH, every group member
should be aware of the entire key tree structure.

Each node in the tree is either a leaf node or a parent
node. Each leaf node represents a group member Mi.
A random integer, namely, ri, is generated specifically
for Mi. This random value will be treated as the leaf
node’s node key. The node key of an internal/parent node
< l, v > is derived from the keys of its children node,
< l + 1, 2v > and < l + 1, 2v + 1 >. This is represented
by ”Equation (1)” below:

K<l,v> = BK
Kl+1,2v+1

<l+1,2v>

= BK
Kl+1,2v

<l+1,2v+1>

= αKl+1,2vKl+1,2v+1 (1)

The node key of the root in the tree T is the group
key. While a new group member joins, the shallowest
leftmost leaf node in the key tree is selected as the spon-
sor and acts as the sibling for the new group member.
When a group member leaves, the sponsor is the shallow-
est leftmost leaf node of the sub-tree rooted as the leaving
members’ sibling node. The sponsor is responsible for up-
dating its secret random integer ri as well as all keys along
the key path starting from itself and ending at the root
node. Then, the sponsor multicasts all updated blinded
keys, based on which, other group members could update
keys on their own key paths and finally compute the new
group key by themselves.

2.2 Definitions

Key path: It is a path in the key tree starting at the leaf
node hosted by a group member (e.g. Mi) and ending at
the key trees root. We name the key path of a group
member, for instance, Mi, as KPi. The group member
(e.g. Mi) should host all node keys on the key path (e.g.
KPi) including the node key of the root which is the group
key in our paper. All those node keys in the key path is
called KEY ∗i .

Sibling path: For each node on a key path e.g. KPi,
there is a corresponding sibling node. All those sibling
nodes construct the sibling path for a particular group
member (e.g. Mi). In our paper, Mi hosts all blinded
keys on its sibling path which are defined as BKEY ∗i .

Key sub-path: Unlike a key path, a sub-path starts at
any node, Nx and ends at any other node, Ny on a key
path KPi. It is called key sub-path, namely, KSPi,x,y.
All node keys on the key sub-path KSPi,x,y are called
KEY ∗i,x,y.

3 TGDH+ Group Key Manage-
ment Scheme

In this section, we present our scheme TGDH+, an ex-
tension of TGDH. The basic idea behind our TGDH+
group key management scheme is the following. A one-
way hash function H is used to update the group key when
group members join. In contrast, the updates of Diffie-
Hellman (DH)-based keys (including both node key and
blinded key) resulting from the join of members have to be
postponed until a group member leaves. When the leav-

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 949

ing event for a group member happens, we propose a new
method which updates keys associated with the key tree.
Utilizing hash functions to handle group members’ joining
has been suggested by some centralized group key man-
agement schemes such as ELK [31] and LKH+ [38]. How-
ever, DH-based contributory schemes have not adopted
this technique since the key calculation means of ”Equa-
tion (1)” cannot be align with it.

Specifically, our proposal includes three new schemes,
namely, the auxiliary group key method, the approach to
move the child key tree, and the dominating algorithm.
In the auxiliary group key scheme, every group member
in the main key tree stores an auxiliary group key Ga

which is used as the partial key to calculate the future
group key when the leaving member associates with the
child key tree. The moving child key tree scheme is a
method to decrease the number of updated key paths.
The dominating algorithm is proposed to enable every
group member to become aware of the nodes responsible
for updating overlapped intermediate nodes.

In the following subsections, we describe the protocols
for join, leave, merge, and partition.

3.1 Join Protocol

3.1.1 Method to Update the Key Tree Structure

The key tree shown in Figure 1 (a), includes two parts:
the main key tree, TMain and a child key tree, Tchild. At
the very beginning of the group key scheme, both of them
are empty which means that there are no nodes available.
Every key tree should have its insertion point, which is
the shallowest leftmost node in the key tree.

For every group membership change, the rules below
should be followed: 1) When a group member leaves or
the group partitions/merges, Tchild will merge into TMain

and then Tchild is assigned as EMPTY. 2) When a group
member joins, the method of inserting it into the key tree
should be based upon whether Tchild is EMPTY. If Tchild

is not EMPTY, the new group member should be ap-
pended to the Tchild. Otherwise, Tchild should be gener-
ated with its root located at the insertion point of TMain.
Then, Tchild is not EMPTY . The remaining new join
nodes should be appended into Tchild and located at the
insertion point of Tchild. Figure 1 (a) – (d) shows a sce-
nario in which i group members (M1 . . . Mi) are already
within the group and, then, the following group member-
ship events happen:

< MLeave
x ,MJoin

i+1 ,MJoin
i+2 ...MJoin

i+j ,MLeave
y |where j ≥ 0〉

Between the two leave requests from Mx and My where
1 ≤ x ≤ i and 1 ≤ y ≤ i + j, group members Mi+1,
. . . Mi+j request to join one by one. Notice that this
event model can represent all scenarios occurring in group
membership changes due to the fact that j ≥ 0. Thus, all
event sequences can be segmented by leave events. For
the remainder of this paper, this model will be utilized to
demonstrate group events.

With the group membership change input, Tchild

should be EMPTY after Mx leaves. Then, when Mi+1 re-
quests to join, the join protocol generates Tchild with the
root located at the TMain insertion point and the join pro-
tocol inserts Mi+1 into Tchild. Now Tchild is not EMPTY.
The current group key G is stored by every group mem-
ber in TMain as the auxiliary group key Ga. Subsequent
join requests, Mi+2, . . . Mi+j can be appended into Tchild

at Tchild’s insertion point. After My leaves, Tchild is as-
signed to EMPTY.

Here are two examples. The tree shown as Figure 1 (b)
is the beginning scenario. The trees shown in Figure 1 (c)
and Figure 1 (d) result from the joining of M4 and M5,
respectively. Specifically, as shown in Figure 1 (c), M4

joins and a new leaf < 2, 2 > is generated to represent
it. The insertion point for TMain is located at node <
1, 1 > which should be renamed < 2, 3 > and works as
the sponsor. Therefore, a new intermediate node < 1, 1 >
is generated which works as both sponsor < 2, 3 > and
the new leaf < 2, 2 > ’s parent. Every group member in
TMain, i.e. M1, M2, or M3 should store the current group
key G as its auxiliary group key: Ga = G.

As shown in Figure 1 (d), M5 joins and a new leaf
< 3, 1 > is generated to represent it. < 3, 1 > is ap-
pended into Tchild rooted with < 1, 1 >. Node < 2, 2 >,
representing member M4, is selected as the sponsor and is
renamed as < 3, 0 >. The join protocol generates a new
node < 2, 2 > which works as < 3, 0 > and < 3, 1 >’s
parents. Since when M5 joins, Tchild is not EMPTY, the
auxiliary group key for every member in TMain such as
M1, M2, or M3 stays the same.

3.1.2 Group Key Updates

For a group member join request from M
i’, the proposed

join protocol selects the sponsor S in the same manner as
TGDH. However, the difference between TGDH and the
proposed approach is that every group member updates
the current group key, G with H(G) rather than updating
all keys associated with the nodes on sponsor S’s key path,
where H is a secure one-way hash function. Then, S
and Mi’ initiate a 2-party DH key exchange scheme to
generate the shared key K, which works as the node key
of S and M

i’’s parent node. Finally, S sends M
i’ the

encrypted current group key, {H(G)}K and M
i’ decrypts

the ciphertext with key K to obtain the current key, H(G).
For example, in Figure 1 (c), M4 joins and M3 is se-

lected as the sponsor. It refreshes its secret random r3
with a new random value, r3’ and calculates the up-
dated blinded key of its leaf node, BK ′<2,3> = αr3

′
.

Then M3 and the new group member M4 launch a 2-
party DH to calculate a shared key, K<1,1>. M3 sends

C = {BKEY ∗3 ||BK ′<2,3>||{G
′}K<1,1>} to M4 where

G
′

= H(G). M4 calculates K<1,1> and then decrypts

the ciphertext C to obtain the new group key, G
′
. Other

members can calculate the new group key, G
′
, via a secure

hash function H since they all know the current group key,
G.

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 950

M i Leaves T child==EMPTY
No

TGDH

M i T child

Yes Yes

No Yes

No

Inequality 2

Update & Mult icast

BEKY i*
{ }

Main Child

Curr DH

Left Left

T T

G K

M M
Dominat ing Alg.

Moving T child

Case 1

Case 4

Case 3Case 2

Figure 2: TGDH+: Outline of leave protocol

In Figure 1 (d), when a new group member M5

joins, as the shallowest leftmost node in the child key
tree Tchild, M4 is selected as the sponsor. It refreshes
its secret random r4 with a new random value r4’ and
then calculates the updated blinded key of its leaf node,
BK ′<3,0> = αr4

′
. Then M4 and the new group member

M5 launch a 2-party DH to calculate a shared key, K<2,2>.

M4 sends C = {BKEY∗4||BK ′<3,0>||{G
′′}K<2,2>} to M5

where G
′′

= H(H(G)). M5 first calculates K<2,2> and
then decrypts the ciphertext C to obtain the new group
key G

′′
. Other current group members could also calcu-

lated the new group member.

Notice that the mutual authentication between the
sponsor and the new group member will deploy technolo-
gies such as certifications [24] or the ID-based authenti-
cation [21] which are already mature.

3.2 Leave Protocol

3.2.1 Strategy for Updating Key Tree Structure

Suppose that group member Mi, who is represented by
the leaf < h, i >, leaves the group. Figure 2 shows the
outline of the leave protocol for TGDH+.

If Tchild is EMPTY, call it Case 1. The proposed leave
protocol is as same as that for TGDH.

If Tchild is NOT EMPTY and < h, i > is within Tchild,
call it Case 2. The key tree structure stays the same.

If Tchild is NOT EMPTY and < h, i > is not within
Tchild, there are two cases: either moving Tchild or not
moving. The former is shown in Figure 3 (a).

Whether Tchild should be moved or not depends on
both the leaf node < h, i >’s position and computational
cost. Inequality (2) decides which one is more efficient,
moving Tchild or not. The left side of Inequality (2)
demonstrates the computation cost for moving the Tchild:
it includes the cost to update keys associated with all
nodes both in Tchild and in key sub-path KSPi,x,r (start-
ing at node x, the root of Tchild and ending at the node r,
root of the key tree). In contrast, the right side of Inequal-
ity (2) shows the computation costs when Tchild stays the
same position: it is composed of the computational cost
to update keys associated with all nodes in Tchild, with
the key sub-path KSPj,x,r (starting at node x, the root
of Tchild and ending at node r, the root of the key tree.
The node j represents a new joining group member which
is located at the shallowest leftmost position in the child

key tree, Tchild), and with the key path KPi (the key path
of the leaving group member Mi).

NExpon.
Tchild+KSPj,x,r

> NExpon.
Tchild+KSPj,x,r+KPi

(2)

where Ny
x is the # of y operations for all members in x.

Thus, if moving Tchild can result in a performance im-
provement (i.e. Inequality (2) is false), Tchild should be
moved to take < h, i >’s position and < h, i > is cut off.
This scenario is called Case 3.

Otherwise, (i.e. Inequality (2) is true), Tchild stays at
the same position. This is called Case 4.

For example, Figure 3 (b) is the original key tree in
which the Tchild is pointed out. Figure 3 (c) shows the
key structure change when a group memebr M2 leaves.
Since M2 is not within Tchild and moreover, our calcu-
lation shows that Inequality (2) is false, Tchild rooted at
< 2, 2 > is moved to node < 2, 1 >’s position in order to
obtain the performance improvement. The former node
< 2, 1 > is cut off. As its left child node is removed,
node < 1, 1 > will be deleted. Node < 1, 1 >’s right node
< 2, 3 > is renamed as < 1, 1 > and it is promoted to its
parent’s position.

Figure 3 (d) demonstrates that when M4 leaves, Tchild
need not be moved any other position since M4 is within
Tchild.

3.2.2 Group Key Updates

To update the group key when a group member leaves, the
leave protocol should update all the node keys and blinded
keys associated with the nodes in such kind of key paths
that have one or more nodes added/deleted. Obviously,
the node key and the blinded key of every node within
Tchild should be updated. So do all keys on the leaving
member’s key path and on the Tchild’s key path.

Here, we first explain the dominating key path concept.
Then we describe the proposed algorithm 1 – dominating
algorithm which updates and forwards the keys on the
key sub-paths. At last, we elucidate the leave protocol.

Dominating key path: If two key paths intersect,
we say that the right key path is dominated by the left
key path. Therefore, the left key path is the dominating
key path and is responsible for updating the overlapped
nodes on the two key paths. For example, in Figure 3 (b),
KP4, the key path for M4, intersects KP5, the key path
for M5, at < 2, 2 >. Since KP4 is to the left of KP5,

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 951

Figure 3: TGDH+: Key tree updates for group members leaving – (a)Move child tree, (b)Original tree, (c) M2

leaves, and (d) M5 leaves

Algorithm 1 Dominating Algorithm

1: Begin
2: for all sponsor Mi do
3: update KSPi,<h,i>,<x1,y1>

4: if all updated blinded keys that associated with key
paths which are dominated by Mi already sent out
then

5: repeat computing node keys & blinded keys on its
key path until it cannot continue;

6: multicast updated blinded keys on Mi’s key path;
7: else
8: wait for updated blinded keys associated with key

paths which are dominated by Mi;
9: Go to the beginning of step 4;

10: end if
11: end for
12: for all group member Mi do
13: update its node keys on its key path after receiving

blinded keys from all sponsors.
14: end for
15: End

KP4 dominates KP5. Therefore, M4 should update and
multicast the blind keys for < 2, 2 >.

Algorithm 1 – dominating algorithm: Without
consideration for the root of the key tree, assume a key
path KPi intersects n − 1 other key paths, KP1, KP2

. . . KPi−1, KPi+1. . . KPn−1, one by one from the leaf node
to the root, where n is an integer and n is less than the
height of the tree. Assume that the n−1 corresponding in-
tersections are < x1, y1 >, < x2, y2 > . . .< xn−1, yn−1 >.
The key path KPi, is divided into the following n key
sub-paths: KSPi,<h,i>,<x1,y1>,KSPi,<x1,y1>,<x2,y2> · · ·
KSPi,<xn−1,yn−1>,<0,0>.

In dominating algorithm, a member waits for the up-
dated blinded keys sent from members it dominates. Af-

ter then, it updates all blinded keys and the node keys
on its key path until it cannot. At last, it multicasts
all updated blinded keys to other members. Based on
these new blinded keys, all group members can update
the group key.

For example, in Figure 3 (c), after moving Tchild, all
keys associated with the nodes in Tchild and Tchild’s key
path are updated:

1st round: Key path of M5 is dominated by that of M4.
M5 multicasts BK<3,1>.

2nd round: M4 multicasts BK<3,0>, BK<2,1> and
BK<1,0>. In Figure 4.4 (d), all keys associated with the
nodes within Tchild and Tchild’s key path are supposed to
be updated:

3st round: Key path of M5 multicasts BK<2,2> and
BK<1,1>.

Notice that the authentication to secure multicast mes-
sages will deploy the digital signing algorithm [24].

Leave Protocol: To update the group key in the case
in which a group member leaves, the leave protocol should
handle Cases 1, 2, 3, and 4, separately.

Case 1: As showed in Figure 2, the proposed leave
protocol is as same as that for TGDH. All auxiliary group
keys for every group member are released.

Case 2: As shown in Figure 4, to obtain performance
gain, this leave protocol does not update the DH-based
keys in the key tree for Case 2 but updates the group key
via Hash with the auxiliary group key as input. The spe-
cific idea behind this proposal is that group members in
TMain can be aware of key material which is not known
by members in Tchild. Therefore, after a member which
belongs to Tchild, leaves, the group members in TMain can
calculate a new group key which cannot be compromised
by the group members in Tchild, including the leaving one.
Then, a designated member in TMain delivers the new
group key to a designated member in Tchild within a se-
cure channel, who, in turn, sends the group key to other

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 952

Current Group KeyOriginal Key Tree

Tmain

Tchild

{M1..Mn,}

{Mn+1.. Mk…Mn+j,}

…. ….

M1

Mk leaves

…. Mn-1 MnM2 M3

Diffie-Hellman:

Mn+1 Mn+j

Kchild

Mn+k-1 Mn+k+1Mn+x

{H2(Ga C)}K DH

H2(Ga C)

Multicast: {H2(Ga C)}K Child

Figure 4: TGDH+: Group key updates for Case 2

members in Tchild via a secure multicast channel.

The following is a method for calculating the current
group key, Gcurrent, and for updating the auxiliary group
key Ga.

Group Key Updates: If group member Mn+k ∈
{Mn+1 . . .Mn+j} leaves where 0 < k ≤ j, every group
member ∈ {M1 . . .Mn} can calculate a new group key
Gcurrent = H2(Ga ⊕C) based upon its Ga where C is an
integer known in advance. As shown in Figure 4, the left-
most leaf of Tmain, for example, M1 launches a 2-party
DH scheme with a leaf of Tchild, for example, Mn+x, to
generate a shared key, which is used to encrypt Gcurrent

= H2(Ga ⊕ C). Notice that in Tchild the key path for
Mn+x is the leftmost updated key path. After using the
dominating algorithm to update the keys associated with
the nodes in Tchild, Mn+x multicasts the BKEY n+x ||
(Gcurrent) Kchild where Kchild is the new node key as-
sociated with the root of Tchild. Therefore, every group
member in Tchild can calculate the new sub-group key and
decrypt Gcurrent. Every group member in TMain should
update Ga with H(Ga) which can be used to generate
future group keys when another group member in Tchild
leaves.

Auxiliary Group Key Updates: After the group key
is generated, new auxiliary group keys should be pre-
pared for future group key updates. All members in Tchild
should release the auxiliary group key. All auxiliary group
keys Ga stored by members in Tmain should be replaced
by the following formula: Ga = H(Ga ⊕ C).

Case 3: As shown in Figure 2 and Figure 3 (c), our pro-
tocol should update the DH-based keys associated with
Tchild, the key path of Mi and the key path of Mj via
dominating algorithm.

Case 4: As shown in Figure 2 and Figure (d), our pro-
tocol should update the DH-based keys associated with

Tchild, and the key path of Mi via dominating algorithm.

3.2.3 Merge and Partition Protocols

When the group is divided into sub-groups, the partition
protocol will treat the members who cannot be in contact
with the group as leaving members. In this case, each
group member will handle the 0 join & L leave scenario.
In a similar way, when sub-groups merge, the merging
protocol deals with the J join & 0 leave leave scenario.
For every sub-group, the group member hosting the left-
most shallowest key path is treated as the sponsor for the
sub-group which generates the new session secret key, up-
dates keys on its key path and multicasts the updated
keys. Both the merge protocol and the partition proto-
col can use algorithm 1: Dominating Algorithm to handle
the J join & 0 leave and 0 join & L leave scenario respec-
tively.

For example, the procedure to merge 8 sub-groups into
a super group is shown in Figure 5. S1. . . and S8 are se-
lected as sponsors for the 8 sub-groups respectively. Using
the dominating algorithm, the protocol can generate the
group key within 3 rounds.

1st round: The key path for S2 is dominated by that of
S1. The key path for S4 is dominated by that of S3. The
key path for S6 is dominated by that of S5. The key path
for S8 is dominated by that of S7. M2, M4, M6 and M8

update node keys and blinded keys on their key paths,
respectively. Then, M2, M4, M6 and M8 multicast the
updated blinded keys on their key sub path starting at
the leaf node and ending at < 3, 1 >,< 3, 3 >,< 3, 5 >,
and < 3, 7 > respectively.

2nd round: The key path for S3 is dominated by that of
S1. The key path for S7 is dominated by that of S5. Then,
after calculating these node and blinded keys on their key

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 953

Table 2: Computational cost

Scheme Protocol
Main sponsor Total
Exponen. H/E2 Signing Exponentiation H/E2 Signing

TGDH

J j.&1 l.1 2h(J+1) - J+1 (2n-1)(J+1) - 2J+1
Merge 2h - Log2k+1 2(h-log2k)k+(2k-1) - 2k
Partition 2h - min(log2p+1,h) 2(h-log2p)p+(2p-1) - min(2h,2p)

STR

J j.&1 l.1 4J+(3n/2+2) - J+1 (2n+2)J+(3n/2+2) - 2J+1
Merge 3m+1 - 2 (n+m)m+3m+1 - k+1
Partition 3n/2+2 - 1 (n-1) (3n/4+1) +3n/2+2 - 1

TGDH+

J j.&1 l.1 2(h+log2J) J+2 1 6J+4n-4 J(J+2n+1) J/2+1
Merge 2h - 1 2(h-log2k)k+(2k-1) - k
Partition 2h - 1 2(h-log2p)p+(2p-1) - p

1: J Join & 1 Leave; 2: Hash / Encryption

0,0

2,32,0 2,22,1

3,63,0 3,43,2 3,73,1 3,53,3

1,0 1,1

Updated

Key Path

Key

Sub-Tree

S1 S2 S3 S4 S5 S6 S7 S8

Figure 5: TGDH+: Merge protocol for 8 sub-groups

paths, M3 and M7 multicast the updated blinded keys on
their key sub path starting at the leaf node and ending at
< 2, 1 > and < 2, 3 > respectively.

3th round: M1 and M5 update node keys and blinded
keys on their key paths, respectively. Then, M1 and M5

multicast the updated blinded keys on their key sub path
starting at the leaf node and ending at < 1, 0 > and
< 1, 1 > respectively.

The partition protocol follows the same procedure.
For simplification, the partition protocol will not be in-
troduced again. Furthermore, faults can occur even
in join/leave/merge/partition protocols in the contrib-
utory group schemes. For joining/merging, the failure
node is treated as a leaving member. The paper sim-
ply treats them as members who leave. Then it is the
leave/partition protocols’ turn to handle them. The de-
tailed procedure for leave/partition protocols follows what
the leave/partition protocols do: deleting the leaving
member’s node and its parent node. The leaving node’s
sibling is promoted to its parent’s position. The others
functions in the same manner as described earlier.

3.2.4 Authentication and Security Property

Unicasts utilized in this paper can be protected by
ID-based Diffie-Hellman key exchange scheme [14] or
digital signing algorithms [20]. Multicasts by the
Signature Amortization Information Dispersal Algo-
rithm (SAIDA) [30]. The security of TGDH+ is
based on the assumptions of 2-party Decision Diffie-
Hellman problem (DDH) [24], one way hash function
(Hash) [24] and Decision Binary Tree Diffie-Hellman prob-
lem (DBTDH) [24]. Please refer to [24] for details. Notice
that, as mentioned in [24], the definition of backward and
forward secrecy of TGDH is stronger than that of previ-
ous group key schemes such as GDH [6]. Our proposal
follows the latter. Notice that the authentication to se-
cure multicast messages will deploy the M-SAIDA.

4 Performance Analyses

TGDH [15] and STR [16] have been shown to be among
the most efficient contributory group key management
schemes. Please refer to [4] for a detailed comparison.
We compare our proposal with TGDH and STR. In Ta-
bles 2 and 3, we summarize the computational cost and
communication overhead of TGDH+, TGDH and STR.

The current group size is denoted by n and the height
of the key tree for TGDH and TGDH+ is h. For the
merge protocol, the number of sub-groups is k and the
number of group members in every sub-group is m. For
a partition protocol, the number of leaving members is p.
For TGDH and TGDH+, the overhead varies according to
the balance of the key tree and the join or leave members
location in the key tree. Our performance analysis for
them is based on the average scenario. In Tables 2 and 3,
both the total cost and the main sponsors cost comprises
the cost for all the group members.

J join & 1 leave: As seen from Table 2, TGDH+ is
comparatively efficient in terms of the number of exponen-
tiations and the number of signing operations. In Table 3,
both STR and TGDH demand the most communication

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 954

Table 3: Communication overhead and memory consumption

Scheme Protocol Rounds

Communication overhead

MemoryMain sponsor Total
Unicast Multicast Unicast Multicast

TGDH

J join&1 leave 2J+1 - [1, 2J+1] - 2J+1 0
Merge log2k+1 - H - 2k 0
Partition min(log2p+1, h) - H - min(2h,2p) 0

STR

J join&1 leave 2J+1 - 2 - 2J+1 0
Merge 2 - 1 - k+1 0
Partition 1 - 1 - p 0

TGDH+

J join&1 leave 2J+3 1 1 2J+2 J/2 [0, 1]
Merge log2k+1 - 1 - k 0
Partition min(log2p+1, h) - 1 - 1 0

overhead. Our scheme requires two more rounds than
TGDH and STR. However, the communication scheme
deployed for every round is a one-hop unicast. In con-
trast, the other two schemes use multi-hop multicast for
every round which means a larger communication over-
head to send the rekey messages around the network. In
terms of storage costs, most members of TGDH+ should
store one more auxiliary group key than TGDH and STR.

Merge: Our scheme requires less cost as compared
to TGDH and STR in terms of the number of multicast
messages and computational cost. STR needs the most
number of exponentiation operations and TGDH requires
the most number of signing operations. STR uses a con-
stant number of rounds.

Partition: TGDH demands the most communication
overhead and the most signing operations. STR requires a
constant number of rounds, the least numbers of signing
operations and the least number of multicast messages.
But STR demands the most computational cost, O(n2)
times of exponentiations. So, in terms of computational
and communication cost, our scheme is more efficient.

Finally, our TGDH+ is more efficient in J join & 1
Leave and merge protocols. For partition protocols, STR
works better in signing and multicast metrics. For the rest
metrics of the partition protocol, TGDH+ works better.
For details of cost comparisons, please refer to Appendix
A and B.

Figure 6: Individual rekey: Number of exponentiations

Figure 7: Individual rekey: Total number of multicasts

Figure 8: Individual rekey: Total number of exponentia-
tion

5 Experimental Results

Our experiments compare the computational cost and
communication for TGDH, STR and TGDH+. It is based
on a group membership behavior data set [1] that in-
cludes member join time and duration captured on the
MBone [2, 3]. In terms of computational cost, the num-
ber of exponentiations (hash and Encrypt/Decrypt oper-
ations are included via translating them into exponenti-
ation with the ratio of 0.002) for different group sizes is
listed in Figure 6. The total number of exponentiations

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 955

Figure 9: Individual rekey: Total number of signing op-
erations

for every group session is listed in Figure 8. The total
number of signings for every group session is listed in Fig-
ure 9. With regard to the communication overhead, the
total number of multicasts for every group session (uni-
cast is included via translating it into multicast with the
ratio of n−0.8 where n is a group size) is listed in Figure 7.
The results show that our proposal is the most efficient
in terms of computational cost. It can be observed that
STR requires less number of multicasts than TGDH+.
However, the multicast STR used covers the whole group
and that of TGDH+ covers only the sub-group.

6 Conclusions

The design of efficient group key management schemes
for dynamic peer groups over resource-constrained net-
works is still a challenging task. This paper presents the
design and specification of a lightweight and high perfor-
mance group key management scheme with the utilization
of hash and DH. Performance evaluation and experimen-
tal results show that our proposal is more efficient as com-
pared to previously proposed popular contributory group
key management schemes.

References

[1] K. C. Almeroth and M. H. Ammar, “Group com-
munication dataset,” 2001. (ftp://ftp.cc.gatech.
edu/people/kevin/release-dat)

[2] K. C. Almeroth, “A long-term analysis of growth and
usage patterns in the multicast backbone (MBone),”
in Proceedings of Nineteenth Annual Joint Confer-
ence of the IEEE Computer and Communications
Societies (INFOCOM’00), vol. 2, pp. 824–833, 2000.

[3] K. C. Almeroth and M. H. Ammar, “Multicast
group behavior in the internet’s multicast back-
bone (MBone),” IEEE Communications Magazine,,
vol. 35, no. 6, pp. 124–129, 1997.

[4] Y. Amir, Y. Kim, C. Nita-Rotaru, J. L. Schultz,
J. Stanton, and G. Tsudik, “Secure group commu-
nication using robust contributory key agreement,”

IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 15, no. 5, pp. 468–480, 2004.

[5] G. Ateniese, M. Steiner, and G. Tsudik, “Authenti-
cated group key agreement and friends,” in Proceed-
ings of the 5th ACM Conference on Computer and
Communications Security, pp. 17–26, 1998.

[6] G. Ateniese, M. Steiner, and G. Tsudik, “New multi-
party authentication services and key agreement pro-
tocols,” IEEE Journal on Selected Areas in Commu-
nications, vol. 18, no. 4, pp. 628–639, 2000.

[7] D. Boneh, G. Durfee, and M. Franklin, “Lower
bounds for multicast message authentication,” in
Advances in Cryptology (Eurocrypt’01), pp. 437–452,
Springer, 2001.

[8] E. Bresson, O. Chevassut, D. Pointcheval, and J. J.
Quisquater, “Provably authenticated group Diffie-
Hellman key exchange,” in Proceedings of the 8th
ACM Conference on Computer and Communications
Security, pp. 255–264, 2001.

[9] Y. Challal and H. Seba, “Group key management
protocols: A novel taxonomy,” International Journal
of Information Technology, vol. 2, no. 1, pp. 105–118,
2005.

[10] Q. Cheng, “Security analysis of a pairing-free
identity-based authenticated group key agreement
protocol for imbalanced mobile networks,” Interna-
tional Journal of Network Security, vol. 17, no. 4,
pp. 494–496, 2015.

[11] Q. Cheng and C. Tang, “Cryptanalysis of an id-based
authenticated dynamic group key agreement with op-
timal round,” International Journal of Network Se-
curity, vol. 17, no. 6, pp. 678–682, 2015.

[12] K. Y. Choi, J. Y. Hwang, and D. H. Lee, “Efficient
ID-based group key agreement with bilinear maps,”
in Public Key Cryptography (PKC’04), pp. 130–144,
Springer, 2004.

[13] J. C. I. Chuang and M. A. Sirbu, “Pricing multicast
communication: A cost-based approach,” Telecom-
munication Systems, vol. 17, no. 3, pp. 281–297,
2001.

[14] A. Fekete, N. Lynch, and A. Shvartsman, “Spec-
ifying and using a partionable group communica-
tion service. Extended version,” in Proceedings of the
Sixteenth Annual ACM Symposium on Principles of
Distributed Computing, pp. 53–62, 1997.

[15] Y. Kim, A. Perrig, and G. Tsudik, “Simple and
fault-tolerant key agreement for dynamic collabora-
tive groups,” in Proceedings of the 7th ACM Con-
ference on Computer and Communications Security,
pp. 235–244, 2000.

[16] Y. Kim, A. Perrig, and G. Tsudik, “Group key agree-
ment efficient in communication,” IEEE Transac-
tions on Computers, vol. 53, no. 7, pp. 905–921, 2004.

[17] A. Kumar and S. Tripathi, “Anonymous ID-based
group key agreement protocol without pairing,” In-
ternational Journal of Network Security, vol. 18,
no. 2, pp. 263–273, 2016.

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 956

[18] P. P. Lee, J. Lui, and D. K. Yau, “Distributed collab-
orative key agreement and authentication protocols
for dynamic peer groups,” IEEE/ACM Transactions
on Networking, vol. 14, no. 2, pp. 263–276, 2006.

[19] D. Li, Z. Aung, S. Sampalli, J. Williams, and A.
Sanchez, “Privacy preservation scheme for multi-
cast communications in smart buildings of the smart
grid,” Smart Grid and Renewable Energy, vol. 4,
no. 4, pp. 313–324, 2013.

[20] D. Li, Z. Aung, J. R. Williams, and A. Sanchez, “Ef-
ficient and fault-diagnosable authentication architec-
ture for ami in smart grid,” Security and Communi-
cation Networks, vol. 8, no. 4, pp. 598–616, 2015.

[21] D. Li and S. Sampalli, “A hybrid group key manage-
ment protocol for reliable and authenticated rekey-
ing,” International Journal of Network Security,
vol. 6, no. 3, pp. 270–281, 2008.

[22] W. T. Li, C. H. Ling, and M. S. Hwang, “Group
rekeying in wireless sensor networks: A survey,”
International Journal of Network Security, vol. 16,
no. 6, pp. 401–410, 2014.

[23] M. S. Manasse, “A survey of micropayment tech-
nologies, and the millicent system,” 1999. (http:
//www-db.stanford.edu/infoseminar.Archive/)

[24] A. J. Menezes, P. C. V. Oorschot, and S. A. Van-
stone, Handbook of applied cryptography, CRC press,
1996.

[25] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A.
Agarwal, “Extended virtual synchrony,” in Proceed-
ings of the 14th IEEE International Conference on
Distributed Computing Systems, pp. 56–65, 1994.

[26] M. J. Moyer, J. R. Rao, and P. Rohatgi, “A survey of
security issues in multicast communications,” IEEE
Network, vol. 13, no. 6, pp. 12–23, 1999.

[27] V. S. Naresh and N. V. Murthy, “Elliptic curve based
dynamic contributory group key agreement protocol
for secure group communication over Ad-hoc net-
works,” International Journal of Network Security,
vol. 17, no. 5, pp. 588–596, 2015.

[28] N. Okabe, S. Sakane, K. Miyazawa, A. Inoue, M.
Ishiyama, and K. Kamada, “A study of security ar-
chitecture for control networks over IP,” in Ist Inter-
national Workshop on Networked Sensing Systems
(INSS’04), 2004.

[29] E. Okamoto and K. Tanaka, “Key distribution sys-
tem based on identification information,” IEEE
Journal on Selected Areas in Communications, vol. 7,
no. 4, pp. 481–485, 1989.

[30] J. M. Park, E. K. Chong, and H. J. Siegel, “Effi-
cient multicast stream authentication using erasure
codes,” ACM Transactions on Information and Sys-
tem Security, vol. 6, no. 2, pp. 258–285, 2003.

[31] A. Penrig, D. Song, and J. Tygar, “Elk, a new proto-
col for efficient large-group key distribution,” in Pro-
ceedings of IEEE Symposium on Security and Pri-
vacy, pp. 247–262, 2001.

[32] R. S. Ranjani, D. L. Bhaskari, and P. Avadhani, “An
extended identity based authenticated asymmetric

group key agreement protocol,” International Jour-
nal of Network Security, vol. 17, no. 5, pp. 510–516,
2015.

[33] K. H. Rhee, Y. H. Park, and G. Tsudik, “A group key
management architecture for mobile Ad-hoc wireless
networks,” Journal of Information Science and En-
gineering, vol. 21, no. 2, pp. 415–428, 2005.

[34] S. Setia, S. Koussih, S. Jajodia, and E. Harder, “Kro-
nos: A scalable group re-keying approach for secure
multicast,” in Proceedings of IEEE Symposium on
Security and Privacy, pp. 215–228, 2000.

[35] A. T. Sherman, D. McGrew, et al., “Key establish-
ment in large dynamic groups using one-way function
trees,” IEEE Transactions on Software Engineering,
vol. 29, no. 5, pp. 444–458, 2003.

[36] M. Steiner, G. Tsudik, and M. Waidner, “Key agree-
ment in dynamic peer groups,” IEEE Transactions
on Parallel and Distributed Systems, vol. 11, no. 8,
pp. 769–780, 2000.

[37] Y. Sun and K. Liu, “Securing dynamic membership
information in multicast communications,” in (IN-
FOCOM’04). Twenty-third IEEE AnnualJoint Con-
ference on Computer and Communications Societies,
vol. 2, pp. 1307–1317, 2004.

[38] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B.
Plattner, “The versakey framework: Versatile group
key management,” IEEE Journal on Selected Areas
in Communications, vol. 17, no. 9, pp. 1614–1631,
1999.

[39] H. Weatherspoon, C. Wells, P. R. Eaton, B. Y. Zhao,
and J. D. Kubiatowicz, Silverback: A global-scale
archival system, Computer Science Division, Uni-
versity of California, 2001.

[40] F. Wei, Y. Wei, and C. Ma, “Attack on an ID-
based authenticated group key exchange protocol
with identifying malicious participants,” Interna-
tional Journal of Network Security, vol. 18, no. 2,
pp. 393–396, 2016.

[41] C. K. Wong, M. Gouda, and S. S. Lam, “Se-
cure group communications using key graphs,”
IEEE/ACM Transactions on Networking, vol. 8,
no. 1, pp. 16–30, 2000.

[42] C. K. Wong and S. S. Lam, “Digital signatures
for flows and multicasts,” in Proceedings of Sixth
IEEE International Conference on Network Proto-
cols, pp. 198–209, 1998.

[43] M. Yajnik, S. Moon, J. Kurose, and D. Towsley,
“Measurement and modelling of the temporal depen-
dence in packet loss,” in Proceedings of Eighteenth
Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’99), vol. 1,
pp. 345–352, 1999.

[44] W. H. Yang and S. P. Shieh, “Secure key agreement
for group communications,” International Journal of
Network Management, vol. 11, no. 6, pp. 365–374,
2001.

[45] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam,
“Reliable group rekeying: a performance analysis,”

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 957

in ACM SIGCOMM Computer Communication Re-
view, vol. 31, pp. 27–38, 2001.

[46] X. B. Zhang, S. S. Lam, D. Y. Lee, and Y. R.
Yang, “Protocol design for scalable and reliable
group rekeying,” IEEE/ACM Transactions on Net-
working, vol. 11, no. 6, pp. 908–922, 2003.

[47] X. Zou, B. Ramamurthy, and S. S. Magliveras,
Secure group communications over data networks,
Springer Science & Business Media, 2007.

Appendices

In this section, we analyze performance-relevant criteria,
namely, computational cost and communication overhead
for TGDH+. The memory consumption for TGDH+ is
already analyzed in Table 3.

A Metrics for Performance Eval-
uation

A.1 Computational Cost

Every group key scheme comprises a variety of crypto-
graphic operations. To begin with, this paper considers
the performance evaluation for each operation. Then, the
performance costs for each operation are accumulated to
attain the total costs. Previous experiments [28, 38, 23]
demonstrate that each cryptographic scheme needs to
be processed within a certain period of time, which can
be viewed roughly as the performance cost it demands
compared with other schemes. Therefore, like other re-
search [23, 28, 38] this paper assumes that the perfor-
mances of these cryptographic operations can be mea-
sured by timing. The experimental results referred to in
this paper are listed below.

An experiment result: for the SUN ultra 1/170 work-
station, the processing timings for the hash, encryp-
tion/decryption, DH, digital signing and digital signing
verification operations are 0.01ms, 0.01ms, 100ms, 200ms
and 50ms respectively [38], if the key size is 1024 bits.

In [28], for a low-end 8 bits CPU such as H8/3048
or CDS 80390, processing timings for hash, encryp-
tion/decryption, and DH operations are 400ms, 400ms,
and 400s respectively while key size is 1024 bits. In [23],
similar timings have been determined, similar timings
have been determined.

According to the results, the hash and encryp-
tion/decryption operations show an almost equivalent
performance and both of them are about 0.001 times
equivalent to a DH operation. Then, insight analyses
demonstrate us that every DH key scheme comprises two
exponential operations for every party. Therefore, the
computational cost for the hash or encryption/decryption
operation is 0.002 times that of an exponential operation.
So, the number of exponential operations can be treated
as the metric when comparing the computational cost of
each group scheme which includes different cryptographic

operations. The number of encryption/decryption and
hash operations can be transferred into the number of
exponential operations by a factor of 0.002.

A.2 Communication Overhead:

The areas for evaluating communication overhead consist
of the number of rounds, the number of unicasts and the
number of multicasts. Previous research [7, 13] shows
that the impact of unicasts and multicasts on network
bandwidth can be compared with respect to quantifica-
tion. The costing function shown below was deployed by
Chuang and Sirb [13].

Ru/m =
Lu

Lm
= n−0.8 (3)

where n: group size; Lu: average unicast hops; Lm:
total hops of a multicast tree;

This research uses it to evaluate the communication over-
head between unicasts and multicasts. Utilizing For-
mula (3), the number of unicasts can be transferred into
the number of multicasts and finally each group key
scheme is analyzed by comparing the number of multi-
casts it demands. Therefore, the number of the multicast
is the metric for communication overhead for every group
key scheme.

A.3 Memory Consumption

In this paper, for the sake of fairness, the key length for
every group/auxiliary key should be the same. So, the
metric for evaluating memory consumption is the number
of group/auxiliary keys stored by every group member.

B Performance Evaluation for
Each Group Key Scheme

In this subsection, this paper first introduces the view of
group membership events so that subsequent discussion is
based upon the same event. Then, the notions of compu-
tational costs and communication overhead for the event
are defined. Finally, the performances of TGDH+ are
discussed.

B.1 Group Session Model

First, let us take a look at the procedures for a group
session. Every group session can be treated as a sequence
of group members joining and group members leaving.
Therefore, this paper assumes that every group session is
comprised of a set of J Join & 1 Leave (J ≥ 0) events.

The performance for the J Join & 1 Leave (J ≥ 0)
scenarios, which are shown in Figure 10 (group member
join/leave for TGDH+), is discussed. In Figure 10 both

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 958

Group Session

2
M

J1
M

J jM
J 2

M
L 3

M
L1jM

J

.. ..&..1..J Join Leave&..1..J Join Leave

Figure 10: Group session model

the key tree, TMain, and child key tree, Tchild, are avail-
able. Assume that the number of members in Tmain is n
and the number of members in Tchild is J . For the sake
of simplification, assume that n = 2x and J = 2y where
x and y are integers. Hence, both key trees are balanced.

B.1.1 Computational Cost

Let COMP(J, n) denote the combined computational cost
for all group members to update the group keys for one
J Join & 1 Leave event. COMP(J, n) is comprised of
the number of hash operations, the number of encryp-
tion/decryption operations, the number of DH operations
and the number of digital signing operations.

COMP (J, n) = NSIGN
J,n +NDH

J,n +NENC
J,n +NHash

J,n

where NENC
J,n : number of encryption;

NHash
J,n : number of Hash;

NDH
J,n : number of Diffie-Hellman;

NSIGN
J,n : number of digital signing.

B.1.2 Communication Overhead

Let COMM(J, n) denote the combined communication
overhead for all group members to update the group keys
for one J Join & 1 Leave event in which the original group
size is n. COMM(J, n) is comprised of the number of
unicasts and the number of multicasts.

COMM(J, n) = NUnicast
J,n +NMulticast

J,n

where NUnicast
J,n : Number of Unicast;

NMulticast
J,n : Number of Multicast;

B.2 TGDH+

The J Join & 1 Leave scenario, as shown in Figure 10 is
analyzed below.

B.2.1 Computational Cost for TGDH+

For every group member joining, every member should
use hash to update its group key and the sponsor should
encrypt its hash result and send it to the new member. In

the case where a group member joins, the join protocol de-
mands DH, Hash and Encryption/Decryption operations.
The join protocol for handling J joining requires 2J times
the DH operations.

NHash
J,n =

J∑
i=1

(n+ i− 1) = J(2n+ J − 1)/2

NENC
J,n =

J∑
i=1

2 = 2J ; NDH
J,n =

J∑
i=1

2 = 2J

When one group member leaves, there are four cases, as
discussed earlier.

Case 1 : TGDH is used to handle this 0 join & 1 leave
scenario.

NDH
J,n = 2n− 1; NSIGN

J,n = 1

Case 2 : Group members in Tmain should process
hash operations. One DH is launched between a group
member in Tmain and a group member in Tchild. One
encryption and one decryption is also needed between
them. In Tchild, keys associated with the leaves on
Tchild are already computed in the case of the join
protocol. All other DH-based keys should be updated
and all group members should decrypt the new group key.

NSIGN
J,n = J/2; NDH

J,n = 3J/2 + 1;

NENC
J,n = J + 2; NHash

J,n = 2(n− J)

Case 3 or Case 4 : The leave protocol should update
the keys on Tchild and those on the key path for Mk. Keys
associated with the leaves on Tchild are already computed
in the case of the join protocol. So the number of keys to
be updated by all members in Tchild is (J-1). The number
of keys to be updated by all members in Tmain should be
2n-1 due to the updating of Mk’s key path.

NDH
J,n = (J − 1) + 2n− 1 + 2J = 3J + 2n− 2

B.2.2 Communication Cost for TGDH+

In the case where one group member joins, this proposal’s
join protocol uses the ID-based Diffie-Hellman authenti-
cation which sends two unicast messages to generate the
shared key between the sponsor and the new group mem-
ber. In the case where one group member leaves, accord-
ing to the Dominating algorithm, the number of signing

International Journal of Network Security, Vol.18, No.5, PP.946-959, Sept. 2016 959

operations to update Tchild and the of Mk key path should
be J/2.

NUnicast
J,n = 2J ; NMulticast

J,n = J/2

When one group member leaves, there are 4 cases.

Case 1 : NMulticast
J,n = 1

Case 2: NUnicast
J,n = 2; NMulticast

J,n = J/2

Case 3 or Case 4 : According to the dominating
algorithm, the number of signing operations to update
for updating Tchild and Mk’s key path should be J/2.
This means that NMulticast

J,n = J/2.

Depeng Li received his Ph.D. degree in computer
science from Dalhousie University, Canada in 2010. He
has joined Department of Information and Computer
Sciences (ICS) at University of Hawaii at Manoa (UHM)
as an assistant professor since 2013. His research interests
are in security, privacy, and applied cryptography. His
research projects span across areas such as Internet
of Things, air traffic management, smart grids, and
mHealth.

Srinivas Sampalli is a Professor and 3M Teaching
Fellow in the Faculty of Computer Science, Dalhousie
University, Halifax, Nova Scotia, Canada. His research
interests are in the areas of security and quality of
service in wireless and wireline networks. Specifically,
he has been involved in research projects on protocol
vulnerabilities, security best practices, risk mitigation
and analysis, and the design of secure networks. He
is currently the principal investigator for the Wireless
Security project sponsored by Industry Canada. Dr.
Sampalli has received many teaching awards including
the 3M Teaching Fellowship, Canada prestigious national
teaching award.

