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Abstract

Several monitoring systems are usually composed by het-
erogeneous monitoring sensors. Each sensor raises thou-
sands of alerts to be saved and analyzed in a centralized
station. Most of alerts raised by different sensors are al-
most the same but have various formats and various de-
scriptions. The system administrator must identify man-
ually similar alerts in order to decrease the number of
generated alerts and to improve the data quality. This
paper proposes an alert unification method that auto-
matically creates meta-alerts from a set of heterogeneous
alert sets coming from different security monitoring sen-
sors. Instead of dealing with several sets of alerts, this
method allows the administrator to use a unique set of
meta-alerts.

Keywords: Data pre-processing, language processing, net-
work security applications, record linkage

1 Introduction

Several systems are usually composed by heterogeneous
monitoring sensors. Each sensor has its philosophy, its
functional method, and its alert definitions. One impor-
tant task in such environment is the multisensor data fu-
sion which integrates objects that relate to the same en-
tities from several databases. This task help to improve
data quality by producing clean, sanitized, refined, and
accurate data ready for fast and simple analysis and good
knowledge extraction.

There are several definitions of the architectures of
multisensor data fusion system in the literature. Luo
and Kay [24, 25, 26] defined functional roles of multi-
sensor integration and multisensor fusion composed of
three-level fusion category. Dasarathy [7] proposed an
I/O pair-based fusion architecture. [15, 16] provided an
introduction to multisensor data fusion based on the ar-
chitecture of the Joint Directors of Laboratories (JDL)
data fusion model [34], which was originally developed
for military applications. [10] gave a review of different
models of multisensor data fusion system. [32] gave an

overview of multisensor fusion techniques relating to dif-
ferent fusion levels of the JDL framework, and discussed
the weaknesses and strengths of the approaches in dif-
ferent applications. [17] proposed a framework of logical
sensor which treats the multisource information in a mul-
tisensor system based on the viewpoint of logical software
programming. [14] imported the JDL processes to the cy-
ber security context.

The most used model is the JDL model [15, 16, 34]
which divides the data fusion process into four levels:
Level 1 for object refinement, Level 2 for situation as-
sessment, Level 3 for threat assessment, and Level 4 for
process assessment. Level 1 contains processes of data
registration, data association, position attribute estima-
tion, and identification. Level 2 fuses the kinematic and
temporal characteristics of the data to infer the situa-
tion of the environments. Level 3 projects the current
situation into the future. In Level 1, the parametric in-
formation is combined to achieve refined representations
of individual objects. Levels 2 and 3 are often referred to
information fusion, while Level 1 is data fusion. Level 4
is an ongoing assessment of other fusion stages to make
sure that the data fusion processes are performing in an
optimal way.

Bass adapts the JDL model to data fusion in the field of
computer security (see Figure 1) [3]. The proposed model
adds Level 0 called data refinement. In this level, data ac-
quired from a set of network security sensors (IDSs, net-
work sniffers, application logs), is filtered and calibrated
to generate a set of objects. Level 1 correlates all mea-
surements using common spatial and temporal metrics.
Level 2 correlates the objects using high level features like
their behavior, dependencies, targets, origins, protocols,
attack rates. The output of this step is the situational
knowledge. Level 3, threat assessment, assesses the sit-
uation against known intrusion detection templates and
suggests or identifies future threats. Level 4, resource
management, analyses the outputs of lower levels (Levels
2, 1, and 0) to define processing priorities to some objects
or situations.

This paper proposes a Level 1 method. After gathering
alerts from different intrusion detection sensors, the pro-
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Figure 1: The JDL multisensor data fusion system

posed method detects duplicated and related alerts and
creates a new set of refined and clean alerts. The method
makes use of record linkage techniques in order to detect
related alerts.

Record linkage aims to identify links between records
that refer to the same real-world entities. Most record
linkage methods are based on the method of Newcombe
and Kennedy in 1962 that was formalized by Fellegi and
Sunter in 1969. The literature includes several works in
record linkage from various domains [6]. Security spe-
cialists have used record linkage to remove duplicated
alerts raised by Intrusion detection sensors [3, 4, 20]. It
has been also used to identify fraudsters and criminals
national security databases [19]. The database of his-
torical census data was subject of many investigations
that aim to identify links between individuals and even
create a complete genealogy tree over a long period of
time [1, 12, 29]. Record linkage was also used to eliminate
duplicate records from the result of search engines [21, 33].
Recent researches [11, 31] have employed record linkage
methods to determine all bibliographic of an author in
large publication databases.

In this paper, we consider a security monitoring system
encompassing a distributed IDS (Intrusion Detection Sys-
tem), however, the proposed work could be used in any
system that encompasses several heterogeneous monitor-
ing sensors. Usually, large companies deploy several IDS
sensors in different locations to gather information about
possible threats and attacks. The IDWG (Intrusion De-
tection Working Group) is a major working group that
defined a general distributed IDS architecture [13] (see
Figure 2). The E blocks are (Event-boxes) is composed
of sensor elements that monitor the target system. The

D blocks (Database-boxes) are intended to store informa-
tion from E blocks for subsequent processing by A and
R boxes. The A Blocks (Analysis-boxes) are processing
modules for analyzing events and detecting potential hos-
tile behavior, so that some kind of alarm will be generated
if necessary. The R blocks (Response-boxes) executes an
intrusion reaction.

Figure 3 shows a near-real-time distributed IDS for
high-speed networks called (¢|7) [30]. (¢|r) aims to be
generic, scalable, and adaptive distributed IDS which acts
in real-time depending on traffic, alerts, past traffic, and
predicted traffic and alerts.

It is clear that almost all the DIDS architectures in-
clude distributed agents/sensors and a global manager
which collects information. In order to have a global view
of the system, the DIDS must gather events from sensors.
The events should be correlated to provide a simple and
accurate view to the administrator. The correlation step
usually makes use of statistics and data mining in order
to improve the monitored site.

The main contributions of this paper are:

o A state of the art of the current architectures of data
fusion systems;

e Identification of the relation between data fusion sys-
tems and record linkage methods;

e A study on how to use record linkage techniques in
the security context;

e A record linkage method that improve data quality
of alerts generated by security monitoring sensors;

e A semantic similarity method to compare between
alerts;
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e An optimization model and solution that solves am-
biguity between related alerts.

The remaining paper is organized as follow: next sec-
tion defines the problem of record linkage in the con-
text of security monitoring. Section 3 is an overview
of the proposed solution called alert unification. Sec-
tion 4 details the structure of the global algorithm for
the alert unification process. Section 5 introduces the
semantic-based similarity method to measure the similar-
ity between alerts. Section 6 deals with the introduction
of a new alert in the existing system. Section 7 solves
the problem of ambiguous related alerts using an origi-
nal method. Section 8 analyzes the performance of the
method, and the last section concludes and discusses the
future works.

2 Problem Definition

The alerts defined by a given set of monitoring sensors
are different even they refer semantically to the same ef-
fective alert. Hence, an alert unification step is required
to minimize the total number of generated alerts and to
maximize their quality. The alert unification process will
combine several alert sets, corresponding to several mon-
itoring sensors, into one unified alert set. Note that this
step would be done offline, means that this step would
run even before the deployment of the sensors. Thus, so-
phisticated similarity algorithms could be used to unify
alert names. Since each monitoring sensor has its moni-
toring philosophy and its specific alert format, our method
suppose that each generated alert has only one attribute
called alert description. Indeed, this simplification makes
our method very generic and could be applied with a wide
range of monitoring sensors.

Formally, in the current work, we consider a set of sn
different sensors monitoring one subject. Each sensor s;
has an alert set AS; = A, A1,iys - -+ A(ni_,,i) Where

A(j,iy is the alert number j that belongs to the alert set
AS; and n; is the size of AS; i.e. n; = |AS;|. Each alert
set AS; must verify the following conditions:

e There are no duplicate alerts within the same alert
set;

)

e Each alert in AS; has a unique identifier (A4; ;);

e Each alert has an attribute called description.

The result of the unification process is an alert set U =
Ug, U2, . . ., Ug—1 containing q unified alerts such that each
unified alert uy, is associated with at least one alert A; ;.
in this case, ur and A; ; correspond to the same effective
alert. wuy could be a unified alert of several alerts from
different alert sets (i.e. different sensors). The goal of the
unification process is to maximize the number of alerts
that a unified alert uy is associated with. In other words,
our goal is to minimize q.

3 Solution Overview

Consider the problem definition above, our proposed so-
lution (see Figure 4) starts with an indexing step that
gives for each alert a unique identifier. During Step 2,
each alert is split into word tokens. In order to calculate
the similarities between tokens, we propose a semantic
similarity approach; given two word tokens, each token
has several senses taken from the Wordnet [35] database
(Step 3). In order to choose the best sense of a given to-
ken, we apply a word sense disambiguation method called
the Mickeal Lest algorithm [23] (Step 4). Then, a simi-
larity value is computed between the selected senses of
both tokens using the Resnik method [27] (Step 5). The
Resnik similarities between tokens senses create a simi-
larity matrix between the tokens of two alerts. The sim-
ilarity matrix is transformed to an optimization problem
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aiming to maximize the overall similarities between the
tokens of both alerts in order to choose the best matching
between tokens. The optimization problem is solved us-
ing the polynomial Hungarian method [22] (Step 6). The
output of the later step is the similarity value between
two alerts (Step 7). The previous steps are repeated to
compute the similarity between each couple of alerts. In
order to minimize the complexity of the global algorithm,
the unified alert set U is created incrementally; each new
alert is compared to the existing unified alerts (using the
previous 7 steps). The result of the previous comparison
is one of the following three cases:

e The new alert is not similar to any of the unified
alerts (using a high similarity threshold). In this case
the new alert become a new unified alert and added
to the unified alert set U,

e The new alert is similar to only one unified alert. In
this case the new alert is considered as a duplicate of
the unified alert;

e The new alert is similar to several unified alerts. This
case raises an ambiguity problem between the alerts.
However, the new alert must be a duplicate of only
one unified alert. The ambiguity problem is solved
by an optimization method called Hopcroft-Karp al-
gorithm as explained in Section 7.

4 The Alert Unification

In this section, the main steps of the alert unification are
detailed. Given sn different IDS sensors. Each sensor s;
has an alert set AS; = Ay, A(1,i)s- -+ Ani_,,i) Where
A,y is the alert number j that belongs to the alert set
AS; and n; is the size of AS; i.e. n; = |AS;|. The result of
the unification process is an alert set U = ug, u2, ..., uq—1
such that each wuy is associated with at least one alert
A; ;. in this case, u, and A;; correspond to the same
alert. u; could be the unified alert of several alerts from
different alert sets AS; (i.e. different sensors). Let UM
is the unification matrix. Hence, UM}, is the unification
vector of the unified alert uy. UMy, is the alert number
from the alert set .S}, that corresponds to the unified alert
uy. For example UMs o = 7 means that the fifth alert of
U corresponds to the seventh alert of the alert set of the
IDS sensor 2. UMj5 3 = —1 means that the unified alert
us has not any corresponding alert with the alert set of

the sensor 3.
o ) Zf Up ~ AS,'J'
UMk’] o { —1 Zf Vi, Uk 7”5 ASL]‘

For two alerts u and v, u &~ v means that the alert u and
v relate to the same alert even they differ in their respec-
tive descriptions, and u % v means that the alert w and v
are different. Note that UM has ¢ (i.e. |U]|) rows and sn
(the number of different IDS sensors) columns. Also, q is

initially unknown. ¢ € [max;e(o,sn—1] 7, Zfzal 7]
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Figure 4: the main steps of the alert unification process

The goal of the unification process is to maximize the
number of alerts that a unified alert uy, is associated with.
Thus, minimizing the (-1)s in the unification matrix UM.
The goal of the unification process can be viewed also as
minimizing g. The proposed approach builds UM column
by column. The steps are summarized in the following:

Inputs:

e sn alert sets: ASg, -, AS¢n_1;

e Each alert set AS; is composed by n; alerts:
Si = Aio, Aix, -, Ain,_,. It is preferable that
the alert sets are decreasingly ordered according
to their size, n1 >n2> -+ > ngp_1.

Outputs:

e The unified alert set U = g, ug, -+ ,uq—1. ¢ is
the number of unified alerts.

e The unification matrix UM.
Procedures:

1) Clone AS; to U. U is initialized with the first
alert set ASy. Thus,
o U := ASl
o q:=|AS)]
o UM, :=1i, for each i € [0,|AS1| —1]. Each
alert of AS; is similar with itself.
o j:=2
2) Build the similarity matrix SSy, s, between each
couple of alert sets U and AS;. SSy.s,|a,b] is
the similarity rating between the alerts u, and
Ajp. We assume that all the scores of the simi-
larity matrix are in the range [0, 1], which means
that if the score gets a maximum value (equal
to 1) then the two alerts are absolutely simi-

lar. The algorithm used to build the similarity
matrices is explained below (see Section 5).

3)

Set a hard similarity threshold ST for example
(0.9) which guarantees the similarity between
the alerts. In other words, if SSy, s, [a,b] > ST,
then we assume that the alerts u, and A;; could
be similar.

Set to zero the values of the similarity ma-
trix SSys, which are less than ST. i.e.
SSUﬁj [a,b] = 0 if SSU,SJ. [a, b] < ST.
SSu,s,la,b] = 0 means that the alerts u, and
A;, could not correspond to the same alert.

if SSus,la,b] > ST and A ¢ such as
SSu,s;la,c] > ST then UM, ; = b. i.e. if the
alert u, is similar to only one alert A;,, then
we assume that the unified alert of A; is ug:

o UM, := 0, for each i € [0,sn — 1], the
new unified alert has not any corresponding
alert except Aj; .

L] UMa,j =b

if SSy,s,la,b] = 0 for all b € [0, |AS;| — 1] i.e.
the alert A;; has not any corresponding unified
alert, then, add A, as a new unified alert:

e ¢ := ¢+ 1, increment the number of unified
alerts

o u;, = Aj;;, the new unified alert corre-
sponding to A;

e UMy, := 0, for each i € [0,sn — 1], the
new unified alert has not any corresponding
alert except A; .

[ ] UMqu =b

if SSys,la,b] > ST and 3 ¢ such as
SSu,s,[a,c] > ST. i.e. the alert u, is a unified
alert of several eventual alerts from the same
alert set S;. This is problematic because sev-
eral alerts from S; are ambiguous while u, must
correspond to only one alert from the set Sj.
Hence, we propose to find a support to choose
the most appropriate alert. See details of the
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approach in Section 7. Let the alert A;; the
supported alert. Thus, the unified alert is voted
to correspond to Aj
o UM,, := 0, for each i € [0,sn — 1], the
new unified alert has not any corresponding
alert except Aj; .

L] UMaJ' =10
8) If j < sn then increment j(j := j+ 1) and go
to Step 2.

5 Similarity Measure Between

Alerts

As introduced in the last section, the similarity between
alert sets requires the similarity matrix SS that summa-
rizes the similarities between alerts. This step is the ma-
jor step of the unification process since it may affect the
overall accuracy of the whole process. Optimistic similar-
ity measure may lead to incorrect fusion between different
alerts giving the administrator a false view of the system.
Pessimistic similarity measure supports dissimilarity be-
tween alerts which may increase the number of unified
alerts; each one corresponds to a few effective alerts. The
worst case is that each unified alert corresponds to only
one effective alert. In our approach, we propose to take
advantage from the semantic similarity approaches in or-
der to compare the descriptions of the alerts that have
different names. Thus, we compare senses and not words.
We propose an approach based on semantic similarity.
Given two sentences, semantic similarity gives a score
that reflects the semantic relation between the meanings
of them. The semantic similarity algorithm may take
advantage from the WordNet [35] semantic dictionary.
WordNet is a lexical database of English. English words
(Nouns, adjectives, verbs and adverbs) are grouped into
sets of synsets which are cognitive synonyms. Each synset
expresses a distinct concept. Wordnet graph’s edges are
the relations between synsets. Relations are set up by
means of lexical relations and conceptual-semantic that
results in a network of related words and concepts. These
relations vary based on the type of word. For the current
work, we limit the considered word types to nouns and
verbs and we limit the relations to the following:

For nouns: hypernyms, hyponyms, holonym, and
meronym.

For verbs: hypernym, troponym, entailment, and co-
ordinate terms.

The steps involved in the semantic similarity are the
following:

Inputs:

e Let X and Y two alerts;

e DX the sentence that correspond to the descrip-
tion of the alert X;

e DY the sentence that correspond to the descrip-
tion of the alert Y.
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Output:
e Similarity score sim(X,Y) between X and Y
Procedures:

1) If X =Y then sim(X,Y) = 1; exit!
2) Tokenization of DX and DY

e Remove the stop words;
e Remove the articles;

e Split the sentences into a list of words (to-
kens);

e We denote m to be the number of tokens of
DX, and n to be the number of tokens of
DY.

3) Identify the eventual senses of each token using
Wordnet.

4) Identify the best sense of each token. This step
takes advantage of the Word Sense Disambigua-
tion (WSD) algorithms to identify the most ap-
propriate sense of a word used in a given sen-
tence, when the word has multiple senses (pol-
ysemy).

5) Similarity sim(t;,t;) between each couple of two
senses (t;,t;) where ti is the i sense in the de-
scription of the first alert and ¢; is the jth sense
in the description of the second alert. The step
makes use of the Resnik Method as explained
later.

6) Similarity of tokens without senses. If a word
does not exist in the dictionary, such that in
the case of abbreviations and acronyms, we use
the following binary similarity measure:

_ 1 if =ty
sim(t1, t2) = { 0 Otherwise
7) Build the similarity matrix between all the to-
kens of both alerts.

8) Identify the best similarity matching: for each
token from X, identify a token from Y that
maximizes the similarities between all token of

X and Y.

9) Compute the similarity between X and Y:
~ (X,Y).

The first two steps of the algorithm are easy. Re-
garding Step 3, there are three categories of the pro-
posed techniques; the dictionary-based methods, the com-
pletely unsupervised methods, and the supervised ma-
chine learning methods based on a corpus of manually
sense-annotated examples. An example of this first ap-
proach is the Micheal Lesk algorithm [2, 23]. The ob-
jective of the algorithm is to count the number of words
that are shared between two glosses (definitions). The
more overlapping the words, the more related the senses
are. Given a word to be disambiguated, the dictionary



International Journal of Network Security, Vol.18, No.6, PP.1180-1191, Nov. 2016

definition of each of its senses is compared to the glosses
of every other word in the phrase. The sense whose gloss
shares the largest number of words with the glosses of the
other words is selected. The method begins anew for each
word and does not utilize previously assigned senses. For-
mally, given two words w; and ws, the score of each pair
of word senses S; € Senses(w;) and Sy € Senses(wz):

scoreresk (S1,52) = |gloss(S1) N gloss(S2)|

where gloss(S;) is the set of words in the definition of
sense S; of word w;. The senses that maximize the score
formula are assigned to the respective words. The Word-
Net glosses (definitions) might be used as dictionary defi-
nition database. The following pseudo code describes the
original Lesk algorithm [23].

Algorithm 1 Lesk algorithm
1: Begin
2: for every word w[i] in the alert do
3 let best_score =0
4:  let best_sense = null
5. for every sense sense[j] of w[i] do
6 let score = 0
7: for every other word w[k] in the alert, k! = I do
8
9

for every sense sensell] of w[k] do
score = score+ number of words that occur
in the gloss of both sense[j] and sensell]

10: end for
11: end for
12: if score > best_score then
13: best_score = score
14: best_sense = wli]
15: end if
16:  end for
17:  if best_score > 0 then
18: return w(i] the word w[i] has is the best sense.
19: else
20: return nil
21:  end if
22: end for
23: End
The Lesk algorithm requires the calculation of

|Senses(wn)].|Senses(ws)| gloss overlaps. In a context of
n words, we need to compute [, |Senses(wi)| overlaps,
which require an exponential number of steps. However,
this is not problematic since the unification process is of-
fline. The goal of Step 4 is to compute the similarity
sim(t;,t;) between each sense couple (t;,t;) where t; is
the ' sense in the description of the first alert and ¢;
is the j*" sense in the description of the second alert. In
WordNet, if a word has more than one sense, it will ap-
pear in multiple synsets at various locations in the graph.
WordNet defines relations between synsets and relations
between word senses. Figure 5 shows an example of the
graph generated by WordNet including nouns and verbs.

Furthermore, we take advantages from the Resnik ap-
proach [27] to compute similarity between senses. The
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approach is based on the notion of information content.
The method assumes that one criterion of similarity be-
tween two concepts is "the extent to which they share
information in common”, which in an IS-A taxonomy can
be computed by examining the relative position of the
most-specific concept that subsumes them both. An in-
formation content IC(c) of a concept c is the probability
p(c) of finding an instance of the concept ¢ in a given
corpus. Following the standard argumentation of infor-
mation theory [28], the information content of a concept
¢ can be quantified as negative the log likelihood:

1C(c) = —logp(c)

IC has a lower value for the more abstract a concept.

Regarding the similarity between concepts, Resnik
stated that, the more information two concepts share in
common, the more similar they are. That means that,
given the taxonomy graph, the shorter the path from one
node to another, the more similar they are. Thus, the
Resnik method only considers the information content
(IC) of lowest common subsumer (LCS). A LCS is a con-
cept in taxonomy (WordNet in our case), which has the
shortest distance from the two given concepts. That is,
the LCS of two synsets is the most specific common sub-
sumer of the two synsets (most specific ancestor node).
The similarity between two concepts ¢l and ¢2 is then
defined as:

sim(cl, ¢2) = —logp(les(cl, ¢2))

Note that the Resnik method assume that a root node
of the taxonomy graphs exists which is not always true
because the different top nodes of each word type taxon-
omy are not joined. For that, we create a root node that
joins all the top node of the different taxonomies. Then,
a path will certainly exist between any two concepts.

The probability p(c) of finding an instance of the con-
cept ¢ in a given corpus is calculated as the following:

ZnEW(c) count(n)

p(c) = i

where W(c) is the set of words in the WordNet corpus
whose senses are subsumed by concept ¢, and N is the
total number of word (noun) tokens in the corpus that are
also present in WordNet. Resnik used the Brown Corpus
of American English as the corpus.

Now, given two words w; and ws, the similarity be-
tween them is computed as follow:

Sim(wla w2) = MaXcies(wy),c2€5(wa) Sim(cL 62)

where s(w) is the set of concepts in the taxonomy that are
senses of word w [27]. That is, the similarity between two
words is equal to that of the most-related pair of concepts
that they denote.

Step 6 aims to build a matrix that summarizes the
similarity between the tokens of the two alerts. The result
is the similarity relative matrix R[m,n] of each pair of
token senses, R]i,j] is the similarity between the token
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Figure 5: An example of wordNet taxonomy that includes the word types noun and verb and the relation between

them. Image generated by Wordnet Editor [36]

sense i of the first alert and the token sense j of the second
alert. The matrix R is the result of similarity measures
of Steps 4 and 5.

The Step 7 is little bit tricky, the goal is to identify the
best similarity matching between all the tokens of both
alerts X and Y in a way that maximizes the overall simi-
larity scores. Computing semantic similarity between two
sentences could be formulated as the problem of comput-
ing the maximum total matching weight of a bipartite
graph. The nodes of the graph are the tokens of X and
Y and the edges are R[i,j], the weight of the edge con-
necting from token i € X to token j € Y. Let G denotes
such a graph. The graph is often non balanced bipartite
graph since the number of tokens in the first alert is of-
ten not equal to the number of tokens of the second alert
(IX] #1Y]). Also, the graph is a complete bipartite graph
because for any two vertices i € X,j € Y, ij is an edge
in the graph G. The goal of the maximum total matching
weight of a bipartite graph is to find a matching M in
G which maximizes, over all possible matching, the total
amount, (M) = >_,..,, R, j], of cost consummated by
M. The maximum total matching weight of a bipartite
graph could be formulated as an assignment problem [5].

The assignment problem consists on a number of agents
and a number of tasks. Any agent can be assigned to per-
form any task for a certain cost. The goal is to perform all
tasks by assigning exactly one agent to each task in such a
way that the total cost is minimized. The main difference
between the maximum total matching weight of a bipar-
tite graph and the assignment problem is that the first
problem tries to find the matching that maximizes the
cost and the last problem tries to find the optimal assign-

ment that minimizes the cost. One famous algorithm that
could solve the assignment problem, in polynomial time of
the number of nodes of X, is the Hungarian algorithm [22].
However, the method requires two firm conditions:

(1)
(2)

linear assignment problem : |X| =Y
the goal

is to minimize the overall cost

The first condition imposes that the number of agents and
tasks are equal which means that the number of token in
X must be equal to the number of tokens in the second
alert. This problem could be overcome by adding dummy
tokens in the small token set with minimum cost 0 (see
Figure 6).

Whereas, the second condition impose a minimization
problem of the cost which is in contrast with our goal
to maximize the overall similarity, two hints exist that
allow using the Hungarian method for a maximization
problem [9]. The first is to multiply the matrix R by —1.
The second method suggest to replace each element R;;
by maxz(R) — R;j. Where maz(R) is the maximum value
that exist in R. Since the elements of R are probabilities,
the transformation will be reduced to R;; = 1 — R;;.

The last Step 8 allows to compute the total similarity
score sim(X,Y). This is done by combining the match
results of the previous step into a global similarity score
for both alerts X and Y:

min(|DX|,|DY)
2% ZmGDX,yEDY

|DX| + |DY|

sim(z,
sim(X,Y) = Sit)

This global similarity is deduced by dividing the sum of
similarity scores of all match tokens of both sentences X
and Y (Step 7) by the total number of both tokens.
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Figure 6: Best matching problem. wi are the token senses
of the first alert W, h; are the token senses of the second
alert H. Since |W| < |H|, a dummy node d; is added in
H. The edges oriented to d; have cost 0.

6 Classification of New Alert Sig-
natures

When a new alert signature A, is added to the alert set
of a given alert set S;. The alert A, is compared to the
list of unified alerts U except the alerts that have a cor-
responding alert in S;. This is because two alerts in S;
could not be similar and indeed they could not have the
same unified alert.

If the alert A, is similar (the similarity measure is
above the threshold ST defined in Step 3 of Section 4)
to one or more unified alerts, then let u; the unified alert
that has the maximum similarity measure. The unifica-
tion matrix is updated to set u; as the unified alert cor-
responding to A,. When a new IDS type is added to the
architecture of the DIDS, the algorithm of Section 4 must
be applied to the new alert set of the new IDS type. The
Algorithm must take as input the unified alert set U and
the new alert set.

7 Solving Alert Similarity Ambi-
guity

In Section 3, when wu, is a unified alert of several even-
tual alerts from the same alert set S;, one cannot choose
the alert from S; with highest similarity because the dif-
ference between the selected alerts of S; is minimal. An
incorrect alert classification could lead to severe conse-
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quences. However, one of the selected alerts of S; is ap-
propriate since their similarity values are above the hard
threshold.

The two alert sets and the similarity relation between
their alerts can be described as a bipartite graph G =
(U,V,E). U and V denote the two partition nodes and
E denotes the edges between U and V. In our case, U is
the unified alerts and V is the alerts of S;. E is the simi-
larity relations that exists between the alerts. G is bipar-
tite since there is no edge connecting two nodes from the
same partition. That is, the similarity relation is defined
between the alerts of U and the alerts of V. Formally, for
every edge uwv € E,u € U andv e V.

Figure 7 shows an example of alert similarity ambiguity
formulated as a bipartite graph. The unified alert us is
similar to a1, as and as, whereas, the alert ay is similar
to both alerts us and us. To resolve the ambiguity, each
unified alert must correspond to only one alert. A good
approach is to select the maximum edges possible in a
way that each unified alert is similar to only one alert in
S;.

The ambiguity resolution problem could be reduced to
finding a set of pairwise non-adjacent edges denoted M.
That is, no two edges share a common node. M must con-
tain the largest possible number of edges. This problem
is called the maximum matching graph problem or the
maximum independent edge set problem.

Figure 7: The alert similarity ambiguity is formulated as
a bipartite graph. The left set contains the unified alerts
and the right set contains the ambiguous alerts of S;.

The Hopcroft-Karp algorithm [18] can solve the max-
imum matching problem for bipartite graph as shown in
Algorithm 2.

The operator © used for two sets is the symmetric dif-
ference. Once the maximum matching M is found, the
remaining unmatched alerts ru will be considered as new
unified alerts. Formally, ru =14 :¢ € Vandui ¢ M.
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Algorithm 2 The Hopcroft-Karp algorithm

1: Input: — G = (U, V, E) a bipartite graph
2: Output: — The maximum matching M of G
3: Begin
4:M:®,U0:U,V0:V
5. while Uy # 0 do
6: Lo=Uy,kx:=k:=0
7. while Ly #0 do
8: construct a layered graph:
9: for all i € L; do
10: Ni:jiijEE\M,j€L1UL2U~~~Lk_1
11: end for
12: Ly = UieLkNi
13: if Lyy1 =0 then
14: return M
15: end if
16: if Lk+1 N Vo 7é 0 then
17: k*=k+1
18: L}g+2 =10
19: else
20: Lk+2 =1 i/j €M,j € Ly
21: end if
22: k:=k+2
23:  end while
24:  delete all vertices in L« \ Vg
25:  mark all remaining vertices as unscanned
26:  k:=1: path counter
27:  while Ly # () do
28: ,’EOZiELQ,LOZLo\i,ZZZO
29: while [ > 0 do
30: while z; has unscanned neighbor in L;;; do
31: Choose unscanned neighbor x;41
32: Mark 2741 as scanned
33: l:=1+1
34: if | =k* then
35: PkZ(xo,xl,...,Jik*);k:k—l—l
36:
37 end if
38: end while
39: if [ < k* then
40: l:=1-1
41: else
42: l:=-1
43: end if
44: end while
45:  end while
46: P = (Pl,PQ,...,Pk_l)
a7 M =MoP

48:  Update Uy, Vp of unmatched vertices
49: end while

50: return M

51: End

8 Performance Analysis

The complexity of the unification process is not a big
issue since the process will run offline. However, this
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section will show that the time complexity of the pro-
cess is acceptable. Suppose that there are n monitor-
ing sensors, each sensor has m alerts, each alert has an
average of p tokens, and each token has an average of
q senses. The complexity times of the alert unification
is: ¢ = c(indexation) + c(tokenization) + c¢(Lesk) +
¢(Resnik) + c(Hungarian) + c¢(Hoperoft — Karp).

The complexity of the indexation step is proportional
to the number of alerts (n¥m). The tokenization performs
an average of p steps for each alert which requires a linear
time complexity. Lesk algorithm is applied for each alert
and requires qp steps for each alert (O(n * m * p x gp)).
The Hungarian algorithm runs in polynomial time O(p4)
for each alert, and O(n * m * p4) for all the alerts. The
Hopcroft-Karp will run occasionally when the alert sets
include ambiguities. The time complexity of the algo-
rithm is O(|E|/|V]) in the worst case where the E is the
set of the edges and V is the set of nodes of the bipartite
graph.

The time complexity of Lesk algorithm is the biggest
complexity O(n x m * p *x gp). However, in real world
scenarios, the alerts has about ten tokens, each token has
an average of 3 senses [37]. The time complexity of Lesk
algorithm is good enough. The overall complexity of the
unification process is polynomial.

9 Conclusions and Future Works

The paper has stated the importance and the current uses
of the distributed monitoring systems and their current
challenges. The problem of heterogeneity of alerts raised
by different sensors is widely discussed in the literature.
We introduced an approach of an automatic alert unifi-
cation system that deals with heterogeneous alert signa-
tures. The result is a set of unified alerts. The method
used advanced linguistic models and optimization mod-
els in order to perform a semantic comparison between
alerts. The method resolved also the problem of ambi-
guity of very similar alerts using an efficient optimization
method.

A number of works still opened for future investiga-
tions. Regarding the current work, the performance re-
sults are acceptable for an offline alert unification. How-
ever, there are several monitoring systems that generate
unpredictable alert signatures and the alert unification
would be done on the fly. The current unification method
should be adapted to such scenarios. Second, the paper
solves the problem raised by the introduction of a new
alert and how to know if it belongs to an existing uni-
fied alert. But what about feeding several new alerts at
the same time? Is there any method that is faster that
processing the new alerts one by one?
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