
International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 295

SecureCoin: A Robust Secure and Efficient
Protocol for Anonymous Bitcoin Ecosystem

Maged Hamada Ibrahim
(Corresponding author: Maged Hamada Ibrahim)

Department of Electronics, Communications and Computers, Faculty of Engineering, Helwan University

No. 1, Sherif St., Helwan, P.O. 11792, Cairo, Egypt

(Email: mhii72@gmail.com, maged ismail@h-eng.helwan.edu.eg)

(Received Jan. 19, 2016; revised and accepted Apr. 7 & Apr. 25, 2016)

Abstract

Bitcoin is the first decentralized peer-to-peer electronic
virtual asset and payment cryptocurrency, through which,
users can transact digital currency directly, without the
need for an intermediary (or authority), using a hashed
version of cryptographic public keys, as pseudonyms
called addresses. The Bitcoin ecosystem was supposed
to be anonymous and untraceable. However, transactions
from input to output addresses of the Bitcoin users are
observed to be linkable, therefore, missing unlinkability
as an important requirement of anonymity. Several pro-
tocols appeared to enhance Bitcoin users’ anonymity and
to ensure unlinkability of input-output addresses, to make
input and output addresses of transactions unlinkable to
each other, and hence untraceable. In this paper, we spot
several vulnerabilities in the most recently proposed pro-
tocols, then we propose SecureCoin as an efficient protocol
for anonymous and unlinkable Bitcoin transactions that
covers these vulnerabilities in a robust and secure way and
in full compatibility with the standard Bitcoin ecosystem.
Our protocol provides better protection for the participat-
ing peers against malicious behavior of minority of the
peers and protection against the most serious sabotage
attack attempted by any number of saboteur peers. We
analyze the security properties of our protocol and eval-
uate its efficiency. Finally, we compare the performance
of our protocol with the recently proposed protocols and
show that our protocol is computationally efficient and
requires less Bitcoin fees.

Keywords: Anonymity, bitcoin, cryptocurrency, ECDSA,
oblivious shuffling, silk road, unlinkability

1 Introduction

Bitcoin is a decentralized electronic currency protocol,
that realizes worldwide of fast peer-to-peer transactions,
and consequently payments with low, or near zero, trans-
action processing charges. In order to avoid the depen-

dency on a central trusted authority charged with the is-
suance and control of currency, Bitcoin functions through
a peer-to-peer topology. In this ecosystem, it is not possi-
ble to manipulate the value of the digital coins (bitcoins)
or produce inflation through the overproduction of cur-
rency. Transactions and the creation of bitcoins are man-
aged by the network itself; the creation of digital coins in a
controlled and decentralized manner through the process
known as mining. Cryptographic primitives guarantee the
security of transactions. Coins can only be spent by the
owner of their pseudonyms, and they can only be used in
a single transaction with no chance of duplication. The
supervision and management institutions that operate in
traditional trusted centralized systems do not exist for
Bitcoin [2].

Of the participants in the Bitcoin system, two – not
necessarily mutually exclusive – groups can be distin-
guished:

Normal users. Users of the Bitcoin system who buy
or sell for goods and services with coins, producing
transactions in the system.

Miners. Special users who dedicate computing power to
verify new transactions, creating what are known as
transaction blocks. The calculations required to do
this are expensive in computing power, which is why
these users are rewarded.

1.1 Bitcoin Components and Processes

Bitcoin addresses. This is a user’s digital address, also
called pseudonym, which contains coins and which
is used to make and receive transactions, similar to
a bank account. A given user may have as many
addresses as he wishes, and they are identified by
a public key. Bitcoin uses the ECDSA (Elliptic
Curve Digital Signature Algorithm) to sign its trans-
actions, using parameters recommended by the Stan-
dards for Efficient Cryptography Group (SECG),
secp256k1 [5]. The signatures use DER encoding.

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 296

ECDSA offers many advantages over other digital
signature systems (e.g. RSA and DSS) which make
it ideal to be used for a distributed Internet protocol.
ECDSA provides relatively short keys and signature
lengths, and a faster generation and verification. On
being identified by the ECDSA public key, all the
operations carried out with this address have to be
supported by the use of the corresponding private
key. The holder of the private key is the owner of the
coins associated with the corresponding address.

Wallets. Personal virtual storage, similar to a physi-
cal/pocket wallet, where users’ coin addresses and
the payments made with them are stored and man-
aged. Wallets are thus a grouping pairs of public and
private keys and are used to carry out other tasks,
for example, preparing transactions.

Transactions. A transaction is the transfer of coins
from Bitcoin input address I to another out-
put/destination address D. To create a transaction,
the owner of address I signs a transcription for ad-
dress D (amongst other data) with the private key
associated with address I, so that the whole network
knows that the new legitimate owner is the owner of
address D. There are three main types of Bitcoin
transaction forms [2] that will be used in our Secure-
Coin protocol:

• One-to-one form. A commonly used form of
transaction is a simple payment from one ad-
dress to another, which often includes some
change returned to the original owner. This
type of transaction has one input and one out-
put if no change is returned, or in general, one
input and two outputs.

• Aggregation form. Another common form of
transaction is a transaction that aggregates sev-
eral inputs into a single output. This represents
the real-world equivalent of exchanging a pile of
coins and currency notes for a single larger note.
Transactions like these are frequently generated
by wallet applications to clean up lots of smaller
amounts that were received as change for pay-
ments, by transferring them to a new fresh ad-
dress owned by the same user.

• Distribution form. Another transaction form
that is seen frequently on the Bitcoin ledger is a
transaction that distributes one input to mul-
tiple outputs representing multiple recipients.
This type of transaction is sometimes used by
commercial entities to distribute funds, such as
when processing payroll payments to multiple
employees.

Blocks. This is a structure that aggregates transactions.
Transactions whose confirmation is pending are ag-
gregated together as a block in a process which is
known as mining.

Blockchain (Ledger). This is the public record of ver-
ified Bitcoin transactions in chronological order.
When a block has been checked and confirmed,
through mining, it is included as part of the chain.

Cryptographic hashes. In the hash calculations car-
ried out in Bitcoin, the SHA-256 standards are used,
and when shorter hashes are required, RIPEMD-160.
Normally the hash calculations are carried out in
two phases: the first with SHA-256, and the second,
depending on the length desired, with SHA-256 or
RIPEMD-160.

Random numbers and nonces. In Bitcoin, random
numbers and nonces are used directly in the forma-
tion and generation of blocks. To make a new block,
a random number that satisfies certain requirements
needs to be found. Random numbers are also indi-
rectly used in Bitcoin as part of the digital signature
algorithm (ECDSA).

Proofs-of-work. Proofs-of-work are the main compo-
nent guaranteeing the legitimate behavior of Bit-
coin network. The idea ”in brief” is that, verify-
ing/calculating new transaction blocks ensures a high
computational cost, such that to control the network
and to regulate the rate at which new coins are gen-
erated. This control of complexity in the calculation
of new blocks is carried out by requiring that the
hash for each new block starts with a given num-
ber of zeros. This required number of zeros controls
the difficulty and hence the rate at which new coins
are generated. Older block data and a nonce are
combined to calculate this hash. Given that crypto-
graphic hash functions are not invertible, in order to
find a new valid block the only alternative would be
to obtain different nonces until one which fulfills the
pre-established requirement is found.

1.2 The Linkability/Traceability Prob-
lem

As the authors in [36] pointed out, it is possible to dis-
cover the identity of someone who makes a transaction in
Bitcoin through traffic analysis and tracing of users IP’s.
Owing to Bitcoin’s design, the first person to publicize a
transfer will probably be the payer. Therefore, discover-
ing who the first person to publicize it was, will permit in
all probability to know who the payer in the transaction
and who the owner of the input addresses used are.

Another type of analysis, which stands out, is that
based on the relations which may be established between
addresses. Various studies have developed heuristics to re-
duce the degree of anonymity of Bitcoin users [1, 30]. For
example, the authors in [1] estimate that approximately
40 percent of Bitcoin users could be identified using the
heuristics set out in the study. A striking result, obtained
by applying this type of measure, is that published in [30],
in which a relation between the founder of Silk Road and

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 297

someone who was probably one of the creators of Bitcoin
was established. The tracing capability shown by the re-
searchers remains completely valid.

The above mentioned traceability problems are due to
the fact that the input and output addresses of the Bit-
coin users are linkable by one way or another. There-
fore, protocols to enhance Bitcoin users’ anonymity, en-
suring unlinkability of input-output addresses, must be
provided. Based on what are known as mixing services [7],
recently, some efforts have been made towards overcom-
ing the above attacks and providing stronger privacy to
the Bitcoin users by mixing multiple transactions to make
input and output addresses of transactions unlinkable to
each other. In this direction, some third-party Bitcoin
mixing services were first to emerge, but they have been
prone to thefts.

2 Previous Work

Among the early proposals, to provide unlinkability be-
tween individual Bitcoin transactions, without introduc-
ing a trusted party, is the ZeroCoin scheme of [31], which
is an extension to Bitcoin. It employs a cryptographic
accumulator of minted zero-coins and a zero-knowledge
proof of inclusion of a certain zero-coin within the accu-
mulator. ZeroCoin suffers from significant computation
and communication overheads where, the size of the proof
that has to be stored in the blockchain for each transac-
tion is prohibitively large and far exceeds the size of the
Bitcoin transaction itself. The scheme is considered in-
compatible with the standard Bitcoin ecosystem. Later,
several contributions were aiming to reduce the ZeroCoin
overheads [12, 17, 38]. However, all these schemes require
a modification to the Bitcoin standards and hence, they
are incompatible with Bitcoin and are unlikely to be ac-
cepted for implementation as mentioned in [40].

Anonymous Bitcoin payments are facilitated in the
MixCoin scheme [6]. This scheme does not make any mod-
ifications to the standard Bitcoin protocol. Central ac-
countable mixing server is employed, where Bitcoin users
send their coins. The center in turn, replies with a guar-
antee of returning the funds to the user. This strategy
ensures unlinkability between the user’s input and output
addresses, since, the mix sends the coins back to the user.
However, using this strategy, the decentralized property
(the main property of Bitcoin) is eliminated. Unlinkabil-
ity is only guaranteed against external observers, because
the mixing server learns which address belongs to which
user.

A modification to the CoinJoin protocol using blind
signatures in the work of [29] avoids the problem of a
centralized mix learning the relation between input and
output addresses. The anonymous communication net-
work, ”Tor” [13] is employed in [29] to avoid centralized
mixing and to provide unlinkability.

The CoinShuffle protocol in [37], employs the group
transactions service in Bitcoin to ensure correctness and

thus shares almost the same disadvantages with Coin-
Join, i.e., limited anonymity levels and potential trans-
action fees. CoinShuffle improves over CoinJoin by using
decryption mixnets for address shuffling which achieves
anonymity against insiders. However, in CoinShuffle the
last peer is in the unique position to determine the out-
come of the shuffling and might exploit this to select pre-
ferred input addresses to her own output addresses. Our
scheme – although employs a shuffling subroutine – does
not suffer this disadvantage, since all the coins are trans-
fered and committed to an aggregation temporary address
before the result of the shuffling is announced.

2.1 Recent Protocols

The most recent protocol (until the time this paper was
written) is CoinParty [40], which invokes the thresh-
old ECDSA digital signature protocol of [25] and em-
ploys mixing peers to provide unlinkability for the Bitcoin
ecosystem. They introduced an elegant idea of commit-
ting each input peer to a temporary Bitcoin address where
the signature key of this address is jointly shared among
the mixing peers on a threshold bases. Each input peer Pi
must first transfer the coins x from his input address Ii to
a temporary address Ti, controlled by the mixing peers.
This strategy commits the input peers to the transac-
tions. Next, after all transactions are confirmed, the mix-
ing peers are responsible for mixing (shuffling) the output
addresses and broadcast the shuffled version. Finally, the
peers join to sign a transaction from every temporary ad-
dress Ti to every shuffled output address Oπ(i). The work
in this paper is inspired by the CoinParty and the Coin-
Shuffle protocols.

2.2 Existing Vulnerabilities

The work in this paper is motivated by the security vul-
nerabilities and efficiency drawbacks of recent protocols
described next.

CoinParty. Considering CoinParty protocol [40], the
employed mixing peers are different from the input
peers, therefore, a major drawback is that, once the
input peers transfer their coins to the temporary ad-
dresses owned by the mixing peers, saboteur mix-
ing peers may runaway (due to halting or disconnec-
tion) leaving the coins of the input peers stuck in
the temporary addresses with absolutely no way to
return them back. The consequences are disastrous
if the number of disconnected mixing peers exceeds
a certain threshold required to jointly sign a trans-
action. Moreover, they can easily conspire to steal
the coins. In CoinParty, the mixing peers have no
financial shares (coins) in the mixing protocol, there-
fore, they will not loose anything if they attempt such
sabotage attack. In other words, they do not care if
the input peers loose their coins. Notice that the
signing keys of the temporary addresses are shared
among the mixing peers on threshold basis. Hence,

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 298

if enough number of mixing peers leave, the signing
keys are lost. Moreover, they most probably will not
tend to participate without incentives (return fees),
similar to the Bitcoin miners in a standard Bitcoin
ecosystem, which increases the fees paid by the input
peers. A serious efficiency drawback in CoinParty is
that, the protocol requires the mixing peers to in-
voke the threshold ECDSA key generation protocol
and the threshold ECDSA digital signature protocol
for every temporary address. Invoking the threshold
ECDSA for every temporary address results in a rel-
atively high computation complexity for each mixing
peer, specially, if these protocols are supposed to run
on mobile devices. Moreover, the threshold ECDSA
they invoked is in the honest-but-curious scenario,
giving a great chance for undetected malicious be-
havior by the peers due to a corruptive adversary.
The authors stated that the protocol must be imple-
mented to withstand malicious behavior.

CoinShuffle. CoinShuffle protocol [37] employs the idea
of multiparty private shuffle [7, 10, 15, 32]. The
problems with the CoinShuffle protocol are as fol-
lows: In order to prevent malicious peers from abort-
ing the protocol after they have received their funds
thereby leaving another peer unpaid, the protocol
performs a single atomic bulk transaction from all
input addresses to all shuffled output addresses at
once. Although this strategy is better than Coin-
Party to protect against sabotage attacks, the result-
ing anonymity set of the mixing is limited to the num-
ber of users participating in a particular mixing op-
eration. Also, this bulk transaction makes the peers
easily identifiable on the Bitcoin ledger, since it is
very rare and almost unused for other purposes. The
transaction itself is of large size and hence, dramati-
cally increases the return fees to the Bitcoin miners.
Another problem is that, at the end of the shuffling
protocol, one peer knows all the output addresses in
the clear, including his own, and this knowledge is be-
fore the shuffled addresses are known to other peers.
This gives a great chance to this peer to reorder the
output addresses in a certain way that he can benefit
from.

3 Our Contribution

We propose SecureCoin, as a protocol fully compatible
with the Bitcoin ecosystem, to realize anonymity and un-
linkability security services to Bitcoin peers. Unlike Coin-
Party, our protocol does not involve any separate mixing
peers as helpers and hence, it is possible to avoid sab-
otage attacks that could be attempted by mixing peers.
Only the input peers are the participants in the protocol.
Our protocol uses the inherited ”aggregation” and ”dis-
tribution” transactions forms of the Bitcoin and hence,
improves complexity of running multiple instants of a

threshold digital signature protocol by reducing to only
one instant.

SecureCoin protocol improves security and efficiency
over the CoinShuffle protocol, such that, it avoides bulk
transaction from multiple input addresses to multiple out-
put addresses. Also, it solves the CoinSuffle problem of al-
lowing a particular peer to control mapping of certain in-
put addresses to certain output addresses. The proposed
SecureCoin protocol provides protection against sabotage
attacks, attempted by any number of participating sabo-
teurs.

The proposed SecureCoin is robust against malicious
behavior of minority (one third) of the participating peers.
It does not allow any number of participating saboteurs
to maliciously behave without either, being detected and
revoked, or loosing their input coins. The behavior of the
participating peers is indistinguishable from other normal
transactions and hence, cannot be distinguished by miners
and ledger observers.

We analize the security properties of SecureCoin, eval-
uate its performance and compare to recently proposed
protocols. We show that, SecureCoin is more efficient
and requires less fees by the Bitcoin ecosystem.

4 System Model

In this section, we describe the assumptions, model and
goals of the protocol presented in this paper.

4.1 Assumptions and Model

We assume the existence of n peers, P1, · · · , Pn, where
n > 3t and t ≥ 1 is a particular predefined threshold.
There is at most t possible malicious peers. We assume
a static adversary model, yet, security against adaptive
adversary could be achieved by employing a suitable non-
committing encryption scheme. Also, security against co-
ercive adversaries could be realized by employing a suit-
able deniable public key encryption scheme (e.g. [22, 23]).

Each peer has his own public/private key pair. These
keys allow the peers to realize authenticated and private
channels among themselves. We emphasize that, these
keys are different from the ephemeral public/private keys
used in the shuffling stage of our protocol. Given a certain
threshold t, we assume that there is at least n = 3t + 1
peers that survive till the end of the protocol with at
most t of them may behave maliciously [11, 25]. We use
n to refer to the number of peers remaining after the
execution of any phase in our protocol. In our protocol,
there are four different classes of public/private key pairs
for a public key cryptosystem, each peer holds:

1) The personal public/private key pair to realize pri-
vate and authenticated channels with other peers.

2) The ephemeral public/private key pair for the obliv-
ious shuffling stage.

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 299

3) The partial signature key corresponding to the ag-
gregation address A.

4) The key pairs for his bitcoin pseudonyms (input and
destination addresses).

4.2 Problem and Goals

We solve the problem where n peers, P1, · · · , Pn (each
peer Pi has a certain amount of x coins available at in-
put address Ii) want to transfer that amount from the
set of input addresses I1, · · · , In, to a set of destination
addresses, D1, · · · , Dn, such that,

Correctness/safety. Each peer Pi receives back x coins
on his destination address Di. Coins must not be
lost, stolen, or double-spent by any peer even in
the presence of a malicious adversary. Honest peers
should receive their funds in a timely manner.

Anonymity. Input and destination addresses are unlink-
able, i.e., only peer Pi can map his own input address
Ii to his own destination address Di.

Protection against saboteurs. Participating peers
may be accidentally or deliberately halted (or
disconnected) from the network at any stage of the
protocol. We argue that, if such sabotage occurs,
then all peers must be equally affected. This type of
attack may occur easily due to a halting adversary
and is easier than corruptive attacks that requires
collaboration of peers in harmony in order –for
example– to steal other peers coins. In sabotage
attacks, we have two situations: The number of
saboteurs do not exceed the threshold t. In this
case according to secure multiparty computations
(SMC) settings, the protocol execution continue
normally. The other situation is when the threshold
is exceeded and the disconnected peers do not
reconnect. This case is really disastrous. As the
threshold is exceeded, the SMC protocol will be
terminated. Some peers will loose their coins for
ever while others may abort without any loss. Our
objective in this case is to ensure that, disconnected
peers, at any phase of the protocol, will suffer the
same amount of loss as the other participating peers.
This motivates disconnected peers to rejoin the
protocol execution to save their coins. CoinShuffle
effectively withstands saboteurs, since it is not based
on threshold cryptosystems and the shuffled transfer
of funds is made in a one n-to-n bulk transaction.
On the contrary, CoinParty is vulnerable to this
attack, as stated earlier, due to the incorporation
of mixing peers, that have no financial share in the
protocol, other than mixing fees as incentives. We
conclude that a protocol must be designed such
that, any attempt of sabotage attack by any number
of participating saboteur peers at any stage of the
protocol must cost them the same amount of lose as
other participating peers.

Robustness & Revocation. Any malicious behavior
attempted by any peer must be detected as early as
possible, this malicious peer must be identified and
kicked out (revoked) from the protocol, without af-
fecting the good peers progress in the protocol.

Indistinguishability. The transactions performed by
the peers incorporated in the anonymous protocol,
must not be distinguished from normal Bitcoin trans-
actions, performed by individual peers.

Unforgeability. An adversary must not be able to cre-
ate a pair consisting of a message (Bitcoin transac-
tion), m and a signature that is valid for m, that has
not been generated by a legitimate signer and that
passes the verification of the Bitcoin ecosystem.

Fairness. A participating peer that deposit his coins in
the aggregation/temporary address must receive his
coins, either in his destination address, or returned
back to his input address in case he was kicked out
of the protocol due to a malicious behavior.

Performance. The protocol should scale to large num-
bers of peers without imposing prohibitive overheads
upon the Bitcoin network.

Compatibility. The mixing protocol must be fully com-
patible with the current Bitcoin network and produce
legitimate Bitcoin transactions.

Cost efficiency. The protocol must be cost-efficient in
terms of involved transaction fees.

5 Preliminaries and Basic Tools

In this section, we give an overview of a bunch of basic
tools, necessary to build our SecureCoin protocol. These
tools are partitioned into two categories: threshold cryp-
tography tools and shuffling tools. The reader needs to be
familiar with these tools in order to follow the description
of our SecureCoin scheme. First we give an overview on
the elliptic curve used in the Bitcoin ecosystem and the
standard ECDSA algorithm, then we describe the cryp-
tographic tools employed by SecureCoin.

5.1 Elliptic Curves for the Bitcoin

Standardized elliptic curves that are used most commonly
in real-world applications are mostly given in their short
Weierstrass form, E : y2 = x3 + ax + b and are de-
fined over a finite field Fp, where p > 3 is a prime and
a, b ∈ Fp. For non-singular curves, there is a require-
ment that, 4a3 + 27b2, is non-zero. Given such a curve
E, the cryptographic group that is employed in proto-
cols is a large prime-order subgroup of the group E(Fp)
of Fp-rational points on E. The group of rational points
consists of all solutions (x, y) ∈ F2

p to the curve equation,
together with a point at infinity, denoted by O, the neu-
tral element. The number of Fp-rational points is denoted

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 300

by #E(Fp) and the prime order of the subgroup by q. A
fixed generator of the cyclic subgroup is usually called the
base point and denoted by G ∈ E(Fp).

For 256-bit primes, in addition to the NIST curve de-
fined over Fp256 , SEC2 also proposes a curve named
secp256k1 defined over Fp where p = 2256 − 232 − 977.
This curve is the one used in Bitcoin [5].

There are three basic point operations on elliptic
curves.

1) Point addition: Let P1 ∈ E(Fp) and P2 ∈ E(Fp),
then, P3 = P1 + P2 mod p is also a point on the
elliptic curve, that is, P3 ∈ E(Fp).

2) Point doubling: Let P ∈ E(Fp), thenQ = 2P mod p
is a point doubling operation where Q ∈ E(Fp).

3) Scalar multiplication: Let k ∈ Zq and P ∈ E(Fp),
then, Q = kP mod p is the process of adding P to
itself k times, where Q ∈ E(Fp). This process is
performed through the well-known double-and-add
operations.

5.2 Elliptic Curve Digital Signature

The Elliptic Curve Digital Signature Algorithm (ECDSA)
was standardized in FIPS 186-41. The signer generates a
key pair (s,Q) consisting of a private signing key s ∈R Z∗q
and a public verification key, Q = sG mod p, where G is
the generator point. To sign m, the signer chooses a per-
message random integer k ∈R Z∗q , computes the point
(x, y) = kG, and computes r = x mod q. The signature
of a message M , is the pair (r, w), of integers modulo q,
where w = k−1(m+ sr) mod q and m is the hash of M .

It is important that the per-message secret k is not
revealed, since otherwise the secret signing key s can be
computed by s = r−1(kw − m) mod q, because r and
w are given in the signature and m can be computed
from M . Even if only several consecutive bits of the per-
message secrets for a certain number of signatures are
known, it is possible to compute the private key (see [26]).
Also, if the same value for k is used to sign two different
messages M1 and M2 using the same signing key s and
producing signatures (r, w1) and (r, w2), then k can be
easily computed as k = (w1 − w2)−1(m1 − m2) mod q,
which then allows recovery of the secret key.

5.3 Threshold Cryptography Tools

In this subsection, we review the threshold cryptogra-
phy tools that will be used in building our SecureCoin.
All theses tools are based on the well-known polyno-
mial/Shamir’s secret sharing scheme. We describe the
elliptic curve version of these tools, in order to be directly
applied for the implementation of SecureCoin.

1PUB FIPS. 186–2. digital signature standard (dss). US depart-
ment of commerce/national institute of standards and technology.

5.3.1 Polynomial Secret Sharing

Consider a secret value, s ∈ Zq which is held by a dealer,
where Zq is a prime field. To share this secret among a
set P = {P1, · · · , Pn} of n > t participants, where t is
a certain threshold, the dealer constructs a polynomial
g(x) =

∑t
j=0 ajx

j mod q, he sets a0 = s and each other
coefficient aj 6=0 ∈R Zq. ∀i = 1, · · · , n, the dealer secretly
delivers g(i) to participant Pi. To reconstruct the secret s,
each participant Pi ∈ P broadcasts g(i), the participants
compute s from any t + 1 shares using Lagrange inter-
polation formula, s = g(0) =

∑
i∈B λig(i) mod q where

B ⊂ P, |B| = t + 1 and, λi = Πj∈B,j 6=i
j
j−i , is participant

Pi’s Lagrange coefficient.

5.3.2 Elliptic Curve Verifiable Secret Sharing

Verifiable secret sharing (VSS) is an extension to poly-
nomial/Shamirs secret sharing to allow the recipients of
the secret shares to verify that the shares are consistent
(i.e., that any subset of t + 1 shares interpolate to the
same unique secret). Assuming n ≥ 2t + 1, the scheme
tolerates the malicious behavior of at most t of the n par-
ticipants. Two different types of VSS are distinguished;
the conditionally secure scheme due to Feldman [14] and
the unconditionally secure scheme due to Pedersen [34].
For best security, both of them will be used in our Secure-
Coin protocol. We present an overview of these subrou-
tines over elliptic curves.

EC Feldman-VSS. Let p and q be two large primes,
such that q|p − 1. The two primes p and q and
the base point (EC generator point) G of order q
are published as the system public parameters. The
dealer shares the secret s among the participants
on a t-degree polynomial g(x) =

∑t
j=0 ajx

j mod q,
the dealer also broadcasts the t + 1 commitments
Cj = ajG mod p ∀j = 0, · · · , t. These commitments
allow each participant Pi to verify the consistency of
his share g(i) by checking that, g(i)G =

∑t
j=0 i

jCj
mod p. If this check fails for any share g(i), Pi broad-
casts a complaint. If more than t participants broad-
casted a complaint, then at least one of them is hon-
est, therefore, the dealer is deemed corrupt and dis-
qualified. Otherwise, the dealer broadcasts the share
g(i) of each complaining participant Pi, if the share is
consistent, Pi is disqualified, otherwise, if the share
is inconsistent with the commitments or the dealer
does not respond, then the dealer is disqualified. In
the reconstruction phase of the secret, all the par-
ticipants are able to check the validity of the share
broadcasted by any of the other participants by ver-
ifying with the published commitments to filter out
inconsistent shares and safely perform the Lagrange
interpolation. When it comes to the distributed gen-
eration of a secret key s and the joint computation
of sG mod p, Feldman-VSS alone is not secure due
to the attacks attempted in [19, 24].

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 301

EC Pedersen-VSS. The trick is to perform double ex-
ponentiation to allow randomization of the broad-
casted commitments. The public parameters in this
VSS are p, q and G as in Feldman-VSS and another
generator point H, subject to the condition that
logGH is unknown and assumed hard to compute.
In addition to the polynomial g(x) =

∑t
j=0 ajx

j

mod q with the secret s as the free term, the dealer
constructs another polynomial as a randomization
t-degree polynomial r(x) =

∑t
j=0 bjx

j mod q. He
secretly delivers (g(i), r(i)) to participant Pi ∀i =
1, ..., n. The dealer also publishes the commitments
Cj = ajG+ bjH mod p ∀j = 0, · · · , t. Each partici-
pant Pi is able to verify the consistency of his share
g(i) by checking that, g(i)G + r(i)H =

∑t
j=0 i

jCj
mod p. If this check fails for any share g(i), Pi broad-
casts a complaint. If more than t participants broad-
cast a complaint, then at least one of these partici-
pants is honest about his complaint and the dealer
is disqualified. Otherwise the dealer broadcasts the
pair (g(i), r(i)) for each complaining participant Pi,
if the pair is consistent, Pi is disqualified, otherwise,
if the pair is inconsistent with the commitments or if
the dealer does not respond, then the dealer is dis-
qualified. During reconstruction, any participant can
verify the validity of the share broadcasted by any
other participant via the published commitments to
reject invalid shares and correctly computes the in-
terpolation.

5.3.3 Joint Secret Sharing

Joint secret sharing are schemes to allow the participants
to jointly share a secret among themselves in the absence
of a dealer.

Joint random secret sharing (JR-SS). JR-SS [26]
allows a set of n participants to jointly share
a random secret among themselves without the
assistance of a dealer. Each participant Pi ∈ P
chooses a random integer ki ∈ Zq and plays the
dealer’s role to share ki among the participants
over a t-degree polynomial gi(x) = ki +

∑t
j=1 ajx

j

mod q. Each participant Pi ∈ P simply sums the
shares he receives from the other participants to
compute a share g(i) =

∑n
j=1 gj(i) which is a point

on a t-degree polynomial g(x) with its free term
equals a random secret k =

∑n
i=1 ki mod q.

Joint random verifiable secret sharing (JR-VSS).
To withstand malicious behavior of at most t < n/2
participants during the JR-SS, JR-VSS combines
JR-SS with Feldman or Pedersen-VSS. In this
scheme, each participant Pi ∈ P chooses a random
secret integer ki ∈ Zq and plays the dealer’s role
in the VSS protocol to share this secret among the
other participants. Complaints are solved as in the
VSS scheme. Finally, each participant sums what he

has to compute his share on a t-degree polynomial,
g(x) with its free term g(0) =

∑n
i=1 ki mod q.

Joint zero secret sharing (JZ-SS). This scheme is a
special case of the JR-SS. As implied by the name of
the scheme, the random secret shared by each partic-
ipant is a zero. After execution of a JZ-SS scheme,
each participant holds a share g(i) on a t-degree poly-
nomial g(x) with its free term g(0) equals zero. This
scheme is always employed when we need to random-
ize the shares, without changing the value of the se-
cret.

Joint zero verifiable secret sharing (JZ-VSS).
Similar to JR-VSS, to with stand malicious behavior
of at most t < n/2 participants in the JZ-SS, the
JZ-VSS combines the JZ-SS with Feldman- VSS
or Pedersen-VSS. In this scheme, each participant
Pi ∈ P plays the dealer’s role in the VSS protocol
to share a zero among the other participants.
Complaints are solved as in the JR-VSS protocol.
The shares are computed by each participant sums
what he has to compute his share on a t-degree
polynomial, g(x) with its free term equals zero.

5.3.4 Joint Verifiable Multiplication (JVM) of
Shared Secrets

Consider two secret values a and b, respectively shared
over t-degree polynomials A(x) and B(x), the joint ver-
ifiable multiplication subroutine [4] computes µ = ab
mod q in a robust and secure way with no information
revealed about neither a nor b. Each participant Pi lo-
cally computes C(i) = A(i)B(i) mod q which is a share
on a 2t-degree polynomial C(x) = A(x)B(x) mod q with
C(0) = µ. There is still a security problem; publishing
and interpolating the shares C(1), · · · , C(n) reveals infor-
mation about A(x) and B(x), therefore, it is necessary to
randomize the shares of C(x). To randomize the shares
without changing the secret value C(0), the participants
run JZ-VSS to share a zero over a 2t-degree polynomial
R(x) with R(0) = 0. Each participant Pi finally com-
putes and broadcasts D(i) = C(i) + R(i). The result µ
could be computed by interpolating the 2t-degree polyno-
mial D(x) using the Berlekamp-Welch decoder2 to filter
out bad shares. Since we are interpolating a polynomial
of degree deg = 2t and we have a maximum of t mali-
cious participants (i.e.there are at most t possible faults),
the Berlekamp-Welch bound implies that, the number of
shares needed in order to correctly interpolate the polyno-
mial is at least deg+ 2faults+ 1 = 4t+ 1. Consequently,
we need n > 4t. This bound on n could be reduced to
3t+ 1 if the participants run a polynomial degree reduc-
tion subroutine just before applying the Berlekamp-Welch
decoding.

2L. R. Welch and E. R. Berlekamp. Error correction for alge-
braic block codes. Google Patents, December 30 1986. US Patent
4,633,470.

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 302

5.3.5 Joint Verifiable Reciprocal (JVR) of a
Shared Secret

In our SecureCoin, we are faced with the following prob-
lem. Given some secret value k, shared among the par-
ticipants, compute shares of the reciprocal of k mod q
while k is kept secret. Each participant Pi already holds
a share g(i) representing a point on a t-degree polynomial
g(x) with g(0) = k. To compute shares of k−1 mod q,
we need n > 4t participants to run the reciprocal pro-
tocol [3] (or n > 3t in case polynomial degree reduction
is employed) as follows: (i) The participants run the JR-
VSS, which results in each participant holds a share v(i)
of a random secret v over some polynomial of degree t.
(ii) The participants run the JVM subroutine and recon-
struct µ = kv mod q, with no information revealed about
k or v. (iii) Each participant Pi computes his share of the
reciprocal as µ−1v(i) mod q, which is a share over a t-
degree polynomial with its free term equals k−1 mod q.

5.4 Mixnets to Multiparty Secret Shuffle

Since the introduction of Chaums mixing network,
mixnet [9] and dinning cryptographers problem, DCnet [8]
thirty years ago, a number of anonymous authentica-
tion protocols have been developed. The mixnet family
schemes use a set of mix servers that mix the received
messages to make the communication paths ambiguous.
The security of mixnet is based on the trust relationship of
the mixers, and cannot provide unconditional anonymity.

In [35], inspection of Chaum’s scheme [9] showed that
the scheme is linkable. In Chaums scheme, the encryption
function was assumed to be a one-way trapdoor permu-
tation, such as the textbook version of RSA scheme. As
a result, anyone can take an output message, encrypt it
again and check with the input messages they obtain. In
this way, the mix can be reversed. To prevent this re-
encryption and possible size matching of the incoming
flow and output flow, all messages are resized through
random string padding to be of the same size. The out-
put messages from the mix will be indistinguishable to
adversaries, and therefore we can prevent traffic analy-
sis of network transmissions. This will also ensure that
no item is processed more than once. By discarding the
repeated input messages, replay attacks can also be pre-
vented. Otherwise, an attacker can repeat the input mes-
sage and observe which output message is repeated. In
this way, the relation of input messages and output mes-
sages can be discovered and the claimed anonymity is lost.

Several mixnets have also been designed based on zero-
knowledge proofs and stronger security assumptions to
guarantee delivery or to detect and exclude misbehaving
participants. These schemes include flash mixes [27], hy-
brid mixes [28, 33], and provable shuffles [7, 15, 32]. The
Dissent scheme [10] for anonymous messaging allows a
group of participants to communicate messages in a pri-
vate and anonymous way through verifiable secret shuf-
fling.

6 Our SecureCoin Protocol

In this section, we describe in details our SecureCoin Pro-
tocol. Our protocol runs in three stages, each consists of
few phases:

Stage 1. Aggregated temporary deposit.

Phase 1.1. Distributed generation of A.

Phase 1.2. Joint deposit of the coins.

Stage 2. Shuffling of destination addresses.

Phase 2.1. Destination addresses generation.

Phase 2.2. Oblivious shuffling.

Phase 2.3. Accusations resolution (if exist).

Stage 3. Coins distribution.

6.1 Aggregated Temporary Deposit

The goal of this stage is to allow the peers to aggregate
and deposit the required coins in a temporary aggrega-
tion address (ECDSA public-key), A, as a form of com-
mitment. The aggregated coins must not be spent by any
individual peer that could behave maliciously to steal the
aggregated coins. Hence, the private key corresponding
to this address A must be protected against minority of
malicious peers. To achieve this, the corresponding pri-
vate key is generated on a verifiable threshold bases and
the public-key A is jointly computed such that, none of
the peers has any information about the private key. Yet,
still a transaction from this address A can be performed
through threshold computation of the signature.

6.1.1 Distributed Generation of A

The peers jointly generate the aggregation address, A, as
follows:

Step 1. The peers execute JR-VSS with Pedersen-VSS
commitments. The execution results in each peer Pi
holds a share S(i) of a secret s ∈R Z∗q over a t-degree
polynomial S(x) with S(0) = s.

Step 2. The peers that are not disqualified in the JR-
VSS in the previous step publish Feldman-VSS com-
mitments to their shared polynomial. I.e., if Si(x) =
si +

∑t
j=1 ajx

j is the polynomial of peer Pi, Pi pub-
lishes siG and ajG mod p ∀j = 1, · · · , t.

Step 3. For any peer Pi who receives at least one valid
complaint, the other peers join together to recon-
struct his polynomial Si(x) and the values siG and
ajG mod p ∀j = 1, · · · , t in the clear.

Step 4. Finally, the remaining good peers join to safely
compute A = sG =

∑n
i=1 siG mod p.

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 303

At this point, each peer Pi holds a share S(i) of an
ECDSA private-key s over a polynomial of degree t and
have jointly computed the temporary aggregation address
A = sG mod p. The disqualified peers in the above sub-
routine are kicked out and prevented from further partic-
ipating in the rest of the protocol. In Bitcoin, the peer’s
address is actually a hashed version of the public key.
However, for simplicity and wlog, along the work in this
paper, we assume that the peer’s address is the ECDSA
public key.

Figure 1: Deposit of the coins in the aggregation address

6.1.2 Joint Deposit of the Coins

The deposit of the coins in the aggregation address A is
done in the standard way of Bitcoin transaction. Given
that each peer Pi is holding the private key Iki corre-
sponding to his input address Ii, the peers jointly gener-
ate one single transaction, as shown in Figure 1, contain-
ing the peers input addresses, I1, · · · , In, as inputs and
the aggregation address A as output, {I1, · · · , In}

nx−−→ A.
Notice that a transaction with several input addresses is
only valid if it has been signed with all keys belonging to
those input addresses [29, 37]. Thus each peer can verify
whether the generated joint transaction sends the correct
amount of money to the aggregation address, if this is not
true, the peer just refuses to sign the transaction. If more
than t peers refuse, the protocol aborts without transfer-
ring any coins. The peers do not proceed in the execution
of the protocol until all the transactions are completed
successfully and confirmed on the Bitcoin ledger. For n
peers, there must be an amount of nx coins in the address
A. The peers that do not contribute their signature are
considered opted out of the protocol.

6.2 Shuffling of Destination Addresses

In this stage it is required that every peer Pi generates
a fresh ephemeral personal encryption/decryption public
key pair (pki, ski) of an IND-CCA secure public key cryp-
tosystem and broadcasts the resulting public encryption
key pki.

6.2.1 Destination Addresses Generation

Each peer Pi locally generates for himself a destination
address Di as in the standard Bitcoin address generation,
as if Pi is going to make a transaction Ii → Di. This
address Di is kept secret for Pi at the moment. Each Par-
ticipant Pi commits himself to his address Di by broad-
casting ei = εpki(Di) as the public key encryption of his
address Di.

6.2.2 Oblivious Shuffling

The peers shuffle the freshly generated destination ad-
dresses, D1, · · · , Dn, in an oblivious manner [37], similar
to the well known mix network of Chaum [30]. This is
illustrated in Figure 2. First, the peers are lexicograph-
ically ordered according to their input addresses. Each
peer Pi uses the encryption keys of each peer Pj>i to cre-
ate a layered encryption of his output address. Then, the
peers perform a sequential shuffling, starting with peer
P1: Each peer Pi expects to receive i−1 ciphertexts from
Pi−1. Upon reception, each peer strips one layer of en-
cryption from the ciphertexts, adds her own ciphertext
and randomly shuffles the resulting set, according to his
picked permutation π. Pi sends the shuffled set of cipher-
texts to the next peer Pi+1. If everybody acts according
to the protocol, the decryption performed by the last peer
results in a shuffled list of output addresses. The last peer
broadcasts this list.

Each peer checks that his address exists in the broad-
casted list and broadcasts a confirmation of existence. If
a peer Pi does not find his address in the list he broad-
casts a complaint (accusation). The peers enter an ac-
cusation resolution subroutine to solve this accusation.
Notice that, a peer Pi that does not find his address in
the list and keeps silent (i.e., does not broadcast neither a
confirmation nor an accusation) is considered halted and
is kicked out of the protocol.

6.2.3 Accusations Resolution (If Exist)

The peer Pi who broadcasted a complaint/accusation
must be checked for his honesty. Pi is instructed to broad-
cast his ephemeral private key ski. Recall that each Pi
has already broadcasted the commitment ei = εpki(Di).
The rest of the peers proceed to check the honesty of Pi.
Each peer Pj performs as follows:

• Using ski, decrypts for Di.

• Checks whether Di is in the list of the shuffled des-
tination addresses.

• If Di is in the list, Pj broadcasts a complaint against
Pi.

Finally, in case more than t peers broadcast a complaint
against Pi, then Pi is deemed corrupt and kicked out of
the protocol. The peers exit the accusation resolution
subroutine. Otherwise, the peers declare Pi as honest
about his complaint.

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 304

Figure 2: Oblivious shuffling of destination addresses

If the peer Pi passes the above checks, then Pi is de-
clared honest about his complaint, but not necessarily
honest about his behavior in the protocol. Still the ac-
cusation has not been solved. To proceed in solving the
accusation, each peer Pi opens (broadcasts) everything;
the destination address Di, the ephemeral decryption key
ski and the shuffled patterns. Each peer Pi performs as
follows:

• Using skj , decrypts for Dj for all j = 1, · · · , n.

• Checks whether Dj is in the list of shuffled destina-
tion addresses for all j = 1, · · · , n.

• If the above check fails for any j, Pi broadcasts a
complaint against Pj .

If any peer Pj receives complaints from more than t peers,
Pj is deemed corrupt and is kicked out of the protocol.

Finally, all peers check the correctness of the performed
shuffling and raise complaints against the misbehaved
peer. The peers kick out any peer that receives more
than t complaints. After all bad peers are kicked out of
the protocol, the rest of the good peers repeat the ad-
dress generation phase, then the shuffling phase, using
new fresh pseudonyms and ephemeral keys.

6.3 Coins Distribution

The Coins distribution stage is shown in Figure 3. Let n∗

be the number of kicked peers after the deposit of their
x coins in the aggregation address. For the n remaining
good peers, in this phase, the Bitcoin distribution form
(one input to multiple recipients) is used to transfer an
amount nx coins from the aggregation address A as a one
input address to the output addresses, Dπ(1), · · · , Dπ(n),
and n∗x coins back to the input addresses, Ii1 , · · · , Iin∗

of the peers that were kicked out after their deposit, such
that, each address receives an exact amount of x coins. In
this case the peers must join to sign the transaction, T =

A
(n+n∗)x−−−−−→ {Dπ(1), · · · , Dπ(n), Ii1 , · · · , Iin∗}. Let m =

H(T) and recall that each peer Pi holds a share S(i) of the
ECDSA private key s and that the corresponding public
key is A = sG, the peers join to sign m and submit as
follows.

Figure 3: Coins distribution stage

Step 1. The peers execute a Pedersens JR-VSS. At the
end, every peer Pi holds a share K(i) of a secret
k ∈R Z∗q over a polynomial K(x) of degree t, with
K(0) = k. Each peer broadcasts Gi = K(i)G
mod p.

Step 2. Each peer broadcasts Feldman-VSS commit-
ments (i.e. to the base G) of all his picked random
polynomials during JR-VSS in the previous step.
These commitments allow the peers to validate the
quantities Gi.

Step 3. Each peer is able to locally compute (x, y) = kG
by Lagrange interpolation and r = x mod q.

Step 4. The peers that are not disqualified in the pre-
vious JR-VSS run the JVR subroutine, at the end,
each peer Pi holds a share K ′(i) of the reciprocal k−1

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 305

mod q over a t-degree polynomial (with polynomial
degree reduction) K ′(x) with K ′(0) = k−1.

Step 5. The peers run an instant of the JZ-VSS to share
a zero secret. At the end each peer holds a share Z(i)
over a t-degree polynomial Z(x) with Z(0) = 0.

Step 6. Each peer Pi now holds a share S(i) of s, a share
K ′(i) of k−1 and a share Z(i) of 0. All peers know the
quantities r and m. Each peer Pi locally computes
and broadcasts, ωi = K ′(i)[m+rS(i)]+Z(i) mod q.

Step 7. Using Berlekamp-Welch decoder, any peer is
able to compute ω = k−1(m+ rs) mod q.

Step 8. All peers now know the Bitcoin ECDSA signa-
ture (r, ω) which is submitted to the Bitcoin sys-
tem for verification and confirmation in the Bitcoin
ledger.

Remark 1. The above subprotocol requires a number of
peers n > 4t. This bound on n could be reduced to n >
3t, if the peers run a polynomial degree reduction after
each run of a JVM subroutine. Simply, assume a secret
z shared on a t′-degree polynomial. Each peer shares his
share of z over a t-degree polynomial. Finally, each peer
sums the shares he receives from the other peers, to obtain
a share on a t-degree polynomial for the same secret z.

7 Security Analysis

In this section we give a rigor analysis of the security of
SecureCoin.

7.1 Secrecy, Robustness & Revocation

In the core of the SecureCoin protocol, the joint genera-
tion of the private key of the aggregation address A (which
is a uniformly distributed random value s) is shared on a
threshold basis and the value A = sG is publicly known.
The protocol is t-secure, i.e., in the presence of at most t
malicious peers:

Correctness.

• Any subset of t + 1 valid shares will always re-
construct to the same private key s.

• Any peer is able to locally compute the common
public key A.

• The secret s is uniformly distributed in Zq and
hence, A is uniformly distributed in the sub-
group generated by G.

Secrecy. A coalition of at most t peers learns no informa-
tion about s except for what could be implied from
the value A itself.

Robustness. From the security of robust threshold cryp-
tography, at most t maliciously active peers will not

disrupt the correctness of the protocol and will al-
ways be detected and disqualified. Executing the JR-
VSS using Feldman-VSS alone has some security vul-
nerabilities. Malicious peers can deviate the uniform
distribution of the result of Feldman’s JR-VSS to a
non-uniform distribution according to the attack de-
scribed in [20]. More precisely, in case only Feldman-
VSS is used, the attack works as follows: Assume
that two traitors peers (say P1 and P2) want to bias
the distribution towards values of A whose last bit is
zero. P1 gives members, P3, · · · , Pt+2, shares which
are inconsistent with his broadcasted values, the rest
of the members receive consistent shares. Thus, there
will be t complaints against P1, yet t complaints are
not enough for disqualification. The traitors com-
pute α =

∑n
i=1 siG and β =

∑n
i=2 siG. In case α

ends with ”0” then P1 will do nothing and continue
the protocol as written. If α ends with ”1” then force
the disqualification of P1, this is achieved by asking
P2 to also broadcast a complaint against P1, which
brings the number of complaints to t+1. This action
sets the public value A to β, which ends with ”0” with
probability 1/2. An illustrative example is as follows:
Let ”00”, ”01”, ”10”, ”11” be the possible two MSBs
of A. Now, if A ends with zero (”00” or ”01”) then let
α be, but if A ends with one (”10” or ”11”) then P2

complains (let β be) and hence the probability that
A ends with one (i.e. ”11”) is 1/2 (notice that ”11”
is the only case that makes the attack fails), hence,
the attack fails with probability 1/4 and so we have.
Thus effectively, the traitors have forced strings end-
ing in ”0” to appear with probability 3/4 rather than
1/2. One must notice that synchronous broadcast
does not prevent such attack to take place. Hence,
the third requirement for correctness and the secrecy
requirement dramatically fail. Unlike Feldman-VSS,
in Pedersen-VSS, the malicious peers view is inde-
pendent of the value of the secret s, and therefore
the secrecy of s is unconditional, which eliminates
the possibility of this attack.

Revocation. Our protocol ensures that any malicious
peer will be detected as soon as possible and will
be revoked from the protocol. In Stage 1, the dis-
tributed generation of the aggregation address A em-
ploys JR-VSS for sharing the ECDSA private key,
which allows every peer to verify the correctness of
any quantity he receives from other peers. Any pub-
lished malicious quantity will be detected by all good
peers, if a good peer raises an accusation against a
malicious peer, then all good peers will raise this ac-
cusation and since there are more good peers than
bad peers, the malicious peer (through majority vot-
ing) will be revoked. In Phase 1.2, the signing of
the transaction with several input addresses is valid
if it has been signed with all keys belonging to those
input addresses. The signing of each peer is visi-
ble to every other peer, therefore, the peer with an

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 306

incorrect signature will always be detectable by all
other peers and revoked by good peers. In Stage 2,
the accusation resolution (Phase 2.3), ensures that
any malicious peer during the oblivious shuffling will
be detected by other good peers and revoked. The
Coins distribution (Stage 3), employs verifiable se-
cret sharing where, again, ensures the detection and
revocation of any malicious peer. Step 7 in the Coins
distribution employs the Berlekamp-Welch decoder,
which is capable of filtering out any faulty shares
and ensures the correct computation of the final sig-
nature.

7.2 Anonymity and Unlinkability

Unlinkability and randomness depend on the shuffling of
destination addresses stage. If there is a raised accusa-
tion in the shuffling phase of this stage, the protocol enters
the accusations resolution phase where all accusations are
solved, malicious peers are kicked out and destination ad-
dresses of malicious peers are burnt. Given the threshold t
which is the maximum number of possible malicious peers,
if at least t+ 1 peers raise an accusation against a certain
peer, then at least one peer is honest about his accusa-
tion. The employed ephemeral public key encryption is
IND-CCA secure, which means that an adversary cannot
link destination addresses from the broadcasted cipher-
texts e1, · · · , en, as they are randomized by the nature
of a CCA secure cryptosystem. Based on observations of
the blockchain an attacker can try to guess the mapping
between a participant’s input and output address. The
set of addresses among which the attacker has to guess is
the anonymity set and its size is the achieved anonymity
level. A larger anonymity set leads to a smaller probabil-
ity of a correct guess and hence more anonymity. In the
following, we analyze peer’s anonymity against blockchain
observers (outsiders) and against participating peers.

7.2.1 Indistinguishability of Blockchains

We emphasize that, Blockchain observers are outsiders,
i.e., they have absolutely no contact with any of the peers
participated in the protocol. The SecureCoin protocol
uses two types of transaction forms: Aggregation trans-
action and Distribution transaction. Both of these trans-
action forms are widely used individually by thousands
of Bitcoin peers. Aggregation transactions are used by
a peer –for example– to clean his wallet, i.e., when the
peer has many pseudonyms in his wallet he uses the ag-
gregation form to transfer his coins simultaneously from
different pseudonyms to a single new fresh pseudonym
and wipes out the old pseudonyms. Also, they are used
when a peer is buying goods which cost a large amount
of coins, so he spends the amount of coins from several
input addresses of his own to the seller’s address. On the
other hand, distribution forms are used by an individual
peer when he wants to distribute funds (e.g. salary) to
multiple employees addresses. SecureCoin uses these two

types of transactions in the same standard way of Bit-
coin transactions, which make the transactions intended
for anonymity by a group of peers in SecureCoin indistin-
guishable from transactions made by thousands of indi-
vidual peers over the globe for different purposes.

One problem remains, that may threaten the above
indistinguishability. The amount x transfered to/from
the aggregation address is fixed. Blockchain observers
may observe that (i) some fixed amount x is transfered to
an address A′ from multiple addresses and (ii) the same
amount x leaves this address A′ to multiple addresses.
Hence, this address A′ is more likely to be an aggrega-
tion address used for anonymity purpose. Although the
observer cannot map an input address to the correspond-
ing destination address, just knowing that these addresses
are more likely to be involved in an anonymous transac-
tion (i.e. belong to the same set of peers) is a security
vulnerability that must be solved. To fix this problem,
notice that it is unlikely that all peers have exactly the
same amount x as an unspent transaction. A peer Pi may
have some arbitrary xi as an unspent transaction. In case
xi < x, then Pi does not qualify to participate from the
very beginning. Now, each peer Pi prepares the transac-

tion Ii
xi−→ A and a return transaction A

xi−x−−−→ D∗i , where
D∗i is a new fresh pseudonym (destination address) for

Pi. The transactions Ii
xi−→ A are signed in the aggre-

gation phase as described while the return transactions

A
xi−x−−−→ D∗i are signed as part of the transaction in the

coins distribution stage to return the change back to their
new addresses. In this way, the aggregation and distribu-
tion transactions are made with different amount of funds
and so the problem is solved.

7.2.2 Indistinguishability of Participating Peers

The participating peers inevitably learn which input and
output addresses are involved in the shuffling operation,
as they have to sign the corresponding transactions and
release them to the Bitcoin network. However, since par-
ticipating peers do not learn which output belongs to
which input address, the anonymity level against partici-
pating peers is equal to the remaining number of partic-
ipants n after all accusations have been solved, which is
as good as in the CoinShuffle protocol. Notice that, by
nature, the shuffling is insecure if the number of partici-
pating peers are less than three. Since, for two peers, one
peer will recognize his destination address and immedi-
ately maps the other address to the other peer.

7.3 Protection Against Sabotage Attacks

Peers that may withdraw trying – not only to disrupt the
progress of the protocol – but to make other participating
peers loose their funds with impossibility to return these
funds back to their input addresses. It is Ok that the
protocol is disrupted and terminated with the coins of
each participating peer still in their wallets. In this case,
the success of the protocol based on the existence of at

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 307

most t malicious peers is accepted. However, it is not
accepted at all that the peers may loose their funds given
this threshold, while the saboteur peers may run away
without loosing the same amount of funds too.

We show that our protocol ensures that such an at-
tempted attack will not succeed without the same loss
from the attackers as the good peers. In fact, the sabotage
attack becomes serious after the coins has been transfered
from the peers accounts to another address. In Secure-
Coin, once the aggregation address A is established and
the malicious peers are disqualified, the remaining peers
jointly deposit their coins in A simultaneously. Since indi-
vidual deposit of each peer allows possible saboteur peers
(exceeding the threshold) to withdraw after few transac-
tions have been made, leaving other peers unable to even
jointly return their deposits back to their input addresses.
Simultaneous deposit ensures that either, the protocol will
be terminated without a loss or, the saboteurs will loose
their coins too. Therefore, they are unlikely to misbehave
after the deposit phase. This is actually a great improve-
ment over the CoinParty protocol, where the mixing peers
controlling the temporary address do not have any finan-
cial share in the addresses and hence, they may run away
leaving the input peers stuck with their coins in the tem-
porary addresses with no way to undo the transactions.

Finally, as has been shown, our protocol does not pre-
vent a sabotage attack to take place, actually it is impos-
sible to prevent it. However, the protocol ensures that if
such attack is attempted, then either, no body will loose,
or every body will loose.

7.4 Unforgeability

Our protocol employs the ECDSA in the same way used
by the Bitcoin ecosystem. To a verifier, the generated
signature by our protocol is completely indistinguishable
from a signature generated by a Bitcoin wallet. Therefore,
given that the Bitcoin signature is unforgeable, and that
our threshold key generation is t-secure, our protocol is
also unforgeable by an adversary that is able to corrupt
at most t peers.

7.5 Deniability

Deniability against outsiders is achieved by the indistin-
guishability of the SecureCoin transactions and normal
transactions. We argue that if there are at any point
many more non-SecureCoin aggregated and distributed
transactions than SecureCoin transactions in the Bitcoin
network, a peer can plausibly deny having participated
in SecureCoin. Our inspection of the public ledger shows
that there are indeed many non-SecureCoin transactions
of the same form as those issued by SecureCoin. Aslo, de-
niability holds against SecureCoin peers that were kicked
out of the protocol prior to the establishment of the ag-
gregation address A. Since, in this case, those kicked out
peers do not know neither, the aggregation address nor
the input addresses of other peers. However, SecureCoin

does not provide deniability against participating peers
as long as they knew the aggregation address A. Denia-
bility in this case is an outstanding problem in SMC in
general and not due to our protocol. Next we show that
the claimed deniabilty against input peers of CoinParty
is questionable. CoinParty authors stated that, Denia-
bility against mixing peers is not achieved because they
learn which in-and-output addresses participated in the
mixing during the shuffling phase. Mixing peers also know
the identities of the input peers. We argue that mixing
peers are outsiders with malicious minority, and hence,
the claimed deniability of CoinParty fails.

8 Evaluation and Comparisons

In this section, we evaluate the efficiency of SecureCoin
and compare its performance to recent protocols.

8.1 Full Compatibility

The deviation of SecureCoin is transparent to standard
Bitcoin clients since, Bitcoin ecosystem is not concerned
how the ECDSA keys are generated as long as they are
a valid Bitcoin ECDSA key pair. Also, Bitcoin ecosys-
tem is not concerned how the signature is performed as
long as the signature is a valid Bitcoin signature and the
transaction is in the correct form. In other words, the
Bitcoin ecosystem is the verifier while the peer’s wallet is
the generator of the transaction. Bitcoin has nothing to
do with the peer’s wallet and how it generates and signs
transactions as long as they are in the correct form. In our
threshold ECDSA, a verifier receiving a signature cannot
distinguish whether this signature is generated by a sin-
gle signer or by a group of signers on a threshold basis.
Hence, SecureCoin is fully compatible with the Bitcoin
ecosystem.

8.2 Cost Efficiency

It is known that the processing of a Bitcoin transaction of
roughly less than 1KB will not be charged. The amount
charged per 1KB defaults to 0.0001 XBT. Let ni and no
be the number of input addresses and output addresses
of a transaction respectively. The size S of a transaction,
assuming compressed public keys, could be roughly esti-
mated based on the simple formula, S = 148ni+34no+10
Bytes3. SecureCoin requires two transactions: An aggre-
gation transaction with ni = n and no = 1 and a distri-
bution transaction with ni = 1 and no = n. For n = 6
participants, based on this formula, the first transaction
is of size S = 932 Bytes while the second is of size S = 362
Bytes. Hence, no processing fees are due.

3http://bitcoinfees.com/

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 308

t = 1

0 5 10 15 20 25
0

50

100

150

200

250

Number of peers (n)

N
u
m

b
er

o
f

sc
a
la

r
m

u
lt

ip
li
ca

ti
o
n
s

0 5 10 15 20 25
0

50

100

150

200

250

t = 2

0 5 10 15 20 25
0

50

100

150

200

250

Number of peers (n)

0 5 10 15 20 25
0

50

100

150

200

250

t = 3

0 5 10 15 20 25
0

50

100

150

200

250

Number of peers (n)

0 5 10 15 20 25
0

50

100

150

200

250

t = 4

0 5 10 15 20 25
0

50

100

150

200

250

Number of peers (n)

0 5 10 15 20 25
0

50

100

150

200

250

Figure 4: Number of scalar multiplications of SecureCoin for the threshold-ECDSA at different values of the threshold
and the number of peers: blue (n > 4t), red (n > 3t).

8.3 Computation Complexity

Consider the joint generation of the address A. This re-
quires one invocation of a JR-VSS which by its turn re-
quires 2(t+ 1) + 2(n− 1) EC point multiplications.

Now Consider the threshold ECDSA signature in the
Coins distribution stage. In step 1, the JR-VSS with
Pedersen-VSS requires 2(t+ 1) + 2(n− 1) EC point mul-
tiplications. Step 2, requires no extra computations by
each peer. Step 3, requires each peer to perform La-
grange interpolation on the broadcasted values in step 2,
and hence, requires t + 1 EC point multiplications. Step
4, requires the JR-VSS inside the JVR subroutine over
2t-degree polynomial, which requires 2(2t+ 1) + 2(n− 1).
In Step 5, the JZ-VSS is similar to the JR-VSS in step
1. Step 6, 7 and 8, requires no EC point multiplications.
These total 8t + 6n + 1 EC point multiplications that
must be performed by each peer. The above computa-
tions assume n > 4t. In case n > 3t the computation
complexity increases due to the employment of polyno-
mial degree reduction in step 4. In this case, it requires
a total of t2 + 10t + 8n EC point multiplications. These
are illustrated graphically in Figure 4 for different values
of the threshold and number of participating peers.

We notify the recent work of [18] that may provide
a slightly improved efficiency for the implementation of
threshold ECDSA. However, the protocol in [18], although
it is unforgeable, it sacrifices robustness for the sake of
efficiency and is not suitable for the goals of SecureCoin.

8.4 Comparisons

In this subsection, we compare the complexity and secu-
rity of our protocol with previous protocols.

8.4.1 With CoinParty

Based on the transaction size, CoinParty is more efficient
since all transactions are one-to-one. However, the em-
ployed mixing peers will not provide their services for free.
In addition, they are many (at least 4). We cannot give
any estimate of the cost because this has not been stan-
dardized yet. However, the cost will be relatively high to
avoid sabotage.

CoinParty has the major problem of its vulnerability to
sabotage attacks. Saboteur peers involved in the mixing
and holding the private keys of the temporary addresses
may abort the protocol after the input peers make their
deposit, leaving them stuck with the impossibility to re-
fund. The saboteurs did not loose any thing, since they
have no share in the funds. They also may conspire to
steal the coins. Our protocol ensures that if such sabo-
tage attack is attempted, then either, the protocol termi-
nates with all peers, including the saboteurs loosing their
funds, or the protocol terminates with no loss at all. This
is ensured by phase 1.2 of stage 1, joint deposit ensures
that all peers will contribute in the deposit of the same
amount x. A transaction with several input addresses is
only valid if it has been signed with all keys belonging to
those input addresses. Therefore, this phase ensures the
simultaneous contribution of funds.

CoinParty runs multiple instants of the threshold key
generation and the threshold digital signature (n in-
stants). These protocols are complex by nature as we
have shown, so running multiple instants is significantly
complex specially if these protocols are supposed to run
on smart devices. Figure 5, shows a comparison between
our SecureCoin protocol and CoinParty for different val-
ues of the threshold and number of peers. It illustrates
the dramatic increase in the number of EC point mul-
tiplications required in CoinParty over that required by
SecureCoin. SecureCoin invokes the threshold protocols
only once. This provides a significant complexity improve-
ment over CoinParty.

8.4.2 With CoinShuffle

The cost-efficiency of our protocol proves efficiency over
CoinShuffle. This is illustrated in Figure 6. It shows that,
for n = 6, our protocol requires one aggregation transac-
tion of size 932 Bytes and one distribution transaction
of size 362 Bytes. On the other hand the CoinShuffle
requires one multi-input multi-output transaction of size
1102 Bytes which is charged. Increasing n, Figure 6 shows
that as long as n < 14 our protocol charges the partici-
pants with only 1KB, while this is limited to n < 11 in
the CoinShuffle protocol. The CoinShuffle protocol has

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 309

0 2 4 6 8 10
0

500

1,000

1,500

2,000

2,500

Threshold (t)

SecureCoin(n = 4t+ 1)

CoinParty(n = 3, m = 4t+ 1)

CoinParty(n = 4, m = 4t+ 1)

CoinParty(n = 5, m = 4t+ 1)

CoinParty(n = 6, m = 4t+ 1)

CoinParty(n = 7, m = 4t+ 1)

0 2 4 6 8 10
0

1,000

2,000

3,000

Threshold (t)

SecureCoin(n = 3t+ 1)

CoinParty(n = 3, m = 3t+ 1)

CoinParty(n = 4, m = 3t+ 1)

CoinParty(n = 5, m = 3t+ 1)

CoinParty(n = 6, m = 3t+ 1)

CoinParty(n = 7, m = 3t+ 1)

Figure 5: The number of scalar multiplications required
by SecureCoin and CoinParty (m=number of mixing
peers, n=number of input peers)

a security vulnerability that the last peer in the Shuffle
protocol knows the set of shuffled destination addresses in
the clear and the set of input addresses. This allows him
to rearrange the shuffled version in a way to map certain
input addresses to certain output addresses and benefit
from this behavior specially if he collaborates with others
in the protocol. SecureCoin eliminates this vulnerability
since the set of input addresses and the set of destination
addresses are isolated by the aggregation address A.

The bulk (exactly n-input to exactly n-output) trans-
action performed by CoinShuffle for a significant number
of addresses is not a commonly used form by Bitcoin and
makes it distinguishable by the ledger’s observers as this
type of transaction is rarely to be performed by an in-
dividual. Actually, there is no reason for an individual
to perform such a costly transaction. Our protocol avoids
this type of transaction. Instead, the aggregation transac-
tion and the distribution transaction used in our protocol
are performed frequently by many individuals in the Bit-
coin network.

0 5 10 15 20 25
0

1,000

2,000

3,000

4,000

5,000

Number of peers (n)

T
ra

n
sa

ct
io

n
si

ze
in

b
y
te

s

SecureCoin distribution transaction
SecureCoin aggregated transaction

CoinShuffle transaction

Figure 6: Comparison of transaction size between Coin-
Shuffle and SecureCoin

8.5 Computation Time

Let MM denotes a modular multiplication operation while
MA denotes a modular addition operation. The EC point
addition (PA) requires 8MM+3MA operations. On the
other hand, a point doubling requires 3MM+4MA op-
erations [21]. The most basic technique for performing
an EC scalar multiplication (SM), kG for an integer k,
is the double-and-add method, which works in a similar
way as the square-and-multiply method for exponentia-
tion. Given a scalar k of a length of n bits, the double-
and-add approach executes n point doubling and on the
average of n/2 point additions; the exact number of point
additions depends on the Hamming weight of k. There-
fore, the overall cost of the double-and-add method to
perform SM amounts to 3n + 8n/2 = 7n multiplications
and 4n+ 3n = 2 = 5.5n squarings over Fp.

A better strategy for computing kG is to decompose
the n-bit scalar k into two half-length integers k1 and
k2 (often referred to as balanced length-two representa-
tion of k [21]). As a result, the overall cost amounts
to (0.5n)(3) + (0.375n)(8) = 4.3n multiplications and
(0.5n)(4) + (0.375n)(3) = 3.125n squarings in Fp. How-
ever, the Hamming density can be reduced to 0.5 (on
average) by representing k1 and k2 in Joint Sparse Form
(JSF) [39], which, in turn, cuts the number of point addi-
tions by roughly one third to 0.5(n = 2) = 0.25n. In this
case, the total cost of computing kP is reduced to – on the
average of – (0.5n)(3) + (0.25n)(8) = 3.5n multiplications
and (0.5n)(4) + (0.25n)(3) = 2.75n squarings in Fp.

To evaluate the computation time of our protocol, an
implementation of the basic field arithmetic over prime
field Fp for a 256-bit p secp256k1 on a mobile phone is
shown in Table 1. This below-moderate specifications mo-
bile device runs Android OS V2.3 on a CPU 1 GHz Scor-
pion and 768 MB RAM.

Table 1: Computation time of basic field arithmetic op-
erations on a mobile phone (HTC-Desire)

Operation Computation time

Multiplication 990.2 ns
Addition 121.2 ns

Subtraction 129.5 ns
Inverse 190.1 µs

Squaring 859.5 ns

Based on Table 1, we can determine the time taken
by this device to perform EC operations. The SM op-
eration requires, (3.5)(990.2 ns)(256 bits) = 0.88 ms,
plus (2.75)(859.5ns)(256 bits) = 0.6 ms. Hence, a scalar
multiplication takes about 1.5 ms. Let P1 = (x1, y1),
P2 = (x2, y2) and P3 = (x3, y3) be three points on the
elliptic curve. Now let P3 = P1 + P2. P3 is com-
puted as follows: compute λ = (y2 − y1) = (x2 − x1),
v = (y1x2 − y2x1) = (x2 − x1), x3 = λ2 − x1 − x2 and
y3 = λ(x1 − x3) − y1. All computations are modulo p.
Now we can concretely find what it takes to perform one

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 310

point addition on the EC. Computing λ requires two mod-
ular subtractions and one modular inversion. Computing
v (given λ was computed) requires two modular multipli-
cations and one modular subtraction. Computing x3 re-
quires one modular squaring and one modular subtraction
while y3 requires two modular subtractions and one mod-
ular multiplication. These totals six modular subtrac-
tions, one modular inversion, one modular squaring and
three modular multiplications. From Table 1, we have for
one point addition, 6(0.1295µs) + 190.1µs + 0.8595µs +
3(0.9902µs) = 0.195 ms. These are summarized in Ta-
ble 2.

The above implementation shows that scalar multipli-
cation on elliptic curve is expensive compared to other
modular operations. Based on Table 2, Figure 7, illus-
trates the threshold-ECDSA execution time required by
SecureCoin compared to that required by CoinParty. Fig-
ure 7, shows that, for a threshold t up to the value of 10,
which is a large value, the computations required by Se-
cureCoin is less than one second.

0 2 4 6 8 10
0

1,000

2,000

3,000

4,000

5,000

Threshold (t)

C
om

p
u

ta
ti

on
ti

m
e

(m
s)

SecureCoin(n = 3t+ 1)

CoinParty(n = 3, m = 3t+ 1)

CoinParty(n = 4, m = 3t+ 1)

CoinParty(n = 5, m = 3t+ 1)

CoinParty(n = 6, m = 3t+ 1)

CoinParty(n = 7, m = 3t+ 1)

Figure 7: Comparison of Computation time of threshold-
ECDSA between CoinParty and SecureCoin

Table 2: EC Computation time on a mobile phone. SM:
Scalar Multiplication, PA: Point Addition

Operation Computation time

SM 1.5 ms
PA 0.195 mss

9 Conclusions

Several contributions have been proposed recently to
countermeasure the attacked anonymity of Bitcoin ad-

dresses. However, by analyzing these protocols, serious
vulnerabilities have been revealed. CoinShuffle performs
a bulk transaction of exactly n input addresses to n out-
put addresses of the same amount which is easily observed
on the blockchain. In CoinParty, the input peers are ex-
posed to sabotage attacks by mixing peers, and in order
to reduce the risk of such an attack, the return fees for the
mixing peers are dramatically increased. In this paper, we
proposed SecureCoin as a robust and secure protocol for
achieving anonymity service in Bitcoin. Our protocol pro-
vides better protection for the participating peers against
malicious behavior of minority of the peers and protec-
tion against the most serious sabotage attack attempted
by any number of saboteur peers. We analyzed the se-
curity of our scheme and evaluated its efficiency. Finally,
we compared our protocol to recently proposed protocols
and showed that our protocol proves efficiency over these
protocols and requires less fees by the Bitcoin ecosystem.

References

[1] E. Androulaki, G. O. Karame, M. Roeschlin, T.
Scherer, and S. Capkun, “Evaluating user privacy
in bitcoin,” in Financial Cryptography and Data Se-
curity, pp. 34–51, Springer, 2013.

[2] A. M. Antonopoulos, Mastering Bitcoin: Unlocking
Digital Cryptocurrencies, O’Reilly Media, Inc., 2014.

[3] J. Bar-Ilan and D. Beaver, “Non-cryptographic fault-
tolerant computing in constant number of rounds
of interaction,” in Proceedings of the Eighth Annual
ACM Symposium on Principles of Distributed Com-
puting, pp. 201–209, 1989.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson,
“Completeness theorems for noncryptographic fault-
tolerant distributed computation,” in Proceedings of
the Twentieth Annual ACM Symposium on Theory
of Computing, pp. 1–10, 1988.

[5] S. Blake-Wilson and M. Qu, Standards for Efficient
Cryptography (SEC) 2: Recommended Elliptic Curve
Domain Parameters, Certicom Research, Oct 1999.

[6] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A.
Kroll, and E. W. Felten, “Mixcoin: Anonymity for
bitcoin with accountable mixes,” in Financial Cryp-
tography and Data Security, pp. 486–504, Springer,
2014.

[7] J. Camenisch and A. Mityagin, “Mix-network with
stronger security,” in Privacy Enhancing Technolo-
gies, pp. 128–146, Springer, 2006.

[8] D. Chaum, “The dining cryptographers problem:
Unconditional sender and recipient untraceability,”
Journal of Cryptology, vol. 1, no. 1, pp. 65–75, 1988.

[9] D. L. Chaum, “Untraceable electronic mail, return
addresses, and digital pseudonyms,” Communica-
tions of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

[10] H. Corrigan-Gibbs and B. Ford, “Dissent: account-
able anonymous group messaging,” in Proceedings of
the 17th ACM Conference on Computer and Com-
munications Security, pp. 340–350, 2010.

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 311

[11] I. Damgard, M. Geisler, M. Kroigaard, and J.
B. Nielsen, “Asynchronous multiparty computation:
Theory and implementation,” in Public Key Cryp-
tography (PKC’09), pp. 160–179, Springer, 2009.

[12] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno,
“Pinocchio coin: Building zerocoin from a suc-
cinct pairing-based proof system,” in Proceedings of
the First ACM workshop on Language Support for
Privacy-enhancing Technologies, pp. 27–30, 2013.

[13] R. Dingledine, N. Mathewson, and P. Syverson, Tor:
The Second-generation Onion Router, Technical re-
port, DTIC Document, 2004.

[14] P. Feldman, “A practical scheme for non-interactive
verifiable secret sharing,” in 28th IEEE Annual
Symposium on Foundations of Computer Science,
pp. 427–438, 1987.

[15] J. Furukawa and K. Sako, “An efficient scheme
for proving a shuffle,” in Advances in Cryptology
(CRYPTO’01), pp. 368–387, Springer, 2001.

[16] R. P. Gallant, R. J. Lambert, and S. A. Vanstone,
“Faster point multiplication on elliptic curves with
efficient endomorphisms,” in Advances in Cryptology
(CRYPTO’01), pp. 190–200, Springer, 2001.

[17] C. Garman, M. Green, I. Miers, and A. D. Rubin,
“Rational zero: Economic security for zerocoin with
everlasting anonymity,” in Financial Cryptography
and Data Security, pp. 140–155, Springer, 2014.

[18] R. Gennaro, S. Goldfeder, A. Narayanan,
“Threshold-optimal DSA/ECDSA signatures
and an application to Bitcoin wallet security,”,
IACR Cryptology ePrint Archive, vol. 2016, pp. 13,
2016.

[19] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Ra-
bin, “Secure distributed key generation for discrete-
log based cryptosystems,” Journal of Cryptology, vol.
20, no. 1, pp. 51–83, 2007.

[20] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Ra-
bin, “Secure distributed key generation for discrete-
log based cryptosystems,” Journal of Cryptology, vol.
20, no. 1, pp. 51–83, 2007.

[21] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide
to Elliptic Curve Cryptography, Springer Science &
Business Media, 2006.

[22] M. H. Ibrahim, “A method for obtaining deni-
able public-key encryption,” International Journal of
Network Security, vol. 8, no. 1, pp. 1–9, 2009.

[23] M. H. Ibrahim, “Receiver-deniable public-key en-
cryption,” International Journal of Network Secu-
rity, vol. 8, no. 2, pp. 159–165, 2009.

[24] M. H. Ibrahim, “Resisting traitors in linkable demo-
cratic group signatures,” International Journal of
Network Security, vol. 9, no. 1, pp. 51–60, 2009.

[25] M. H. Ibrahim, I. A. Ali, I. I. Ibrahim, and A.H.
El-sawy, “A robust threshold elliptic curve digital
signature providing a new verifiable secret sharing
scheme,” in IEEE 46th Midwest Symposium on Cir-
cuits and Systems, vol. 1, pp. 276–280, 2003.

[26] I. Ingemarsson and G. J. Simmons, “A protocol to set
up shared secret schemes without the assistance of a
mutually trusted party,” in Advances in Cryptology
(EUROCRYPT’90), pp. 266–282, Springer, 1991.

[27] M. Jakobsson, “Flash mixing,” in Proceedings of the
Eighteenth Annual ACM Symposium on Principles
of Distributed Computing, pp. 83–89, 1999.

[28] M. Jakobsson and A. Juels, “An optimally robust
hybrid mix network,” in Proceedings of the Twenti-
eth Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 284–292, 2001.

[29] G. Maxwell, Coinjoin: Bitcoin Privacy for the
Real World, Bitcoin Forum, aug. 2013. (https://
bitcointalk.org/index.php)

[30] S. Meiklejohn, M. Pomarole, G. Jordan, K.
Levchenko, D. McCoy, G. M. Voelker, and S. Sav-
age, “A fistful of bitcoins: characterizing payments
among men with no names,” in Proceedings of the
2013 ACM Conference on Internet Measurement
Conference, pp. 127–140, 2013.

[31] I. Miers, C. Garman, M. Green, and A. D. Rubin,
“Zerocoin: Anonymous distributed e-cash from bit-
coin,” in IEEE Symposium on Security and Privacy
(SP’13), pp. 397–411, 2013.

[32] C. A. Neff, “A verifiable secret shuffle and its appli-
cation to e-voting,” in Proceedings of the 8th ACM
Conference on Computer and Communications Se-
curity, pp. 116–125, 2001.

[33] M. Ohkubo and M. Abe, “A length-invariant hybrid
mix,” in Advances in Cryptology (ASIACRYPT’00),
pp. 178–191, Springer, 2000.

[34] T. P. Pedersen, “Non-interactive and information-
theoretic secure verifiable secret sharing,” in Ad-
vances in Cryptology (CRYPTO’91), pp. 129–140,
Springer, 1992.

[35] B. Pfitzmann and A. Pfitzmann, “How to break
the direct rsa-implementation of mixes,” in Ad-
vances in Cryptology (EUROCRYPT’89), pp. 373–
381, Springer, 1990.

[36] F. Reid and M. Harrigan, An Analysis of Anonymity
in the Bitcoin System, Springer, 2013.

[37] T. Ruffing, P. Moreno-Sanchez, and A. Kate,
“Coinshuffle: Practical decentralized coin mixing
for bitcoin,” in Computer Security (ESORICS’14),
pp. 345–364, Springer, 2014.

[38] E. B. Sasson, A. Chiesa, C. Garman, M. Green,
I. Miers, E. Tromer, and M. V. Zerocash, “De-
centralized anonymous payments from bitcoin,” in
IEEE Symposium on Security and Privacy (SP’14),
pp. 459–474, 2014.

[39] J. A Solinas, Low-weight Binary Representa-
tions for Pairs of Integers, Technical Report,
2001. (http://cacr.uwaterloo.ca/techreports/
2001/corr2001-41.ps)

[40] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden,
and K. Wehrle, “Coinparty: Secure multi-party mix-
ing of bitcoins,” in Proceedings of the 5th ACM Con-
ference on Data and Application Security and Pri-
vacy, pp. 75–86, 2015.

International Journal of Network Security, Vol.19, No.2, PP.295-312, Mar. 2017 (DOI: 10.6633/IJNS.201703.19(2).14) 312

Maged Hamada Ibrahim received B.Sc. in Communi-
cations and Computers Engineering from Helwan Univer-
sity, Cairo, Egypt, with Distinction and Honor’s Degree
in 1995. He also obtained his M.Sc. from the same Uni-
versity in 2001. Then his Ph.D. from Helwan University
in 2005. He is now an Associate Professor at Helwan Uni-
versity. He is joining several network security projects
in Egypt. His main interest is engineering cryptography
and communications security. More specifically, working
on the design of efficient and secure cryptographic al-
gorithms and protocols, in particular, secure distributed
multiparty computations, public key infrastructures, dig-
ital signatures, digital rights management protocols and
non-cryptographic solutions to telecommunication secu-
rity problems. Other things that interest him are number
theory and the inspection of mathematics for designing
secure and efficient cryptographic schemes.

