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Abstract

We determine the exact values of the linear complexity
(LC) of 2p-periodic quaternary sequences over Z4 (the
residue class ring modulo 4) defined from the generalized
cyclotomic classes modulo 2p in terms of the theory of
Galois rings of characteristic 4, where p is an odd prime.
It is more difficult and complicated to consider sequences
over Z4 than that over finite fields due to the zero divisors
in Z4. Hence it brings some interesting twists. We prove
the main results as follows

LC =



2p, if p ≡ −3 (mod 8),
2p− 1, if p ≡ 3 (mod 8),
p, if p ≡ −1 (mod 16),

p+ 1, if p ≡ 1 (mod 16),
(p+ 1)/2, if p ≡ −9 (mod 16),
(p+ 3)/2, if p ≡ 9 (mod 16),

which answers an open problem proposed by Kim, Hong
and Song.

Keywords: Cryptography; Galois Rings; Generalized Cy-
clotomic Classes; Linear Complexity; Quaternary Se-
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1 Introduction

Due to applications of quaternary sequences in commu-
nication systems, radar and cryptography [12], it is of
interest to design large families of quaternary sequences.

Certain quaternary sequences were defined in the lit-
erature1 by using generalized cyclotomic classes mod-
ulo 2p for an odd prime p. Let g be an odd number
such that g is a primitive root modulo p and modulo
2p simultaneously. We note that such g always exits,
see [14]. We denote by Z2p = {0, 1, . . . , 2p − 1} the

1The generalized cyclotomic classes modulo 2p are also used to
define binary sequences [3, 4, 7, 11, 26].

residue class ring modulo 2p. Put D0 = 〈g2〉 = {g2n
(mod 2p) : n = 0, 1, . . . , (p − 3)/2} ⊂ Z2p, and D1 =
{g2n+1 (mod 2p) : n = 0, 1, . . . , (p − 3)/2} ⊂ Z2p. If we
write Ei = {2u (mod 2p) : u ∈ Di} for i = 0, 1, we have
the following partition

Z2p = D0 ∪D1 ∪ E0 ∪ E1 ∪ {0, p}.

We remark that D0 ∪ D1 is exactly the set of all odd
numbers in Z2p \ {p} and E0 ∪E1 is exactly the set of all
even numbers in Z2p \ {0}.

In terms of the generalized cyclotomic classes above,
Chen and Du [5] defined a family of quaternary sequences
(eu)u≥0 with elements in the finite field F4 = {0, 1, α, 1 +
α} as

eu =


0, if u = 0 or u ∈ D0,
1, if u ∈ D1,

1 + α, if u = p or u ∈ E0,
α, if u ∈ E1.

They determined the linear complexity of (eu)u≥0 in [5].
Later Ke, Yang and Zhang [15] calculated their autocor-
relation values.2 In fact, before [5, 15] Kim, Hong and
Song [17] defined another family of quaternary sequences
(su)u≥0 with elements in Z4 = {0, 1, 2, 3}, the residue
class ring modulo 4, as follows

su =


0, if u = 0 or u ∈ D0,
1, if u ∈ D1,
2, if u = p or u ∈ E0,
3, if u ∈ E1.

(1)

They derived the periodic autocorrelation function of
(su)u≥0. However, as we know, the question about the

2Ke and Zhang extended to define quaternary cyclotomic se-
quences of length 2pm [16]. Chang and Li defined quaternary cy-
clotomic sequences of length 2pq [1]. Both are over the finite field
F4.
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linear complexity of (su)u≥0 is still open due to the phe-
nomenon of zero divisors in Z4. In this work, we will
develop a way to solve this problem using the theory of
Galois rings of characteristic 4. We note that there are
many quaternary sequences over Z4 have been investi-
gated in the literature, see e.g., [2, 8, 9, 10, 21, 22, 25].

We recall that the linear complexity LC((su)u≥0) of
(su)u≥0 above is the least order L of a linear recurrence
relation (i.e., linear feedback shift register, or LFSR for
short) over Z4

su+L + c1su+L−1 + . . .+ cL−1su+1 + cLsu = 0 for u ≥ 0,

which is satisfied by (su)u≥0 and where c1, c2, . . . , cL ∈
Z4, see [23]. The connection polynomial is C(X) given by
1 + c1X + . . .+ cLX

L. We note that C(0) = 1. Let

S(X) = s0 + s1X + . . .+ s2p−1X
2p−1 ∈ Z4[X]

be the generating polynomial of (su)u≥0. Then an LFSR
with a connection polynomial C(X) generates (su)u≥0, if
and only if [23],

S(X)C(X) ≡ 0 (mod X2p − 1),

where C(X) ∈ Z4[X] satisfies C(0) = 1. That is,

LC((su)) = min{deg(C(X)) : C(X) ∈ Z4[X], C(0) = 1,
S(X)C(X) ≡ 0 (mod XT − 1)}.

(2)
Let r be the order of 2 modulo p. We denote

by GR(4r, 4) the Galois ring of order 4r of character-
istic 4, which is isomorphic to the residue class ring
Z4[X]/(f(X)), where f(X) ∈ Z4[X] is a basic irreducible
polynomial of degree r [24, 19]. The group of units of
GR(4r, 4), denoted by GR∗(4r, 4), contains a cyclic sub-
group of order 2r−1. Since p|(2r−1), let β ∈ GR∗(4r, 4)
be of order p. Then we find that γ = 3β ∈ GR∗(4r, 4) is of
order 2p 3. From Equation (2), we will consider the values
S(γv) for v = 0, 1, . . . , 2p−1, which allow us to derive the
linear complexity of (su)u≥0. Due to S(X) ∈ Z4[X], we
cannot consider it in the same way as those in finite fields.
For example, 1 and 3 are the roots of 2X−2 ∈ Z4[X], but
2X − 2 is not divisible by (X − 1)(X − 3), i.e., in the ring
Z4[X] the number of roots of a polynomial can be greater
than its degree. So we need to develop some necessary
technique here. Indeed, the theory of Galois ring enters
into our problem by means of the following lemmas.

Lemma 1. Let P (X) ∈ Z4[X] be a non-constant poly-
nomial. If ξ ∈ GR(4r, 4) is a root of P (X), we have
P (X) = (X − ξ)Q1(X) for some polynomial Q1(X) ∈
GR(4r, 4)[X].

Furthermore, if η ∈ GR(4r, 4) is another root of P (X)
and η−ξ is a unit, we have P (X) = (X−ξ)(X−η)Q2(X),
where Q1(X) = (X − η)Q2(X).

Lemma 2. Let γ ∈ GR∗(4r, 4) be of order 2p, and let
P (X) ∈ Z4[X] be any non-constant polynomial.

3In the context we always suppose that γ ∈ GR∗(4r, 4) is of
order 2p.

(I). If P (γv) = 0 for all v ∈ Di, where i = 0, 1, then we
have

P (X) = P1(X)
∏
v∈Di

(X − γv)

for some polynomial P1(X) ∈ GR(4r, 4)[X]. Simi-
larly, If P (γv) = 0 for all v ∈ Ei, where i = 0, 1,
then we have

P (X) = P2(X)
∏
v∈Ei

(X − γv)

for some polynomial P2(X) ∈ GR(4r, 4)[X].

(II). If P (γv) = 0 for all v ∈ {p} ∪ D0 ∪ D1, then we
have

P (X) = P3(X)(Xp + 1)

for some polynomial P3(X) ∈ GR(4r, 4)[X]. Simi-
larly, if P (γv) = 0 for all v ∈ {0}∪E0 ∪E1, then we
have

P (X) = P4(X)(Xp − 1)

for some polynomial P4(X) ∈ Z4[X].

(III). If P (0) = 1, P (γv) = 0 for v ∈ Z2p \ {0, p}, and
P (±1) ∈ {0, 2}, then we have degP (X) ≥ 2p − 1.
Furthermore, if either P (1) = P (−1) = 0 or P (1) =
P (−1) = 2, we have degP (X) ≥ 2p.

We give a proof of both lemmas in the Appendix for
the convenience of the reader.

2 Linear Complexity of (su)u≥0

2.1 Auxiliary Lemmas

We describe a relationship among D0, D1, E0 and E1.

Lemma 3. Let i, j ∈ {0, 1}.

(I). For v ∈ Di, we have

vDj , {vu (mod 2p) : u ∈ Dj} = Di+j mod 2,

and

vEj , {vu (mod 2p) : u ∈ Ej} = Ei+j mod 2.

(II). For v ∈ Ei, we have

vDj , {vu (mod 2p) : u ∈ Dj} = Ei+j mod 2,

and

vEj , {vu (mod 2p) : u ∈ Ej} = Ei+j mod 2

if p ≡ ±1 (mod 8), and otherwise

vEj , {vu (mod 2p) : u ∈ Ej} = Ei+j+1 mod 2.
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(III). If p ≡ ±1 (mod 8), we have

Di = {(v + p) (mod 2p) : v ∈ Ei},

and otherwise

Di+1 mod 2 = {(v + p) (mod 2p) : v ∈ Ei}.

(IV). If p ≡ ±1 (mod 8), we have

Ei = {(v + p) (mod 2p) : v ∈ Di},

and otherwise

Ei+1 mod 2 = {(v + p) (mod 2p) : v ∈ Di}.

(V). If p ≡ ±1 (mod 8), we have

Ei = {u+p : u ∈ Di, u < p}∪{u−p : u ∈ Di, u > p}.

Proof.

(I). If v ∈ Di for i = 0, 1 and u ∈ Dj for j = 0, 1 then
we can write v ≡ gi+2k (mod 2p), 0 ≤ k ≤ (p− 3)/2
and u ≡ gj+2l (mod 2p), 0 ≤ l ≤ (p− 3)/2. So, vu ≡
gi+j+2k+2l (mod 2p), which implies vu ∈ Di+j mod 2.
Since |vDi| = |Di+j mod 2|, it follows that vDi =
Di+j mod 2. The equality vEj = Ei+j+1 mod 2 can
be proved similarly.

(II). Let v ∈ Ei. We write v ≡ 2u (mod 2p), u ∈ Di.
Therefore, by (I) and our definitions we have

vDj = 2uDj = 2Di+j mod 2 = Ei+j mod 2.

Now, we consider vEj . First, we have by (I) again

vEj = 2uEj = 2Ei+j mod 2.

Second, for any w ∈ 2Ei+j mod 2, we can write w ≡
4a (mod 2p) for a ∈ Di+j mod 2. Clearly w is even
and w ∈ E0 ∪ E1, so we get w ≡ 2b (mod 2p) for
b ∈ D0 ∪D1. Then we have b ≡ 2a (mod p).

For p ≡ ±1 (mod 8), in which case 2 is a quadratic
residue modulo p [14], we have b ∈ Di+j mod 2,
which leads to w ≡ 2b (mod 2p) ∈ Ei+j mod 2, i.e.,
2Ei+j mod 2 ⊆ Ei+j mod 2. Since 2Ei+j mod 2 and
Ei+j mod 2 have the same cardinality, it follows that
vEj = 2Ei+j mod 2 = Ei+j mod 2.

The case of p ≡ ±3 (mod 8) follows in a similar way,
in which case 2 is a quadratic non-residue modulo p.

(III). Let p ≡ ±1 (mod 8), since 2 is a quadratic residue
modulo p [14], we can find when v runs through D0

(resp. D1), p+ 2v modulo 2p runs through D0 (resp.
D1). Since otherwise, if p + 2v0 (mod 2p) ∈ D1

for some v0 ∈ D1, then we write p + 2v0 ≡ g1+2k0

(mod 2p) for some integer k0, from which we derive
2v0 ≡ g1+2k0 (mod p). It leads to the result that 2
is a quadratic non-residue modulo p, a contradiction.

So, Di = {(v + p) (mod 2p) : v ∈ Ei} if p ≡ ±1
(mod 8).

The equality Di+1 mod 2 = {(v + p) (mod 2p) : v ∈
Ei} for p ≡ ±3 (mod 8) is proved similarly as the
first. Here, if v runs through D0 (resp. D1), then
p+ 2v modulo 2p runs through D1 (resp. D0).

(IV). Comes from (III).

(V). In fact first, the set

{u+ p : u ∈ D1, u < p} ∪ {u− p : u ∈ D1, u > p}

exactly contains |D1| even numbers. Second, we sup-
pose that a ∈ E0 for some

a ∈ {u+ p : u ∈ D1, u < p}∪{u− p : u ∈ D1, u > p}.

Write a ≡ 2v (mod 2p) for some v ∈ D0. From the
definition of D0, we see that v is a quadratic residue
modulo p. Then a is a quadratic residue modulo p
due to p ≡ ±1 (mod 8), in which case 2 is a quadratic
residue modulo p [14]. However, a is of the form u+p
or u − p for some u ∈ D1, and a ≡ u (mod p) is a
quadratic non-residue modulo p, a contradiction. So

{u+p : u ∈ D1, u < p}∪{u−p : u ∈ D1, u > p} ⊆ E1,

and both have the same cardinality.

For i = 0, 1, let

Si(X) =
∑
u∈Di

Xu

and

Ti(X) = Si(X
2) =

∑
u∈Ei

Xu (mod X2p − 1).

According to Equation (1), the generating polynomial of
(su)u≥0 is

S(X) = 2Xp + S1(X) + 2T0(X) + 3T1(X). (3)

As mentioned before, we will consider the values S(γv) for
a unit γ ∈ GR∗(4r, 4) of order 2p and v = 0, 1, . . . , 2p−1.
According to the definitions of D0, D1, E0 and E1, we will
describe S(γv) in the following lemma in terms of S0(γ)
(or S1(γ)) due to the fact that in the ring GR(4r, 4)

S0(γ) + S1(γ) =
∑

u∈D0∪D1

γu =

p−1∑
j=0

γ2j+1 − γp = 1. (4)

Lemma 4. Let γ ∈ GR∗(4r, 4) be of order 2p, and let
S(X) be the generating polynomial of (su)u≥0 described in
Equation (3).
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(I). If p ≡ ±3 (mod 8), we have

S(γv) =

 1− 2S0(γ), if v ∈ D0,
−1 + 2S0(γ), if v ∈ D1,

3, if v ∈ E0 ∪ E1.

(II). If p ≡ ±1 (mod 8), we have

S(γv) =

 0, if v ∈ D0 ∪D1,
2− 2S0(γ), if v ∈ E0,

2S0(γ), if v ∈ E1.

Proof.

(I). Let p ≡ ±3 (mod 8). By Lemma 3(I) we first get

S1(γv) =

{
1− S0(γ), if v ∈ D0,
S0(γ), if v ∈ D1.

Second, for any v ∈ Ej for j ∈ {0, 1}, write v = 2v for
v ∈ Dj . We see that p+ 2v ∈ Dj+1 by Lemma 3(III)
and γv = γ2v = −γp+2v, by Lemma 3(I) we derive

S1(γv) = S1(−γp+2v) = −
∑
u∈D1

γu(p+2v)

=


−
∑

w∈D0

γw, if v ∈ D0,

−
∑

w∈D1

γw, if v ∈ D1,

which leads to

S1(γv) =

{
−S0(γ), if v ∈ E0,
−1 + S0(γ), if v ∈ E1.

Similarly, by Lemma 3(I)-(IV), we have

T0(γv) =


−1 + S0(γ), if v ∈ D0,
−S0(γ), if v ∈ D1,
S0(γ), if v ∈ E0,

1− S0(γ), if v ∈ E1,

and

T1(γv) =


−S0(γ), if v ∈ D0,
−1 + S0(γ), if v ∈ D1,
1− S0(γ), if v ∈ E0,
S0(γ), if v ∈ E1.

Then putting everything together, we get the first
assertion.

The second assertion of this lemma can be proved in
a similar way.

So in order to determine the values of S(γv), it is
sufficient to calculate S0(γ). We need the parameter
[i, j] for i, j ∈ {0, 1}, which is the cardinality of the set
(1 +Di) ∩ Ej , i.e.,

[i, j] = |(1 +Di) ∩ Ej |,

where 1 +Di = {1 + u (mod 2p) : u ∈ Di}.

Lemma 5. With notations as before. We have

[0, 0] =


(p− 5)/4, if p ≡ 1 (mod 8),
(p− 3)/4, if p ≡ 7 (mod 8),
(p− 1)/4, if p ≡ 5 (mod 8),
(p+ 1)/4, if p ≡ 3 (mod 8),

and

[0, 1] =


(p− 1)/4, if p ≡ 1 (mod 8),
(p+ 1)/4, if p ≡ 7 (mod 8),
(p− 5)/4, if p ≡ 5 (mod 8),
(p− 3)/4, if p ≡ 3 (mod 8),

Proof. Since g used above is also a primitive modulo p,
we write

H0 = {g2n (mod p) : n = 0, 1, . . . , (p− 3)/2}

and

H1 = {g1+2n (mod p) : n = 0, 1, . . . , (p− 3)/2}.

We find that for i = 0, 1

{u (mod p) : u ∈ Di} = Hi

and
{2u (mod p) : u ∈ Di} = Hi+` mod 2,

where ` = 0 if p ≡ ±1 (mod 8) and ` = 1 if p ≡ ±3
(mod 8), i.e., ` = 0 if 2 is a quadratic residue modulo p,
and ` = 1 otherwise [14]. Therefore,

[i, j] = |(1 +Di) ∩ Ej | = |(1 +Hi) ∩Hj+` mod 2|.

We conclude the proof by applying the values of |(1 +
Hi) ∩Hj | computed in [13].

With the values of [0, 0] and [0, 1], we prove the follow-
ing statement, which is a generalization of [6, Theorem
1].

Lemma 6. Let γ ∈ GR∗(4r, 4) be of order 2p. Then we
have

(S0(γ))2 = S0(γ) +


(p− 1)/4, if p ≡ 1 (mod 8),
(p+ 1)/4, if p ≡ −1 (mod 8),
(p+ 1)/4, if p ≡ 3 (mod 8),
(p− 1)/4, if p ≡ −3 (mod 8).

Proof. By the definition of S0(X) we have

(S0(γ))2 =

(p−3)/2∑
l,m=0

γg
2l+g2m

=

(p−3)/2∑
l,m=0

γg
2m(g2(l−m)+1).

For each fixed m, since the order of g modulo 2p is p− 1,
we see that l−m modulo (p− 1) runs through the range
0, 1, . . . , (p− 3)/2 if l does. So we have

(S0(γ))2 =

(p−3)/2∑
m,n=0

γg
2m(g2n+1). (5)

Since g is odd, we see that g2n + 1 (mod 2p) is even
for any n. That is, g2n + 1 (mod 2p) ∈ E0 ∪E1 ∪{0}. So
we consider g2n + 1 (mod 2p) in three different cases.
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Case 1. Let

N0 = {n : 0 ≤ n ≤ (p−3)/2, g2n+1 (mod 2p) ∈ E0}.

In fact, the cardinality |N0| of N0 equals [0, 0]. For
each n ∈ N0, as the proof of Lemma 4 we obtain that
by Equation (4)

(p−3)/2∑
m=0

γg
2m(g2n+1) =

∑
v∈D0

γ2v = S0(γ2) = S0(−γp+2)

=

{
−S0(γ), if p ≡ ±1 (mod 8),
−1 + S0(γ), if p ≡ ±3 (mod 8).

Case 2. Similar to Case 1, we let

N1 = {n : 0 ≤ n ≤ (p−3)/2, g2n+1 (mod 2p) ∈ E1}.

Then the cardinality |N1| equals [0, 1]. Now for each
n ∈ N1, we obtain that

(p−3)/2∑
m=0

γg
2m(g2n+1) =

∑
v∈D1

γ2v = S1(γ2) = S1(−γp+2)

=

{
−1 + S0(γ), if p ≡ ±1 (mod 8),
−S0(γ), if p ≡ ±3 (mod 8).

Case 3. There is an n such that (g2n + 1) ≡ 0 (mod 2p)
if and only if p ≡ 1 (mod 4). In this case, we have

n = (p− 1)/4 and
∑(p−3)/2

m=0 γg
2m(g2n+1) = (p− 1)/2.

Let p ≡ 1 (mod 8). Using Equation (5) we obtain
that

(S0(γ))2 = |N0|·(−S0(γ))+|N1|·(−1+S0(γ))+(p−1)/2.

Then we get the desired result by using the values
of[0, 0] (=|N0|) and [0, 1] (= |N1|) in Lemma 5.

The assertions for p ≡ −1, 3,−3 (mod 8) can be ob-
tained in a similar way.

With the help of Lemma 6 we now deduce the values
of S0(γ). It is clear that S0(γ) ∈ GR∗(4r, 4) or S1(γ) ∈
GR∗(4r, 4) from Equation (4). Therefore, without loss of
generality we always suppose that S0(γ) ∈ GR∗(4r, 4).
(Of course, if one supposes that S1(γ) ∈ GR∗(4r, 4), then
S1(γ) will be used in the context.)

Lemma 7. Let γ ∈ GR∗(4r, 4) be of order 2p with
S0(γ) =

∑
u∈D0

γu ∈ GR∗(4r, 4). We have

S0(γ) =


1, if p ≡ ±1 (mod 16),
ρ, if p ≡ ±5 (mod 16),
3, if p ≡ ±9 (mod 16),

2 + ρ, if p ≡ ±13 (mod 16),

where ρ satisfies the equation ρ2 + 3ρ+ 3 = 0 over Z4.

Proof. Let p ≡ ±1 (mod 16). Then, by Lemma 6, we
obtain that (S0(γ))2 = S0(γ). Under given assumptions
about S0(γ), we have S0(γ) = 1. The other assertions of
this lemma can be proved in a similar way.

Lemma 8. Let γ ∈ GR∗(4r, 4) be of order 2p with
S0(γ) =

∑
u∈D0

γu ∈ GR∗(4r, 4), and let S(X) be the gen-
erating polynomial of (su)u≥0 described in Equation (3).

(I). For any odd prime p, we have

S(γv) =

{
p+ 1, if v = 0,

2, if v = p.

(II). If p ≡ ±3 (mod 8), we have

S(γv) ∈ GR∗(4r, 4), for all v ∈ D0 ∪D1 ∪ E0 ∪ E1.

(III). If p ≡ ±1 (mod 8), we have

S(γv) =

{
0, if v ∈ D0 ∪D1 ∪ E0,
2, if v ∈ E1.

Proof. (I) can be checked easily. (II) and (III) follow
immediately from Lemmas 4 and 7.

In the following subsections, we will derive linear com-
plexity of (su)u≥0 in Equation (2) by considering the fac-
torization of S(X).

2.2 Linear Complexity for the Case p ≡
±3 (mod 8)

Theorem 1. Let (su)u≥0 be the quaternary sequence over
Z4 defined by Equation (1). Then the linear complexity
of (su)u≥0 satisfies

LC((su)u≥0) =

{
2p, if p ≡ −3 (mod 8),

2p− 1, if p ≡ 3 (mod 8).

Proof. With notations as before. That is, we use
S(X) the generating polynomial of (su)u≥0 and let γ ∈
GR∗(4r, 4) be of order 2p with S0(γ) =

∑
u∈D0

γu ∈
GR∗(4r, 4). Suppose that C(X) ∈ Z4[X] is a connection
polynomial of (su)u≥0. We remark that min deg(C(X)) ≤
2p.

For p ≡ ±3 (mod 8), by Equation (2) and Lemma 8(II)
we get

C(γv) = 0 for all v ∈ D0 ∪D1 ∪ E0 ∪ E1.

Now we consider the values of C(γ0) and C(γp).4 Let
s(X) and c(X) be the polynomials of degree < 2 such
that

S(X) ≡ s(X) (mod X2 − 1)

and
C(X) ≡ c(X) (mod X2 − 1).

If p ≡ −3 (mod 8), we have S(−1) = S(1) = 2 by
Lemma 8(I). It follows that s(X) = 2 or s(X) = 2X. So
by Equation (2) again, we see that

c(X) ∈ {0, 2, 2X, 2X + 2}
4In fact, C(γ0) = C(1) and C(γp) = C(−1).
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and hence either C(−1) = C(1) = 0 or C(−1) = C(1) =
2.

In terms of all values of C(γv) for v = 0, 1, . . . , 2p −
1 above, by Lemma 2(III) we have degC(X) ≥ 2p.
Consequently, we get min deg(C(X)) = 2p and hence
LC((su)u≥0) = 2p for this case.

Similarly if p ≡ 3 (mod 8), we have S(1) = 0 and
S(−1) = 2 by Lemma 8(I), and hence s(X) = 1 − X.
Then we get

c(X) ∈ {0, 2, X + 1, 2X + 2}

and hence C(−1) = C(1) = 0, or C(−1) = C(1) = 2, or
C(−1) = 0 and C(1) = 2. Then by Lemma 2(III) we have
degC(X) ≥ 2p− 1.

On the other hand, since s(X) = 1 − X, we see that
S(X) is divisible by X − 1 over Z4, from which we derive

S(X) · X
2p − 1

X − 1
≡ 0 (mod X2p − 1).

Then X2p−1
X−1 is a connection polynomial of (su)u≥0. So

we get min deg(C(X)) = 2p− 1, i.e., LC((su)u≥0) = 2p−
1.

2.3 Linear Complexity for the Case p ≡
±1 (mod 8)

Due to Lemma 8(III), it is more complicated to determine
the connection polynomial C(X) with the smallest degree
when p ≡ ±1 (mod 8). For j = 0, 1, define

Γj(X) =
∏

v∈Dj

(X − γv) and Λj(X) =
∏
v∈Ej

(X − γv),

where γ ∈ GR∗(4r, 4) is of order 2p with S0(γ) =∑
u∈D0

γu ∈ GR∗(4r, 4). In particular, by Lemma 3(IV)
we have for j = 0, 1,

Λj(X) =
∏

v∈Dj

(X − γv+p).

Lemma 9. If p ≡ ±1 (mod 8), then Γj(X) and Λj(X)
are polynomials over Z4 for j = 0, 1.

Proof. We only consider Γ0(X) here, for Γ1(X), Λ0(X)
and Λ1(X) it can be done in a similar manner. It is
sufficient to show that the coefficients of Γ0(X)

am = (−1)m
∑

i1<i2<...<im
i1,i2,...,im∈D0

γi1+i2+...+im ∈ Z4

for 1 ≤ m ≤ (p− 1)/2.
Let γb be a term of the last sum and b ≡ i1+i2+. . .+im

(mod 2p), b 6≡ 0 (mod p). By Lemma 3 for any n : 0 <
n < (p − 1)/2 we have that g2nij ∈ D0, j = 0, . . . ,m.

Hence, X − γg
2nij , j = 0, . . . ,m are the factors in the

product
∏

v∈Dj
(X − γv). So, γg

2ni1 . . . γg
2nim = γg

2nb is

also a term of this sum for any n = 0, ..., (p− 3)/2, i.e.,

γb + γg
2b + · · ·+ γg

p−3b = S0(γb)

is a part of this sum. Therefore, there must exist the
elements b1, . . . , bn such that

am = (−1)m
n∑

i=0

S0(γbi) +A,

where
A = |{a|a ≡ (i1 + i2 + . . .+ im) ≡ 0 (mod p) and i1 <

i2 < . . . < im; i1, i2, . . . , im ∈ D0}|.
By Lemma 7 and the proof of Lemma 4 we have that

S0(γbi) ∈ Z4. This completes the proof of Lemma 9.

Since γv is a root of Xp + 1 for any v ∈ {p}∪D0 ∪D1,
and γv1−γv2 ∈ GR∗(4r, 4) for distinct v1, v2 ∈ {p}∪D0∪
D1, it follows that

Xp + 1 = (X + 1)Γ0(X)Γ1(X), (6)

from Lemma 2 and the definitions on Γ0(X) and Γ1(X).
Similarly, we have

Xp − 1 = (X − 1)Λ0(X)Λ1(X). (7)

Now, let us explore the expansion of

S(X) = 2Xp + S1(X) + 2T0(X) + 3T1(X).

Lemma 10. We have the polynomial factoring in the ring
Z4[X]

S1(X) + 3T1(X) =
(Xp − 1)Γ0(X)U1(X),

if p ≡ ±1 (mod 16),
(Xp − 1)Γ0(X)U2(X) + 2(Xp + 1),

if p ≡ ±9 (mod 16),

and

2Xp + 2T0(X)

=


Γ0(X)Λ0(X)(X − 1)V1(X) + 2(Xp + 1),

if p ≡ −1,−9 (mod 16),
Γ0(X)Λ0(X)V2(X) + 2(Xp + 1),

if p ≡ 1, 9 (mod 16),

where Ui(X), Vi(X) ∈ Z4[X], i = 1, 2.

Proof. Since p ≡ ±1 (mod 8), by Lemma 3(V) we obtain

S1(X) + 3T1(X) =
∑
u∈D1

Xu + 3
∑
u∈E1

Xu

=
∑
u∈D1
u<p

Xu +
∑
u∈D1
u>p

Xu + 3
∑
u∈D1
u<p

Xu+p + 3
∑
u∈D1
u>p

Xu−p

= (Xp + 3)

3
∑
u∈D1
u<p

Xu +
∑
u∈D1
u>p

Xu−p

 .

Write
M(X) = 3

∑
u∈D1
u<p

Xu +
∑
u∈D1
u>p

Xu−p.
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With the choice of γ as before, if v ∈ D0, we have

M(γv) = 3
∑
u∈D1
u<p

γvu +
∑
u∈D1
u>p

γv(u−p)

= −
∑
u∈D1
u<p

γvu −
∑
u∈D1
u>p

γvu

= −S1(γ) = −1 + S0(γ),

where we use γp = −1 and Equation (4). So for v ∈ D0,
by Lemma 7 we get

M(γv) =

{
0, if p ≡ ±1 (mod 16),
2, if p ≡ ±9 (mod 16),

from which, and by Lemma 2, we derive

M(X) =

{
Γ0(X)U1(X), if p ≡ ±1 (mod 16),

2 + Γ0(X)U2(X), if p ≡ ±9 (mod 16),

where U1(X), U2(X) ∈ Z4[X]. We complete the proof of
the first statement.

Now, we consider the polynomial 2Xp +2T0(X). Since
2Xp + 2T0(X) = 2(Xp + 1) + 2 + 2T0(X), we only need
to consider 2 + 2T0(X).

We first consider the roots of 2 + 2S0(X). According
to the proof of Lemma 4, we see that p + 2 ∈ D0 since
p ≡ ±1 (mod 8). For any v ∈ E0 with v ≡ 2v (mod 2p),
where v ∈ D0, we obtain by Equation (4) and Lemma 7

2 + 2S0(γv) = 2 + 2
∑
u∈D0

γuv = 2 + 2
∑
u∈D0

γ2vu

= 2 + 2S0(γ2) = 2 + 2S0(−γp+2)

= 2− 2S0(γ) = 0.

So, by Lemma 2 we have

2 + 2S0(X) = Λ0(X)G(X)

for some G(X) ∈ Z4[X], then we have

2 + 2S0(X2) = Λ0(X2)G(X2).

Since T0(X) = S0(X2) (mod X2p − 1) and

Λ0(X2) =
∏
v∈E0

(X2 − γv) =
∏

u∈D0

(X2 − γ2u)

=
∏

u∈D0

(X − γu)(X + γu)

=
∏

u∈D0

(X − γu)(X − γu+p)

=
∏

u∈D0

(X − γu)
∏

v∈D0

(X − γv+p)

= Γ0(X)Λ0(X),

it follows that

2 + 2T0(X) = 2 + 2S0(X2) = Γ0(X)Λ0(X)G(X2).

On the other hand, from the fact that

2 + 2T0(1) = p+ 1 =

{
0, if p ≡ −1 (mod 8),
2, if p ≡ 1 (mod 8),

and Γ0(1)Λ0(1) ∈ GR∗(4r, 4), we write

G(X2) = (X − 1)V1(X)

for p ≡ −1 (mod 16) or p ≡ −9 (mod 16). Otherwise, we
write V2(X) = G(X2). Putting everything together, we
complete the proof of the second statement.

Lemma 11. Let S(X) be the generating polynomial of
(su)u≥0 described in (3). We have in the ring Z4[X]

S(X) =



(X − 1)Γ0(X)Γ1(X)W1(X),
if p ≡ −1 (mod 16),

Γ0(X)Γ1(X)W2(X),
if p ≡ 1 (mod 16),

(X − 1)Γ0(X)Γ1(X)Λ0(X)W3(X),
if p ≡ −9 (mod 16),

Γ0(X)Γ1(X)Λ0(X)W4(X),
if p ≡ 9 (mod 16),

where Wi(γ
v) 6= 0, i = 1, 2 for v ∈ E0 ∪E1 and Wi(γ

v) 6=
0, i = 3, 4 for v ∈ E1.

Proof. Let p ≡ −1 (mod 16). By (6) we have

2(Xp+1) = 2(X+1)Γ0(X)Γ1(X) = 2(X−1)Γ0(X)Γ1(X).

Then according to Lemma 10, we write

S(X) = (X − 1)Γ0(X)H(X),

where

H(X) = U1(X)(Xp−1)/(X−1)+Λ0(X)V1(X)+2Γ1(X).

We check that

H(γv)

 = 0, if v ∈ D1,
6= 0, if v ∈ E0,
6= 0, if v ∈ E1.

For v ∈ D1, we have S(γv) = 0 by Lemma 8. Since
(γv − 1)Γ0(γv) ∈ GR∗(4r, 4), we have H(γv) = 0 by
Lemma 1.

For v ∈ E0, we have ((γv)p − 1)/(γv − 1) = 0 and
Λ0(γv) = 0, so that H(γv) = 2Γ1(γv) 6= 0;

For v ∈ E1, since S(γv) = 2 by Lemma 8, we have
H(γv) 6= 0.
So we have by Lemma 1

H(X) = Γ1(X)W1(X)

for some W1(X) ∈ Z4[X] and W1(γv) 6= 0 for v ∈ E0 ∪
E1. Then we get the factorization of S(X) for p ≡ −1
(mod 16).

Another assertions of this lemma can be proved in a
similar way.
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Theorem 2. Let (su)u≥0 be the quaternary sequence over
Z4 defined by Equation (1). Then the linear complexity
of (su)u≥0 satisfies

LC((su)u≥0) =

{
p, if p ≡ −1 (mod 16),

p+ 1, if p ≡ 1 (mod 16).

Proof. Let p ≡ −1 (mod 16). Since

S(X) = (X − 1)Γ0(X)Γ1(X)W1(X)

by Lemma 11, together with Lemma 8(I) we have
W1(γv) 6= 0 for v ∈ E0 ∪ E1 ∪ {p}. Then we see that

S(X)(X + 1)Λ0(X)Λ1(X) ≡ 0 (mod X2p − 1).

That is, (X+1)Λ0(X)Λ1(X) is a connection polynomial of
degree p of (su)u≥0. So the minimal degree of connection
polynomials of (su)u≥0 is ≤ p.

Let C(X) ∈ Z4[X] be a connection polynomial of
(su)u≥0. Due to

gcd((X − 1)Γ0(X)Γ1(X), (X + 1)Λ0(X)Λ1(X)) = 1,

we have

W1(X)C(X) ≡ 0 (mod (X + 1)Λ0(X)Λ1(X))

by Equations (2), (6), (7) and Lemma 11. So we deduce

W1(γv)C(γv) = 0 for v ∈ E0 ∪ E1 ∪ {p}.

Since W1(γv) 6= 0 for v ∈ E0 ∪ E1 ∪ {p}, if W1(γv) ∈
GR∗(4r, 4) then we get C(γv) = 0, and if W1(γv) =
2η, η ∈ GR∗(4r, 4), then we have either C(γv) = 0 or
C(γv) = 2. I.e., 2C(γv) = 0 for v ∈ E0 ∪ E1 ∪ {p}.

By the definition of C(X) = 1 + c1X + . . ., i.e., 2C(x)
is non-constant, then by Lemma 1 we have that 2C(x) is
divisible by (X + 1)Λ0(X)Λ1(X), i.e., degC(X) ≥ p and
hence LC((su)u≥0) = p for this case. We prove the first
statement.

Let p ≡ 1 (mod 16). From that

S(X)(X2 − 1)Λ0(X)Λ1(X) ≡ 0 (mod (X2p − 1)),

we see that (X2− 1)Λ0(X)Λ1(X) is a connection polyno-
mial of (su)u≥0 of degree p+ 1.

For any connection polynomial C(X) of (su)u≥0, a sim-
ilar way presented above gives

W2(X)C(X) ≡ 0 (mod (X2 − 1)Λ0(X)Λ1(X)).

As in the proof of Theorem 1, denote by s(X) and c(X)
the polynomials of degree < 2 such that

S(X) ≡ s(X) (mod X2 − 1)

and
C(X) ≡ c(X) (mod X2 − 1).

As earlier, we can obtain that c(X) ∈ {0, 2, 2X, 2X + 2},
hence 2c(X) = 0 and 2C(X) = (X2 − 1)M(X) for some
M(X) ∈ Z4[X]. Since by Lemma 11 W2(γv) 6= 0 for
v ∈ E0 ∪ E1, it follows that 2C(γv) = 0 and M(γv) =
0 for v ∈ E0 ∪ E1. Therefore, M(X) is divisible by
Λ0(X)Λ1(X) by Lemma 1, i.e., degC(X) ≥ p + 1 and
hence LC((su)u≥0) = p+ 1 for this case.

Theorem 3. Let (su)u≥0 be the quaternary sequence de-
fined by Equation (1). Then the linear complexity of
(su)u≥0 satisfies

LC((su)u≥0) =

{
(p+ 1)/2, if p ≡ −9 (mod 16),
(p+ 3)/2, if p ≡ 9 (mod 16).

Proof. The proof can follow that of Theorem 2 in a similar
way. Here we give a sketch.

Let p ≡ −9 (mod 16). On the one hand, (X+1)Λ1(X)
is a connection polynomial of (su)u≥0 of degree (p+ 1)/2
by Equation (2).

On the other hand, for any connection polynomial
C(X) of (su)u≥0, we have

W3(X)C(X) ≡ 0 (mod (X + 1)Λ1(X)).

Now since W3(γv) 6= 0 for v ∈ E1 ∪ {p}, it follows that
2C(γv) = 0 for v ∈ ∪E1 ∪ {p}. Therefore, by Lemma 2
again 2C(x) is divisible by (X+1)Λ1(X), i.e., degC(X) ≥
(p+1)/2 and hence LC((su)u≥0) = (p+1)/2 for this case.

The case of p ≡ 9 (mod 16) follows the way of p ≡ 1
(mod 16) in Theorem 2 and we omit it.

3 Final Remarks and Conclusions

We determined the exact values of the linear complexity
of 2p-periodic quaternary sequences over Z4 defined from
the generalized cyclotomic classes modulo 2p by consider-
ing the factorization of the generating polynomial S(X)
in Z4[X]. It is more complicated to study this problem
than that in finite fields. Besides the autocorrelation con-
sidered in [17], this is another cryptographic feature of
the quaternary cyclotomic sequences of period 2p.

A direct computing of the linear complexity has been
done for 3 ≤ p ≤ 1000 by the Berlekamp-Massey algo-
rithm adapted by Reeds and Sloane in [20] for the residue
class ring to confirm our theorems. Below we list some
experimental data.

1. p = 3, (su)u≥0 = (0, 0, 2, 2, 3, 1), then C(X) =
1+X+X2+X3+X4+X5 and LC((su)u≥0) = 5(= 2p−1).

2. p = 5, (su)u≥0 = (0, 0, 2, 1, 3, 2, 3, 1, 2, 0), then
C(X) = 1 + 3X10 and LC((su)u≥0) = 10(= 2p).

3. p = 7, (su)u≥0 = (0, 0, 2, 1, 2, 1, 3, 2, 2, 0, 3, 0, 3, 1),
then C(X) = 1+X2 +X3 +3X4 and LC((su)u≥0) = 4(=
(p+ 1)/2).

4. p = 17, C(X) = 1 + X + 3X17 + 3X18,
LC((su)u≥0) = 18(= p+ 1).

5. p = 31, C(X) = 1 + 3X31, LC((su)u≥0) = 31(= p).
6. p = 41, C(X) = 1 + 2X2 + 3X3 + 2X5 + 2X6 +

3X7 + 3X8 + 3X9 +X10 + 2X11 + 3X12 +X13 +X14 +
X15 +2X16 +2X17 +X19 +2X20 +3X22, LC((su)u≥0) =
22(= (p+ 3)/2).

We hope that the procedures in this paper used to
derive the linear complexity can be extended to quater-
nary cyclotomic sequences with larger period (for exam-
ple, 2pn).

We finally remark that it is interesting to consider the
k-error linear complexity of the sequences in this work.
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From [18], it is also possible to use the sequences to define
quaternary interleaved sequences of larger period.
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Appendix

Proof of Lemma 1.

It is well known that if ξ ∈ GR(4r, 4) is a
root of the polynomial P (X) ∈ Z4[X] then
P (X) = (X − ξ)Q1(X) for some polynomial
Q1(X) ∈ GR(4r, 4)[X]. Let η be another root
of P (X) and ξ − η ∈ GR∗(4r, 4), then we
have (ξ − η)Q1(η) = 0, i.e., Q1(η) = 0. So,
Q1(X) = (X − η)Q2(X) holds for some poly-
nomial Q2(X) ∈ GR(4r, 4)[X] and we derive
P (X) = (X − ξ)(X − η)Q2(X).

Proof of Lemma 2.

(I). By the choice of γ we have an expansion (Xp −
1)/(X − 1) =

∏p−1
j=1(X − γ2j), hence p =∏p−1

j=1(1−γj)(1+γj) . So, γj−γn ∈ GR∗(4r, 4)
when j, n ∈ {0, ..., 2p − 1} and j 6≡ n (mod p).
Therefore, if P (γj) = 0 for all j ∈ Di or for
all j ∈ Ei, i = 0, 1, then P (X) is divisible by∏

j∈Di
(X−γj) or

∏
j∈Ei

(X−γj) by Lemma 1.
The first assertion of Lemma 2 is proved.

(II). This assertion follows from (I).

(III). We consider two cases.

Let P (1) = 0 or P (−1) = 0. Suppose P (−1) =
0, in this case by (II) we have that

P (X) = (Xp + 1)P3(X)

and 2P3(X) 6= 0 since P (0) = 1. From the
equality P (X) = (Xp + 1)P3(X) for X = γv,
v ∈ E0 ∪ E1 we deduce 2P3(γv) = 0, therefore
2P3(X) is divisible by (Xp − 1)/(X − 1) and
degP (X) ≥ 2p − 1. Furthermore, if P (1) =
0 then 2P3(X) is divisible by (Xp − 1) and
degP (X) ≥ 2p.

Let P (1) 6= 0 and P (−1) 6= 0. Then, we de-
rive P (1) = 2, P (−1) = 2 and P (γj) = 0 for
all j ∈ D0 ∪ D1. By (I) we have P (X) =

Q(X) (Xp + 1) /(X + 1), Q(X) ∈ Z4[X] and
2Q(X) 6= 0. Since P (−1) = 2 it follows that
Q(−1) = 2 and Q(X) = (X + 1)F (X) + 2,
F (X) ∈ Z4[X] or

P (X) = (Xp + 1)F (X) + 2 (Xp + 1) /(X + 1).

From the last equality and conditions of this
lemma we obtain 2F (γv) = 0 for v ∈ E0 ∪E1 ∪
{0}, therefore 2F (x) is divisible by xp − 1 and
degP (X) ≥ 2p.

Remark 1. The polynomial P (X) is not obliged to be
divisible by X2p−1 when P (γj) = 0 for j = 0, 1, . . . , 2p−
1. For example, P (X) = X2p − 1 + 2(Xp + 1).
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