
International Journal of Network Security, Vol.19, No.6, PP.950-954, Nov. 2017 (DOI: 10.6633/IJNS.201711.19(6).11) 950

Analysis of One Scheme for Enabling Cloud
Storage Auditing with Verifiable

Outsourcing of Key Updates

Zhengjun Cao1, Lihua Liu2, Olivier Markowitch3

(Corresponding author: Zhengjun Cao)

Department of Mathematics, Shanghai University1

No.99, Shangda Road, Shanghai, China

(Email: caozhj@shu.edu.cn)

Department of Mathematics, Shanghai Maritime University2

No.1550, Haigang Ave, Pudong New District, Shanghai, China

Computer Sciences Department, Université Libre de Bruxelles3

Boulevard du Triomphe CP 212, 1050 Bruxelles, Belgique

(Received July 25, 2016; revised and accepted Nov. 15 & Dec. 25, 2016)

Abstract

Cloud computing supports a paradigm shift from local to
network-centric computing and enables customers with
limited computational resources to outsource large-scale
computational tasks to the cloud, such as linear equa-
tions and linear programming. Recently, Yu et al. [IEEE
TIFS, 11(6), 2016, 1362-1375] have proposed a scheme for
cloud storage auditing with verifiable outsourcing of key
updates. In this note, we remark that Yu et al.’s scheme
has two inherent weaknesses: 1) it does not truly mitigate
the client’s computational burden for key updates; 2) it
does not ensure confidentiality since the files uploaded to
the cloud by the client are eventually not encrypted at
all.

Keywords: Cloud Computing; Cloud Storage Auditing;
Confidentiality; Third-party Auditor

1 Introduction

Cloud computing making use of the tremendous resources
of computing and storage systems via the Internet, sup-
ports a paradigm shift from local to network-centric com-
puting [17, 19], and benefits scientific and engineering ap-
plications, such as data mining and many other computa-
tional and data-intensive activities. It enables customers
with limited computational resources to outsource large-
scale computational tasks to the cloud, including linear
equations [21, 23], linear programming [9, 20, 22], bilin-
ear pairing [1, 7, 8, 11], matrix inversion computation [14]
and matrix multiplication computation [13]. Many re-
searchers have studied the new computing paradigm and
proposed a lot of schemes [2, 6, 10, 12, 15, 16]. But some

kinds of flaws in some outsourcing schemes [3, 4, 5] were
found for security, efficiency or other reasons.

Key-exposure problem is a special one related to key
management. A primary observation on the problem in
the scenario of cloud storage auditing is that once the
client’s secret key for storage auditing is exposed to the
cloud, the cloud is able to easily hide the data loss inci-
dents for maintaining its reputation. More seriously, the
cloud maybe discard the client’s data rarely accessed for
saving the storage space [24].

Very recently, Yu et al. [25] have proposed a scheme for
cloud storage auditing with verifiable outsourcing of key
updates. The scheme involves three entities, the client,
the cloud infrastructure and a third-party auditor (TPA).
The client uploads his files to the cloud. The TPA audits
the integrity of the files stored in the cloud and regularly
updates the encrypted secret keys of the client to prevent
any secret key exposition. Upon receiving the returned
encrypted secret key, the client decrypts it to get the real
secret key.

In this note we would like to stress that in Yu et al.’s
scheme the recovered secret key is only used to generate
authenticators for the files instead of protecting these files.
No secret key associated to a symmetric key encryption
is dedicated to the protection of the files. Besides, the
scheme does not truly mitigate the client’s computational
burden for key updates. In view of these weaknesses, we
would like to point out that Yu et al.’s scheme could not
be practically implemented.

International Journal of Network Security, Vol.19, No.6, PP.950-954, Nov. 2017 (DOI: 10.6633/IJNS.201711.19(6).11) 951

2 Review of Yu et al.’s Scheme

The scheme [25] uses the following notations. G1, G2 are
two multiplicative groups with some prime order q. g
is a generator of G1. ê : G1 × G1 → G2 is a bilinear
pairing. H1 : G1 → G1, H2 : {0, 1}∗ × G1 → Z∗q and
H3 : {0, 1}∗ × G1 → G1 are three cryptographic hash
functions. T is the total periods number of the whole
lifetime for the files stored in the cloud. w1 · · ·wt is the
binary string of the node wj associated with period j.
wj |k(k ≤ t) is the k-prefix of wj . wj0 , wj1 are the left child
node and the right child node of wj , respectively. wj |k̄ is
the sibling node of wj |k. PK is the public key which is
unchanged in the whole lifetime. ESwj is the encrypted
node secret key. Rwj is the verification value which is
used to verify the validity of authenticators. ESKj is
the client’s encrypted secret key in period j. Xj is the
set composed by the key pairs. Ωj is a set composed
by the verification values. (ES,R) is the key pair of the
root node. F is a file which the client wants to store in
cloud. mi(i = 1, · · · , n) are n blocks of file F . DK is
the decryption key to recover the encrypted secret key for
cloud storage auditing.

It involves three entities, some clients, a third-party
auditor (TPA), and the cloud. The client has a secret key
associated to a signature SSig for ensuring the integrity of
not only the file identifier name but also the time period
j. The protocol consists of the following phases:

SysSetup: Given a security parameter k and the to-
tal time period T , the client picks a generator u
of G1, ρ, τ ∈ Z∗q and computes R = gρ, G =
gτ , ES = H1(R)ρ−τ . Set PK = (R,G, u). Set X0 =
{(ES,R)},Ω0 = ∅ (where ∅ is null set), DK = τ and
keep it himself. The client sends ESK0 = (X0,Ω0)
to the TPA.

EkeyUpdate: Input ESKj , the time period j, and the
public key PK. The TPA parses ESKj = (Xi,Ωj)
where Xj is organized as a stack which consists of
(ESwj , Rwj) and the key pairs of the right siblings
of the nodes on the path from the root to wj . The
top element of the stack is (ESwj , Rwj). Firstly, pop
(ESwj , Rwj) off the stack. Then do as follows:

• If wj is an internal node (wj+1 = wj0 in
this case), select ρwj0 , ρwj1 ∈ Z∗q . And
then compute Rwj0 = gρwj0 , Rwj1 = gρwj1 ,
hwj0 = H2(wj0 , Rwj0), hwj1 = H2(wj1 , Rwj1),
ESwj0 = ESwj · H1(R)ρwj0 hwj0 , ESwj1 =
ESwj ·H1(R)ρwj1 hwj1 . Push (ESwj1 , Rwj1) and
(ESwj0 , Rwj0) onto the stack orderly. Let Xj+1

denote the current stack and define Ωj+1 =
Ωj
⋃
{Rwj0}.

• If wj is a leaf, define Xj+1 with the current
stack. If wt = 0 (the node wj+1 is the right sib-
ling node of wj in this case), then set Ωj+1 =
Ωj
⋃
{Rwj+1}−{Rwj} (Rwj+1 can be read from

the new top (ESwj+1 , Rwj+1) of the stack). If

wt = 1 (wj+1 = w′′1 in this case, where w′′

is the longest string such that w′′0 is a pre-
fix of wj), then set Ωj+1 = Ωj

⋃
{Rwj+1} −

{Rw′′0, Rw′′01, · · · , Rwt} (Rwj+1 can be read
from the new top (ESwj+1 , Rwj+1) of the stack).

• Erase key pair (ESwj , Rwj), and return
ESKj+1 = (Xj+1,Ωj+1).

VerESK: Input a client’s encrypted secret key ESKj =
(Xj ,Ωj), the current period j and the public key PK.
The client checks that

ê(g,ESwj) = ê

(
R/G ·

t∏
m=1

R
h
wj1

wj1
, H1(R)

)
,

where hwj = H2(wj , Rwj).

DecESK: The client computes Swj = ESwj · H1(R)τ .
The real secret key is set as SKj = (X ′j ,Ωj), where
X ′j is the same stack as Xj except that the top ele-
ment in X ′j is (Swj , Rwj) instead of (ESwj , Rwj) in
Xj .

AuthGen: For a file F = {m1, · · · ,mn} and the current
period j, the client proceeds as follows.

• Parse SKj = (X ′j ,Ωj) and read the top element
(Swj , Rwj) from the stack X ′j . Select r ∈ Z∗q
and compute U = gr,

σi = H3(name‖i‖j, U)r · Swj · urmi

(i = 1, · · · , n), where the name is chosen ran-
domly from Z∗q as the identifier of the file F .
Generate a file tag for F and j using the sig-
nature SSig in order to ensure the integrity of
name and j. Denote the set of authenticators
in time period j with Φ = (j, U, {σi}1≤i≤n,Ωj).

• Send the file F and the set of authenticators
along with the file tag to cloud.

ProofGen: Input a file F , a set of authenticators Φ =
(j, U, {σi}1≤i≤n,Ωj), a time period j, a challenge
Chal = {(i, vi)}i∈I (where I = {s1, · · · , sc} is a c-
element subset of set [1, n] and vi ∈ Zq) and the
public key PK. The cloud calculates an aggregated
authenticator Φ = (j, U, σ,Ωj), where σ = Πi∈Iσ

vi
i .

It also computes µ =
∑
i∈I vimi. It then sends

P = (j, U, σ, µ,Ωj) along with the file tag as the re-
sponse proof of storage correctness to the TPA.

ProofVerify: Input a proof P , a challenge Chal, a time
period j and the public key PK. The TPA parses
Ωj = (Rwj |1 , · · · , Rwj |t). He then verifies the in-
tegrity of name and j by checking the file tag. After
that, the client verifies whether the following equa-
tion holds:

ê(g, σ) = ê(R ·Πt
m=1R

hwj |m
wj |m , H1(R)

∑
i∈I vi)

·ê(U, uµ · Πi∈IH3(name‖i‖j, U)vi),

International Journal of Network Security, Vol.19, No.6, PP.950-954, Nov. 2017 (DOI: 10.6633/IJNS.201711.19(6).11) 952

Table 1: Yu et al.’s outsourcing scheme

Client TPA Cloud

–SysSetup. Set PK = (R,G, u),

X0 = {(ES,R)},Ω0 = ∅.
DK = τ, ESK0 = (X0,Ω0).

ESK0−−−−→ –EkeyUpdate. Update
ESK1←−−−− it as ESK1 = (X1,Ω1).

...

–VerESK. Check ê(g,ESωj)
?
=

ESKj←−−−−
ê(R/G ·

∏t
m=1Rωj1

h
ωj1 , H1(R)).

–DecESK. Compute

Sωj = ESωj ·H1(R)τ ,

SKj = (X ′j ,Ωj).

–AuthGen. For a file F = {m1,

· · · ,mn}, compute U = gr, σi

= H3(name‖i‖j, U)r · Sωj · urmi

i = 1, · · · , n. Generate tag for

F, j using the signature SSig.

Set Φ = (j, U, {σi}1≤i≤n,Ωj). −−−
upload F, Φ, tag

−−−−−−−−−−−− → Store F, Φ, tag.

–Challenge. Set

Chal = {(i, vi)}i∈I .
Chal−−−→ –ProofGen.

σ =
∏
i∈I σ

vi
i ,

µ =
∑
i∈I vimi.

–ProofVerify. Verify the
P←− P = {j, U, σ, µ,Ωj}.

integrity of name and

j by checking the tag.

Check ê(g, σ)
?
=

ê
(
R ·
∏t
m=1R

hωj |m
ωj |m ,

H1(R)
∑

i∈I vi
)
· ê (U, uµ

·
∏
i∈I H3(name‖i‖j, U)vi

)

where hwj = H2(wj , Rwj). If it holds, returns
“True”, otherwise returns “False”.

We refer to the following Table 1 for a brief description
of Yu et al.’s scheme [25].

3 Analysis of Yu et al.’s Scheme

The scheme [25] aims to deal with the key exposure prob-
lem. They proposed the paradigm of cloud storage au-
diting which enables a client to outsource the burden of
key updates to the third party auditor. But we find the
scheme has two inherent flaws.

1) The scheme does not truly mitigate the client’s com-
putational burden for key updates. Concretely, in the

time period j, the client’s main computational task
is to calculate

U = gr, Sωj = ESωj ·H1(R)τ ,

σi = H3(name‖i‖j, U)r · Sωj · urmi ,

i = 1, · · · , n

ê(g,ESωj)
?
= ê(R/G ·

t∏
m=1

Rωj1

h
ωj1 , H1(R)).

while the TPA’s main computational task is to cal-
culate

Rωj0 = gρωj0 , ESωj0 = ESωj ·H1(R)ρωj0 hωj0 ,

Rωj1 = gρωj1 , ESωj1 = ESωj ·H1(R)ρωj1 hωj1 ,

International Journal of Network Security, Vol.19, No.6, PP.950-954, Nov. 2017 (DOI: 10.6633/IJNS.201711.19(6).11) 953

ê(g, σ)
?
= ê

(
R ·

t∏
m=1

R
hωj |m
ωj |m , H1(R)

∑
i∈I vi

)

·ê

(
U, uµ ·

∏
i∈I

H3(name‖i‖j, U)vi

)
.

It is easy to find that the computational task for
the client is almost equal to that for the TPA. That
means the client’s computational burden is not truly
alleviated.

2) The scheme does not ensure any confidentiality since
the files uploaded by the client to the cloud are in
fact not encrypted at all. In the phase AuthGen, it
is specified that the client has to parse the file F as
{m1, · · · ,mn} and generate the authenticator Φ by
invoking these mi. The client then sends {F, Φ, tag}
to the cloud. Clearly, the authors have forgotten to
assign a symmetric key encryption to protect the file
F . In practice, it is conventional to encrypt files us-
ing any symmetric key encryption, such as AES. Due
to computing overhead [18], a public key encryption
is usually just used to establish the secure channel
needed to exchange the secret key of a symmetric-
key system.

3) We would like to stress that if the uploaded file F is
viewed as an encrypted file, then the scheme has to
assign three groups of secret keys, SK1 for encrypting
the file F , SK2 for generating the authenticator Φ for
F , and SK3 for signing name and the timestamp j
(it specifies that “the client has held a secret key for a
signature SSig, which is used to ensure the integrity
not only of the file identifier name but also of the
time period j”). Obviously, both SK1 and SK3 held
by the client could also be exposed (as SK2), but the
authors [25] have not realized the main danger. The
proposed method only solves the problem of updating
SK2. Therefore, the proposed scheme does not solve
correctly the client’s key exposure problem.

4) We think it seems impossible to revise the scheme
such that it could simultaneously update the involved
secret keys SK1, SK2 and SK3, because the client
has to retrieve the file F stored previously on the
cloud in order to update the symmetric key SK1. In
such case, it is totally unnecessary to introduce the
key SK2 for generating the authenticator Φ for the
file F . Frankly speaking, this is an inherent flaw in
the proposed model by Yu et al.

4 Conclusion

We show that there are two flaws in Yu et al.’s scheme for
cloud storage auditing with verifiable outsourcing of key
updates, and remark that the scheme cannot be practi-
cally implemented. We would like to stress that the pro-
posed paradigm is somewhat artificial because the client
is able to update his secret keys solely by himself.

Acknowledgments

The work is supported by the National Natural Science
Foundation of China (61303200, 61411146001), the Brus-
sels Region (Innoviris) and the SeCloud Project. We are
grateful to the reviewers for their valuable suggestions.

References

[1] S. Canard, J. Devigne, and O. Sanders, “Delegating
a pairing can be both secure and efficient,” in Pro-
ceedings of Applied Cryptography and Network Se-
curity (ACNS’14), pp. 549–565, Lausanne, Switzer-
land, June 2014.

[2] S. Canard et al., “Toward generic method for server-
aided cryptography,” in Proceedings of Information
and Communications Security (ICICS’13), pp. 373–
392, Beijing, China, November 2013.

[3] Z. J. Cao and L. H. Liu, “Comment on ‘harnessing
the cloud for securely outsourcing large-scale systems
of linear equations’,” IEEE Transactions on Parallel
Distributed Systems, vol. 27, no. 5, pp. 1551–1552,
2016.

[4] Z. J. Cao and L. H. Liu, “A note on two schemes for
secure outsourcing of linear programming,” Interna-
tional Journal of Network Security, vol. 19, no. 2,
pp. 323–326, 2017.

[5] Z. J. Cao, L. H. Liu, and O. Markowitch, “On
two kinds of flaws in some server-aided verification
schemes,” International Journal of Network Security,
vol. 18, no. 6, pp. 1054–1059, 2016.

[6] F. Chen, T. Xiang, and Y. Y. Yang, “Privacy-
preserving and verifiable protocols for scientific com-
putation outsourcing to the cloud,” Journal of Par-
allel Distributed Computing, vol. 74, pp. 2141–2151,
2014.

[7] X. F. Chen et al., “Efficient algorithms for secure out-
sourcing of bilinear pairings,” Theoretical Computer
Science, no. 562, pp. 112–121, 2015.

[8] B. Chevallier-Mames et al., “Secure delegation of
elliptic-curve pairing,” in Proceedings of Smart Card
Research and Advanced Application, 9th IFIP WG
8.8/11.2 International Conference (CARDIS’10),
pp. 24–35, Passau, Germany, Apr. 2010.

[9] J. Dreier and F. Kerschbaum, “Practical privacy-
preserving multiparty linear programming based
on problem transformation,” in Proceedings of
IEEE International Conference on Privacy, Security,
Risk, and Trust, and IEEE International Confer-
ence on Social Computing (PASSAT/SocialCom’11),
pp. 916–924, Boston, MA, USA, Oct. 2011.

[10] M. Girault and D. Lefranc, “Server-aided verifica-
tion: Theory and practice,” in Proceedings of Ad-
vances in Cryptology (ASIACRYPT’05), pp. 605–
623, Chennai, India, Dec. 2005.

[11] S. Hohenberger and A. Lysyanskaya, “How to se-
curely outsource cryptographic computations,” in

International Journal of Network Security, Vol.19, No.6, PP.950-954, Nov. 2017 (DOI: 10.6633/IJNS.201711.19(6).11) 954

Proceedings of Theory of Cryptography (TCC’05),
pp. 264–282, Cambridge, MA, USA, Feb. 2005.

[12] W. F. Hsien, C. C. Yang, and M. S. Hwang, “A sur-
vey of public auditing for secure data storage in cloud
computing,” International Journal of Network Secu-
rity, vol. 18, no. 1, pp. 133–142, 2016.

[13] X. Y. Lei, X. F. Liao, T. W. Huang, and F. Herini-
aina, “Achieving security, robust cheating resistance,
and high-efficiency for outsourcing large matrix mul-
tiplication computation to a malicious cloud,” Infor-
mation Sciences, vol. 280, pp. 205–217, 2014.

[14] X. Y. Lei, X. F. Liao, T. W. Huang, H. Q. Li, and
C. Q. Hu, “Outsourcing large matrix inversion com-
putation to a public cloud,” IEEE Transactions on
Cloud Computing, vol. 1, no. 1, pp. 78–87, 2013.

[15] C. W. Liu, W. F. Hsien, C. C. Yang, and M. S.
Hwang, “A survey of public auditing for shared data
storage with user revocation in cloud computing,”
International Journal of Network Security, vol. 18,
no. 4, pp. 650–666, 2016.

[16] J. Liu, C. K. Chu, and J. Y. Zhou, “Identity-based
server-aided decryption,” in Proceedings of Informa-
tion Security and Privacy (ACISP’11), pp. 337–352,
Melbourne, Australia, July 2011.

[17] D. Marinescu, Cloud Computing Theory and Prac-
tice. USA: Elsevier, 2013.

[18] A. Menezes, P. van Oorschot, and S. Vanstone, Hand-
book of Applied Cryptography, New York, U.S.A.:
CRC,Taylor & Francis, 1996.

[19] A. Mosa, H. M. El-Bakry, S. M. Abd El-Razek, S. Q.
Hasan, “A proposed E-government framework based
on cloud service architecture,” International Journal
of Electronics and Information Engineering, vol. 5,
no. 2, pp. 93–104, 2016.

[20] H. X. Nie, X. F. Chen, J. Li, J. Liu, and W. J. Lou,
“Efficient and verifiable algorithm for secure out-
sourcing of large-scale linear programming,” in Pro-
ceedings of 28th IEEE International Conference on
Advanced Information Networking and Applications
(AINA’14), pp. 591–596, Victoria, BC, Canada, May
2014.

[21] S. Salinas, C. Q. Luo, X. H. Chen, and P. Li, “Ef-
ficient secure outsourcing of large-scale linear sys-
tems of equations,” in Proceedings of 2015 IEEE
Conference on Computer Communications (INFO-
COM’15), pp. 1035–1043, Hong Kong, China, Apr.
2015.

[22] C. Wang, K. Ren, and J. Wang, “Secure optimization
computation outsourcing in cloud computing: A case
study of linear programming,” IEEE Transactions on
Computers, vol. 65, no. 1, pp. 216–229, 2016.

[23] C. Wang, K. Ren, J. Wang, and Q. Wang, “Har-
nessing the cloud for securely outsourcing large-scale
systems of linear equations,” IEEE Transactions on
Parallel Distributed Systems, vol. 24, no. 6, pp. 1172–
1181, 2013.

[24] Z. Wang, Y. Lu, G. Sun, “A policy-based de-
duplication mechanism for securing cloud storage,”
International Journal of Electronics and Information
Engineering, vol. 2, no. 2, pp. 70–79, 2015.

[25] J. Yu, K. Ren, and C. Wang, “Enabling cloud storage
auditing with verifiable outsourcing of key updates,”
IEEE Transactions on Information Forensics Secu-
rity, vol. 11, no. 6, pp. 1362–1375, 2016.

Biography

Zhengjun Cao is an associate professor with the Depart-
ment of Mathematics at Shanghai University. He received
his Ph.D. degree in applied mathematics from Academy
of Mathematics and Systems Science, Chinese Academy
of Sciences. His research interests include applied cryp-
tography, discrete algorithms and quantum computation.

Lihua Liu is an associate professor with the Department
of Mathematics at Shanghai Maritime University. She
received her Ph.D. degree in applied mathematics from
Shanghai Jiao Tong University. Her research interests in-
clude combinatorics and cryptography.

Olivier Markowitch is an associate professor with the
Computer Sciences Department at the Universite Libre
de Bruxelles. He is also information security advisor of
his University. He is working on the design and analy-
sis of two-party and multi-party cryptographic protocols
as well as on the design and analysis of digital signature
schemes.

	Introduction
	Review of Yu et al.'s Scheme
	Analysis of Yu et al.'s Scheme
	Conclusion
	REFERENCES

