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Abstract

Public key cryptosystems depend on complex and time
consuming arithmetic operations. Public key cryptosys-
tems require modular operations over large numbers or
finite fields. Researchers are working on improving the
performance of asymmetric cryptosystems while main-
taining the security of the cryptographic algorithms. Par-
allel computing is the most promising solution to im-
prove the computing power and speed-up these arithmetic
operations. In this paper, we propose a generic model
to execute any encryption algorithm through a parallel-
pipelined design. The proposed design is twofold. First,
we make use of a number of processors to execute dif-
ferent encryption/decryption steps in parallel. Secondly,
complex arithmetic operations could be divided into small
simple arithmetic operations that are executed in paral-
lel. Simulation experiments show that parallel implemen-
tations of the aggregated signcryption protocol (as a case
study) outperforms the sequential performance. The av-
erage values of improvement ranges from 47.5% to 80.4%
for different number of processors.

Keywords: Cryptography; Modular Operations; Paral-
lelization; Public Key Cryptosystems

1 Introduction

Security is a serious issue when it comes to carry infor-
mation over non-secure channels. In the era of Internet of
Things, sensitive information requires secure transmission
over the Internet. Cryptography is one of the most popu-
lar techniques that provide security and integrity to sen-
sitive information over adversarial communication chan-
nels. Cryptographic algorithms are classified into two dis-
tinct categories: Symmetric and Asymmetric Key algo-
rithms. Symmetric Key algorithms use a single key in or-
der to encrypt, as well as, decrypt the data. Asymmetric
key algorithms use two different keys in order to perform
encryption and decryption. To carry out secure communi-

cation between contending parties, the receiver generates
the public key and the corresponding private key. Then,
the receiver shares the public key with the sender using
a certificate authority. The sender encrypts the message
using the public key and sends the cipher text to the re-
ceiver. The receiver decrypts the cipher text using corre-
sponding private key and recovers the message. There are
many public key based algorithms [28] (i.e. RSA, Digital
Signature Algorithm, and Diffie-Hellman Key Exchange
Algorithm.) Cryptographic algorithms are sequential al-
gorithms. A single processor executes instructions one by
one in sequence.

Asymmetric algorithms make use of modular arith-
metic that requires complex computation for very large
integers. Sequential implementation of complex asym-
metric algorithms degrades the performance of encryption
and decryption. Moreover, these algorithms demand huge
memory size and have high power consumption. Paral-
lelization techniques reduce the power consumption and
achieve high performance in terms of execution time. Par-
allelization techniques use multi-core processors for effi-
cient execution of instructions. In a parallel process, the
processing is broken down into parts that are executed
concurrently on different CPUs. Security algorithms can
be implemented in parallel after dividing the algorithm
into specific parts that can be executed on multi-core pro-
cessor in order to enhance the performance.

Multimedia applications, such as, video on demand,
distance learning, interactive e-Commerce, and TV chan-
nels delivery via Internet require secure communication
over the Internet in order to transfer data. Cryptogra-
phy protects data to achieve security services. Modern
multimedia applications are real time applications that
have concerns regarding delay introduced by cryptogra-
phy. To expedite cryptographic computations, there are
two approaches. First, design faster cryptographic algo-
rithms. It is not a practical option, because standard
cryptographic algorithms take time to be developed and
tested. Moreover, performance of cryptographic algo-
rithm depends on number of rounds or by the size of
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the message. Secondly, to expedite cryptographic com-
putations, we can deploy a parallel cryptographic sys-
tem. The parallel encryption and signing was introduced
by [9, 25, 36].

In this paper, we propose a generic model to execute
any encryption algorithm (symmetric or public) through
a parallel-pipelined design. We accelerate the crypto-
graphic algorithms through parallel-pipelined design. We
make use of ”M” processing elements (PEs) to execute
different encryption/decryption steps in parallel. Then,
complex arithmetic operations could be divided into small
simple arithmetic operations that are executed in paral-
lel (load-balancing level). Simulation experiments show
that parallel implementations of the aggregated signcryp-
tion protocol (as a case study) outperforms the sequential
performance. The average values of improvement ranges
from 47.5% to 80.4% for different number of processors.

This paper is structured as follows. Section 2 puts for-
ward background and related work. Next, cryptographic
arithmetic model is discussed in Section 3. The descrip-
tion of expedited asymmetric cryptosystems is presented
in Section 4. Section 5 concludes the work.

2 Background and Related Work

Parallel techniques are used to accelerate several cryp-
tographic algorithms (symmetric [10, 11, 12, 13, 29] and
asymmetric [1, 3, 5, 7, 8, 18, 21, 22, 24, 27, 31, 33, 34,
35]). Practical asymmetric (public) cryptography requires
modular operations over large numbers that is considered
as computationally exhaustive process. Many researchers
have done work in order to expedite the performance of
asymmetric cryptography.

RSA is one of the most popular public key cryptog-
raphy based algorithm. It is based on the mathematical
scheme of factorization of very large integers which is a
compute-intensive process and takes very long time. Sev-
eral scientists used parallel computing to speed up the
RSA algorithm. Saxena and Kapoor [31] presented a sur-
vey of various parallel implementations of RSA algorithm
involving variety of hardware and software implementa-
tions.

Bajard and Laurent [1] presented a full implementa-
tion of RSA that has an efficient hardware implementa-
tion. It is sequential in nature but gives high through-
put. Rawat and Walfish [27] presented a parallel sign-
cryption standard using RSA with Probabilistic Signature
and Encryption Padding (PSEP). Ciet et al. [7] presented
a parallel FPGA implementation of RSA with Residue
Number Systems (RNS). Tang et al. [33] presented a
modular exponentiation technique using parallel multi-
pliers. Wu et al. [34] offered a fast parallel technique
has a speedup of 1.06 to 2.75. Liu et al. [22] proposed a
high performance VLSI implementation of the RSA algo-
rithm. Chang et al. [5] presented a fast parallel molecular
algorithm for DNA-Based computation: factoring inte-
gers. Lin et al. [21] presented an efficient parallel RSA

decryption algorithm for many-core Graphics Processing
Unit (GPUs) with Compute Unified Device Architecture
(CUDA.) Zhang et al. [35] presented a comparison and
analysis of General-Purpose computing on Graphics Pro-
cessing Units (GPGPU) and parallel computing on multi-
core CPU. Damrudi and Ithnin [8] presented a parallel
RSA encryption based on tree architecture. Mahajan and
Singh [24] presented an analysis of RSA algorithm using
GPU programming. Mahajan and Singh described that
the GPU as a coprocessor of CPU can be used to imple-
ment massive parallelism. Mahajan and Singh designed
parallel RSA algorithm for GPU using CUDA framework
and tested for both small and large prime numbers.

Elliptic Curve Cryptosystems (ECC) is used among the
cryptographic community for their relatively better secu-
rity and ease of implementation [3]. Several researchers
used parallel computing to speed up the ECC algorithm.
Basu [3] presented a parallel algorithm for elliptic curve
cryptography (ECC). His simulation studies had been
performed by implementing the parallel algorithm on a
multi-core architecture (upto 8 cores). Hossain et al. [18]
proposed a parallel architecture for fast hardware imple-
mentation of ECPM. It has been implemented over the bi-
nary field, and supported two Koblitz and random curves
for the key sizes 233 and 163 bits.

In this work, we propose a generic parallel-pipelined de-
sign to speed up different encryption algorithms (symmet-
ric or public). In the next section, cryptographic arith-
metic model is discussed.

3 Cryptographic Arithmetic
Model

Security services are generally classified into six com-
ponents: confidentiality, data integrity, authentication,
authorization, non-repudiation, and accountability. To
achieve those issues different encryption/decryption pro-
tocols have been proposed, all those protocols are based
on complicated mathematical operations. These opera-
tions can be divided into modulo operations (such as:
modular addition, modular multiplication, modular sub-
traction, modular exponential, multiplicative inverse, and
etc.), logical operations (such as: ANDing, inverse AND
(NAND), ORing, XORing, Shift left, Shift right, Rotate
left, Rotate right).

Some encryption techniques need more than one step
(encryption or decryption) to complete the message en-
cryption such as Aggregated Signcryption [4, 6, 15], Sign-
Encrypt-Sign, Encrypt-Sign-Encrypt [26], and Schnorr
Signcryption [30, 32]. The total execution/sequential time
for one message (Tmess) can be calculated as follows:

Tmess = TKG+
∑γ

l=1 Tstepl (1)

Where TKG is the key generation time, Tstep is the time
needed to execute encryption or decryption operation in
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one step, and ”γ” is the number of steps.

TKG =
∑key
l=1 Tkgl (2)

where, key is the number of keys and

Tstep =
∑K
i=1 Tstagei (3)

where K is the number of the encryption/decryption
stages.

To calculate the total time for any encryption or de-
cryption stage Tstagei, we assume that this stage needs
ai,1 modular additional operations, ai,2 modular subtrac-
tion operations, ai,3 modular multiplication operations,
ai,4 modular exponential operations, ai,5 modular mul-
tiplication inverse operations, and ai,6 logical operations
(may include: AND, OR, XOR, NAND, Rotate left, Ro-
tate right and etc.). Tstagei is calculated as follows:

Tstagei = a1,itmod−add + a2,itmod−sub
+ a3,itmod−mul + a4,itmod−ex
+ a5,itmul−inv + a6,itlog

(4)

Then,
Tstep =

∑K,f
i,j aj,itoperation(op) (5)

where operations ∈{Modular addition (mod-add), Modu-
lar subtraction (mod-sub), Modular Multiplication (mod-
mul), Modular exponential (mod-ex), Modular multipli-
cation inverse (mul-inv) and others logical operations}, f
= |Operation|, 1≤ j ≤ f, and 1≤ i ≤ K.

Figure 1 presented a general form of an encryption pro-
tocol. Assuming that, tadd is the time needed for comput-
ing simple addition operation, tsub is the time needed for
completing simple subtraction operation, tmul is the time
needed to execute simple multiplication operation, tdiv is
the time needed to perform simple division operation, and
tsub = tadd.

Modular addition can be calculated as the summa-
tion of addition and modulo operations. Using Barret
algorithm [2], modulo operation needs one normal/simple
multiplication, one normal division, and one normal sub-
traction. Then, the time needed to compute modular ad-
dition operation (which can be divided into one addition,
one subtraction, one multiplication and one division), is
tmod−add and is given by:

tmod−add = tadd + tmodulo

= 2tadd + tdiv + tmul
(6)

On the other hand, the time needed to compute mod-
ular subtraction operation which can be done by simple
subtraction followed by modular addition; is tmod−sub and
calculated as:

tmod−sub = 3tadd + tdiv + tmul (7)

Moreover, the time needed to compute modular multi-
plication operation, which can be divided into three sim-
ple multiplication operation and one simple addition op-
eration [16] is tmod−mul.

tmod−mul = tadd + 3tmul (8)

Furthermore, to compute modular exponentiation op-
eration using Indian algorithm [20], it needs approxi-
mately

(
3b
2

)
modular multiplications for an exponent “e”

of “b-bit”, assuming the exponent contains approximately
50% ones/zeros. That is to say, a modular exponentia-
tion “Y = X emodn” is performed by successive modular
multiplication and the time needed to compute modular
exponentiation operation tmod−ex can be calculated as fol-
lows:

tmod−ex = 3b
2 tmod−mul

= 3b
2 (tadd + 3tmul)

(9)

On the other hand, modular multiplication inverse is
executed using Euler’s theorem [19], therefore, it could
be done using modular exponential, and then the time
needed to compute multiplication inverse operation can
be computed as follows:

tmul−inv = tmod−ex
= 3b

2 (tadd + 3tmul)
(10)

From Equation (1) and Equation (4), the time needed
to encrypt/decrypt this stream of data (N messages) on
one processing element (Ts) is given by the following
equation:

Ts = N ∗ (
∑key
l=1 Tkgl + γ

∑n,f
i,j aj,itoperation(op)) (11)

In case of all stages have the same operations; the time
needed to encrypt/decrypt this stream of data on one
processing element (PE) is given by:

Ts = N ∗ (
∑key
l=1 Tkgl + γ ∗

∑f
j ajtoperation(op)) (12)

where
∑f
j ajtoperation is time needed to execute any

stagei, 1 ≤ i ≤ K.
Due to the nature of most security algorithms, which

are characterized by repeating the same function for sev-
eral messages, different levels of parallelism can be used.
This will improve the system utilization and throughput.
In the next section, we use parallel and pipeline tech-
niques to speed up these protocols.

4 Expediting Asymmetric Cryp-
tosystems

Parallel systems, which emphasize parallel processing, are
the most favorable architectures to increase the comput-
ing power and achieve speedup. Parallel processing con-
tinues to hold the promise of the solution of more complex
problems, by connecting a number of powerful processing
elements (PEs) together into a single system. These con-
nected processors cooperate to solve a single problem that
exceeds the ability of any one of the processing elements
(PEs). That is to say, parallel computing is the simulta-
neous execution of the same task (split up) on multiple
processing elements (PEs) in order to obtain faster re-
sults. The idea is based on the fact that the process of
solving problem can be divided into small tasks, which
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Figure 1: General form of an encryption/decryption protocol

may be carried out simultaneously with some coordina-
tion.

In our work, we will not concentrate on parallelizing
the key generation process, since; it is done for several
messages. However, we recommend making use of the
parallel architecture in its implementation. From Equa-
tion (1), Ts for ‘N ’ messages is calculated as follows:

TNs = N ∗
∑γ

l=1 Tstepl
(13)

Our proposed design is composed of three levels of par-
allelism: first different steps are pipelined, then, different
stages inside each step are pipelined, and finally, load is
balanced between PEs.

4.1 First Level: Pipelining Encryp-
tion/Decryption Processes

Pipelining is a kind of parallel computing that increases
system performance by taking the advantage of the intrin-
sic parallelism by breaking a process into sub-processes
executed by different PEs with inputs streaming through.
There are two pipeline levels; the first one is pipelining
different steps, while the second one is through pipelining
the stages of each encryption/decryption process individ-
ually.

In this section, we will discuss how to pipeline different
steps on a computer cluster equipped with ‘γ’ homoge-
nous clusters ‘C’, where C = {C1,C2,..., Cγ}. Assuming
that the time needed to execute stepl on cluster Cl is
Tstepl the parallel/pipelined time Tpar is as follows:

Tpar = N *Tstepmax
+ (
∑γ

l=1 Tstepl
− Tstepmax

) (14)

where,Tstepmax
is the needed time to execute the latest

encryption/decryption operation. From Equations (13)
and (14), the improvement in the execution time can be
executed as follows:

TNs−Tpar
TNs

=
(N−1)∗(

∑γ
l=1 Tstepl

−Tstepmax )

N∗
∑γ

l=1 Tstepl

(15)

In case of repeated processes (all processes need the
same execution time). Therefore, Tparis given by:

Tpar = (N + γ − 1)*Tstepl
(16)

From Equation (13) and Equation (16), the improve-
ment in the execution time is executed as follows:

TNs−Tpar
TNs

= (N−1)∗(γ−1)
N∗γ (17)

4.2 Second Level: Pipelining Different
Stages of an Encryption/Decryption
Operation

In this section, different stages of each step are exe-
cuted in a stream of PEs in a pipelined manner sepa-
rately. As mentioned at the previous section, each encryp-
tion/decryption process can be executed using a separate
cluster, and assuming that inside each cluster there are ‘M
homogenous processing elements (PEs), where for cluster
Cl, PEl={PEl,1,PEl,2,..., PEl,M}.That is to say inside
each cluster ‘M ’ PEs can cooperate to accelerate each
process separately. To execute any encryption/decryption
process using ‘M ’ processing elements, there are three
cases: i) number of PEs is smaller than the number of
stages (M<K), ii) number of PEs equals the number of
stages (M = K), and iii) number of PEs is greater than
the number of stages (M > K).

4.2.1 Number of PEs (M ) is Smaller than the
Number of Stages (K )

In this case, to achieve the optimum system effectiveness
one or more consecutive stages can be executed by each
PE. In other words, the first PE1 gives its output to the
subsequent one PE2. This is repeated for the different
PEs. Assuming that the time needed to perform stage
number ‘i ’ is Tstagei, and from Equation (2), the total
sequential time to execute ‘N ’ message is:

TS = N ∗
∑K
i=1 Tstagei (18)

Each PElneeds TPEl to compute its assigned tasks,
and the maximum time is:

Tmax = maxMl=1TPEl (19)
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Then the parallel time Tpar is calculated as follows:

Tpar =
∑K
i=1 Tstagei + (N − 1)Tmax (20)

From Equation (18), and Equation (20), the improve-
ment in the execution time can be calculated as follows:

Ts−Tpar
Ts

=
(N−1)∗(

∑K
i=1 Tstagei−Tmax)

(N∗
∑K
i=1 Tstagei )

(21)

In case of repeated stages, the output of each stagei is
shifted to stagei+1 for all stages at the same time, and
from Equation (13), the total sequential time can be cal-
culated as follows:

Ts = N ∗K ∗ Tstage (22)

The parallel/pipelined time Tpar is calculated for the
following two cases:

1) First , M divides K (K/M = integer), where each
PE executes the same number of stages, then the
execution time Tpar is calculated as follows:

TPar = (K + (N − 1) ∗ (KM )) ∗ Tstage (23)

The improvement in the execution time; which is
achieved through using ‘M ’ PEs, is given by:

Ts−Tpar
Ts

=
(N∗K)−((N−1)∗(KM )+K)

(N∗K)
(24)

2) Second, M does not divide K (K/M 6= integer).
For the first (K − bK/Mc × M) PEs, each PE
calculatesdK/Mestages, and for the remaining PEs,
each PE executesbK/Mcstages. TParis given by:

Tpar = (K + (N − 1 )∗(|KM |+ 1 ))∗ Tstage (25)

From Equations (18) and (25), the improvement in
the execution time can be calculates as follows:

Ts−Tpar
Ts

=
(N∗K)−((N−1)∗(|KM |+1)+K)

(N∗K)
(26)

4.2.2 Number of PEs (M ) Equals to the Number
of Stages (K )

In this case, the number of PEs equals to the number of
stages to be executed (M=K). The total time to compute
‘N ’ messages in parallel is given by the following equation:

Tpar = (N − 1) ∗ Tstagemax
+
∑K

i=1 Tstagei (27)

where Tstagemax
is the time needed to execute the latest

stage, from Equations (3) and (27), the improvement in
the execution time can be calculated as follows:

Ts−Tpar
Ts

=
(N−1)∗(

∑K
i=1 Tstagei

−Tstagemax )

N∗
∑K

i=1 Tstagei

(28)

In case of repeated stages, the total time to compute
‘N ’ messages in parallel is given by the following equation:

Tpar = (N +K − 1) ∗ Tstage (29)

From Equations (18) and (29), the improvement in the
execution time can be calculated as follows:

Ts−Tpar
Ts

= (N−1)∗(K−1)
(N∗K) (30)

4.2.3 Number of PEs(M ) is Greater Than the
Number of Stages (K )

In this case, ‘K ’ PEs are needed for computing ‘K ’ stages
and the remaining ‘M-K’ PEs are idle. This leads to load
imbalance, to avoid load imbalance, more than one PE
can work together to compute different operations. In
other words, parallelism is accomplished in each stage’s
operation level as explained in the next section.

4.3 Third Level: Parallelization Inside
Individual Stages (Load Balancing)

Parallelism is implemented in each stage’s operation level.
This is done in the operation/instruction level, where
complicated operations could be reduced into simple op-
erations in order to be executed in parallel. This combi-
nation will improve the system utilization and through-
put. As assumed in Section 3.1, we simplify each stage
into multiple operations as shown in Equation (4). Each
encryption/decryption stagei needs ai,1 modular addi-
tional operations, ai,2 modular subtraction operations,
ai,3 modular multiplication operations, ai,4 modular ex-
ponential operations, ai,5 modular multiplication inverse
operations, and ai,6 logical operations.

The time to carry out logical operations is relatively
very small compared to the modular operations. Hence,
it will be neglected in our calculations. On the other hand,
we divide the arithmetic operations into low time consum-
ing arithmetic operations (modular additional, modular
subtraction), and highly time consuming (modular expo-
nential, modular multiplication, and modular multiplica-
tion inverse). For the low level time consuming operations
there is one PE who executes the calculations. That is
to say, it will be performed sequentially. While for the
highly time consuming operations, we reduce all those op-
erations into modular multiplications. As mentioned at
Equation (9), modular exponential operation needs ap-
proximately (3b/2) modular multiplications. Similarly,
modular inverse multiplication operation needs approxi-
mately (3b/2) modular multiplications as mentioned at
Equation (10). Therefore, the efficient execution of the
modular multiplication is the key to improve the perfor-
mance. Then, our objective is to reduce the modular mul-
tiplication time. This can be achieved by incorporating
the idle PEs in the computing of each modular multipli-
cation operation.

Assuming that each stage has at least one modular
multiplication, the modular multiplication operation can
be divided into three simple multiplications and one ad-
dition (as mentioned before) and could be performed in
parallel using three processing elements (PEs).

Case 1: M =3K, two idle PEs can help each overloaded
PEs to execute the modular multiplication opera-
tions, and the total parallel time can be decreased
to approximately one-third of the time needed to ex-
ecute the latest stage and calculated as follows:

Tpar =
∑K
i=1 Tstagei + (N − 1)Tmax

3
(31)
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Case 2: M<3K, the overloaded PEs must be arranged
in an ascending manner, and the idle PEs must help
the first

(
M−K

2

)
overloaded PEs, and the total par-

allel time can be calculated as follows:

1)
(
M−K

2

)
< 3

Tpar =
∑K
i=1 Tstagei + (N − 1)Tov (32)

where ‘Tov’: is the time needed by PE number(∣∣M−K
2

∣∣+ 1
)
(at the queue) to execute its task.

2)
(
M−K

2

)
≥ 3

Tpar =
∑K
i=1 Tstagei + (N − 1)Tov (33)

where ‘Tov’: is the time needed by PE number∣∣M−K
2

∣∣(at the queue) to execute its task.

4.4 Case Study: Aggregated Signcryp-
tion

In computer security, digital certificates are verified us-
ing a chain of trust. The trust anchor for the digital
certificate is the root certificate authority (CA). The cer-
tificate hierarchy is a structure of certificates that allows
individuals to verify the validity of a certificate’s issuer.
Certificates are issued and signed by certificates that re-
side higher in the certificate hierarchy, hence the validity
and trustworthiness of a given certificate is determined by
the corresponding validity of the certificate that signed it.
The chain of trust of a certificate chain is an ordered list of
certificates, containing an end-user subscriber certificate
and intermediate certificates (that represents the inter-
mediate CA), that enables the receiver to verify that the
sender and all intermediates certificates are trustworthy.

Aggregate signature scheme [4, 6, 15] is a digital sig-
nature that supports aggregation. It is a single short
string that convinces any verifier that, for all 1 ≤ i ≤ N,
signer Si signed message Messi, where the N signers
and N messages may all be distinct. The main moti-
vation of aggregate signatures is compactness. That is
to say, aggregate signatures are useful for reducing the
size of certificate chains (by aggregating all signatures in
the chain) and for reducing message size in secure routing
protocols. In addition, aggregate signatures perform ver-
ifiably encrypted signatures. Such signatures enable the
verifier to test that a given ciphertext C is the encryp-
tion of a signature on a given message ‘Mess’ [4]. Bonds
et al. [4] introduced the concept of an aggregate signa-
ture which is based on bilinear pairing, and gave several
applications for aggregate signatures. In case of signers
is ordered, the aggregate signature is computed by hav-
ing each signer, in turn, add his signature to it [23]. In
this section, we implement our proposed design on this
scheme.

e(σ, g2) = e(
∏
i hi, vi) =

∏
i e(hi, vi) (34)

Figure 2: The system performance when a member of
messages N = 20, for different values of K = 6, 8, 10, and
15

Here ‘γ = 3’ and from Equation (1),Ts for ‘N’ messages
is calculated as follows:

TNs =
∑3

l=1 Tstepl
(35)

In order to simplify the calculations, we will neglect
the time required to calculate Steps 2 and 3 as they are
small compared to the time required to perform bilin-
ear mapping operation (Step 1), In addition, we assume
that Step 1 is done in ‘K ’ stages, and all stages have the
same execution time regardless the key or message length.
From Equation (22) the total sequential time can be cal-
culated as:

Ts = N ∗K ∗ Tstage (36)

In the following paragraphs, we illustrate the three
cases performing the aggregated signcryption.

Case 1: Distinct messages (N ) with multiple signers
M < K. There are three cases:

1) K/M = integer, the parallel execution time and
its improvement over sequential time is given by
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:

TPar = (N ∗ (KM )) ∗ Tstage (37)

Ts−Tpar
Ts

=
(N∗K)−(N∗(KM ))

(N∗K)
(38)

2) K/M 6= integer, the parallel execution time and
its improvement over sequential time is given by
:

Tpar = (N ∗(|KM |+ 1 ))∗ Tstage (39)

Ts−Tpar
Ts

=
(N∗K)−(N∗(|KM |+1))

(N∗K)
(40)

3) M=K, the execution time and its improvement
over the sequential time can be calculated as
shown:

TPar = N ∗ Tstage (41)

Ts−Tpar
Ts

= (N∗M)−(N)
N∗M = M−1

M
(42)

Figure 2 presents the performance of the proposed
model compared to the performance prior to paral-
lelization for N = 20, and ‘M ’ ranges from 1 to 10
for different number of signers ‘K ’ = 6,8,10, and 15
respectively.

1) Figure (2-a) demonstrates the total execution
time (parallel time in terms of Tstage) for dif-
ferent values of ‘K ’. For different values of ‘K ’,
as the number of PEs increases, the total exe-
cution time decreases irrespective of the value
of ‘K ’. When the nu mber of PEs is increased
than (K/2 ), the execution time will be stabi-
lized until the number of PEs reaches the num-
ber of signers ‘K ’. When M=K, a significant
decrease in time occurs. Increasing the number
of PEs than the number of stages ‘K ’ leads to
load imbalance. Consequently, the system’s ef-
ficiency will decrease. Therefore, the number of
PEs must not exceed a certain number which
is called system’s saturation. That is to say
the saturation occurs when the number of PEs
equals ‘K ’.

2) Figure (2-b) illustrates the degree of improve-
ment of the proposed model compared to prior
to parallelization. For different values of ‘K ’,
such as previously observed (execution time),
as the number of PEs increases, the improve-
ment degree increases irrespective of the value
of ‘K ’. When the number of PEs is increased
than (K/2 ), the improvement degree will be
saturated until the number of PEs reaches the
number of signers ‘K ’. When M=K, a consid-
erable improvement occurs. For different values
of ‘K ’, the average values of improvement are
50%, 66.6%, 75.5%, 79.9% and 85.4% for M= 2,
3, 4, 6 and 8 respectively.

Case 2: Distinct messages (N ) with ordered signatures.

In this case, different stages of Step 1 are executed
in a stream of PEs in a pipelined manner separately.
As mentioned at the previous section. We assumed
repeated stages and we have two cases:

1) M<K , and as mentioned above there are two
cases:

a. K/M = integer, the execution time and its
improvement over the sequential is given by
Equations (23) - (24).

b. K/M 6= integer the execution time and its
improvement over the sequential is given by
Equations (25) - (26).

2) M=K, execution time and its improvement over
the sequential is given by Equations (29) - (30).

Figure 3 shows the performance of the proposed
model with respect to the performance prior to
pipelining for N = 20, and M = 1,2,3,4,5,6,7,8,9 and
10 for different number of signers ‘K ’ = 6,8,10, and
15 correspondingly.

Figure (3-a) summarizes the total parallel time (in
terms of Tstage) for different values of ‘K ’. As the
number of PEs increases, the total execution time
decreases irrespective of the value of ‘K ’. When the
number of PEs is increased than (K/2 ), the execu-
tion time will be stabilized until the number of PEs
reaches the number of signers ‘K ’. When M=K, a
significant decrease in time occurs. When the num-
ber of PEs is increased than ‘K ’, load imbalance will
occur. Consequently, the system’s efficiency will de-
crease. Therefore, the number of PEs must not ex-
ceed a certain number which is called system’s sat-
uration. That is to say the saturation occurs when
the number of PEs equals ‘K ’.

Figure (3-b) illustrates the degree of improvement
of the proposed model compared to prior to paral-
lelization. For different values of ‘K ’, as the number
of PEs increases, the improvement degree increases
irrespective of the value of ‘K ’. Such as previously
observed (execution time), when the number of PEs
is increased than (K/2 ), the improvement degree
will be saturated until the number of PEs reaches
the number of signers ‘K ’. When M=K, a consider-
able improvement occurs. For different values of ‘K ’,
the average values of improvement are 47.5%, 60.6%,
67.3%, 71.5% and 80.4% for M= 2, 3, 4, 6 and 8
respectively.

From Figures 2 and 3, we can deduce that as increas-
ing the number of ‘K ’, the execution time increases.
This is due to the fact that the computation time
increases as increasing the number of signers. This
shows the advantage of using a multiprocessor system
in enhancing the system performance.

Case 3: Single message with distinct signers.



International Journal of Network Security, Vol.20, No.2, PP.371-380, Mar. 2018 (DOI: 10.6633/IJNS.201803.20(2).18) 378

Figure 3: The performance of the proposed model with
respect to the performance prior to pipelining for N =
20, and M = 1, 2, · · · , 10 for different number of signers
K = 6, 8, 10, and 15

One or more PEs co-operates to executee (h,
∏
i vi).

In this case the parallelization is done on the level of
point addition operation. Point addition operation
requires the execution of many Montgomery multi-
plications which consume time. Several techniques
are proposed to parallelizing Montgomery multipli-
cations [14, 17]. In this work, we will not concentrate
on performing this case. In future work, we will in-
vestigate using the proposed architecture to execute
Montgomery multiplication to solve the problem of
load imbalance.

5 Conclusions

Security services are generally classified into six compo-
nents: confidentiality, data integrity, authentication, au-
thorization, non-repudiation, and accountability. Cryp-
tography is one of the most popular techniques that can
be used to provide sufficient security to the sensitive data.
To achieve those issues different protocols have been pro-
posed, all those protocols are based on complicated math-
ematical operations which are time consuming. Parallel
systems, are the most favorable architectures to increase
the computing power and expedite these operations. Par-
allel processing continues to hold the promise of the so-
lution of more complex problems, by connecting a num-
ber of powerful processors together into a single system.
These connected processors cooperate to solve a single
problem that exceeds the ability of stand alone proces-
sor. In this work, we propose a generic model to execute
any encryption algorithm (symmetric or public) through
a parallel-pipelined design.

We address the problem of expediting the public
key cryptographic algorithms by using parallel-pipelined
design. Therefore, the total computation time is re-
duced. Parallel/pipelined technique reduces the compu-
tation time required to execute the modular multiplica-
tion operation, compared to its corresponding values of
sequential execution in order to achieve high performance
and throughput in public key cryptography. The pro-
posed design makes use of ‘M’ processing elements to
execute different encryption/decryption phases in paral-
lel. Furthermore, it implements the parallelization mech-
anism on the arithmetic operation level (load-balancing
level), where complex arithmetic operations could be di-
vided into small simple arithmetic operations that are ex-
ecuted in parallel. Simulation experiments show that par-
allel implementations of the aggregated signcryption pro-
tocol (as a case study) outperforms the sequential perfor-
mance (for different values of ‘K ’) for both distinct mes-
sages with multiple signers and distinct messages with
ordered signatures cases. For the first case the average
values of improvement are 50%, 66.6%, 75.5%, 79.9% and
85.4% for M= 2, 3, 4, 6 and 8 respectively. While for
distinct messages with ordered signatures case the av-
erage values of improvement are 47.5%, 60.6%, 67.3%,
71.5% and 80.4% for M= 2, 3, 4, 6 and 8 respectively.
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Although, many researchers have done work in order to
speed up the performance of cryptosystems using paral-
lel computing, these algorithms are protocol specific. In
contrast, we propose a generic model to execute any en-
cryption algorithm through a parallel-pipelined design.
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