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Abstract

The need for encryption for use onboard satellites is a
growing issue. While larger and modern satellites may
have the hardware capabilities to use common terrestrial
encryption schemes, smaller and older satellites may lack
such capabilities. Small satellites are becoming increas-
ingly important, and securing their communications a ne-
cessity. The Department of Defense, for example, is de-
veloping CubeSats, a type of small satellite, for use in
operations. Despite the growing need, currently, there is
no agreed upon encryption algorithm for these devices,
which have limited hardware capabilities and physical
space. This paper presents and characterizes a novel algo-
rithm that uses chaos theory to encrypt data. Specifically,
a proof-of-concept of this novel algorithm is presented. It
is then compared against AES and SPECK in terms of
speed of encryption and decryption.

Keywords: Chaotic Cryptosystem; CubeSat; Small Space-
craft

1 Introduction

Encryption for use onboard satellites is an open research
problem. While larger, modern satellites may be able
to employ common terrestrial encryption schemes, small
satellites and older larger satellites may not have the req-
uisite hardware capabilities. Because of the radio-based
transmission medium used, spacecraft communications
have no inherent physical security mechanism and thus
have a particular need for other security mechanisms.
The Advanced Encryption Standard (AES), a standard
technique used by the NSA and others for securing data
transmissions, could potentially be brought to bear on
this challenge.

Muhaya [21], in particular, considered the use of mul-
tiple standard techniques. While determining that AES
was a component of the solution, he demonstrated the
utility of and discussed the need for enhancing the AES
cryptographic algorithm with a chaotic pixel shuffling
mechanism. However, this prior work failed to evalu-
ate the computational costs of typical approaches and
the proposed hybrid approach. Knowledge of this is, of
course, critical to determining their suitability for use on
a small or older spacecraft.

The lack of a standard, usable cryptographic algorithm
to secure communications to and from spacecraft is a
growing concern, as programs such as NASA’s Educa-
tional Launch of Nanosatellites [25] program, the Uni-
versity NanoSat Program [15] and the European Space
Agency’s Fly Your Satellite [11] program promote the
building and launching of CubeSats. While not all Cube-
Sats require encryption (and some may be precluded from
its use due to FCC restrictions on amateur licenses [27]),
many future CubeSats plan to incorporate propulsion
(see, e.g., [20]), making their potential comprise prob-
lematic and driving a need for encryption. The growth
of the use of small satellites for military applications
(see, e.g., [1, 29]) also drives the need for suitable cyp-
tographic technologies for use on small satellites.

The challenge of securing communications is not lim-
ited to small satellites. In 2014, NOAA’s Satellite network
was hacked, shutting down the network for two days. This
satellite data is vital to many different applications, rang-
ing from providing weather forecasts to national security
applications. The same lightweight approaches used for
small spacecraft may also be appropriate for older satel-
lites, which may have limited capabilities (as compared
to newer models).

This paper investigates a potential solution that would
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allow CubeSats, other small spacecraft, and older space-
craft with limited resources to encrypt and decrypt data
within their hardware capabilities or transmission time
requirements. Specifically, this paper presents a proof-of-
concept for a novel cryptographic algorithm, implemented
in software, which uses chaos-theory to encrypt data. The
algorithm, invented by Huang, Ye, and Wong [13] for the
use of encrypting images, has been modified to turn it into
a block cipher that can be used to encrypt any data. The
algorithm has been tested and compared against other,
more common algorithms in terms of encryption and de-
cryption speed. In line with Muhaya’s prior work [21],
the use of the proposed algorithm on its own as well as
its use (and the use of SPECK) to augment AES are also
considered.

This paper continues with a discussion on the chal-
lenges of the space environment that prompt the need
for this technology. Then, prior work on block ciphers
and encryption for use onboard spacecraft is reviewed.
This is followed by the presentation of the proposed algo-
rithm. The experiments used to validate the algorithms
functionality, characterize its performance across multi-
ple block sizes, and compare it to alternate techniques
are then presented. Finally, this data is analyzed, before
concluding.

2 Background

This section provides background information related to
prior work in the fields of small satellites and cryptog-
raphy. First, an overview of challenges to cryptography
specific to operating in space is provided. This is followed
by an overview of block ciphers. Finally, prior work on
encryption for use in space is discussed.

2.1 Challenges of the Space Environment

The space environment presents a number of challenges
relative to security. The first is the lack of any appre-
ciable physical security for ground-to-space and space-to-
ground communications. All of the foregoing occurs over
radio frequency transmissions and, thus, can easily be in-
tercepted and possibly jammed or even manipulated by
an adversary. State actors, in particular, may have the
capability of placing another craft (either aerial or in a
lower orbit) in between the transmitting and receiving sta-
tion, allowing them to perform a man-in-the-middle style
attack. A variety of security techniques are needed to
protect against this and similar scenarios (see, e.g., [28]).
Encryption is only a small portion of this challenge; how-
ever, it is critical in protecting sensitive commands (which
might reveal the tactics or other plans of a spacecraft con-
troller) and data.

Spacecraft, and in particular small spacecraft, have
limited mass and volume available. Wertz et al. [30] and
Fortescue et al. [12] discuss these constraints and the de-
liberate trade-off process that is made to determine what

will be included and what must be excluded from a space-
craft design. These constraints may make a dedicated en-
cryption hardware system impractical and also limit the
computational capabilities available onboard the space-
craft.

Beyond the limitations posed to what hardware can be
included, additional restrictions exist. Both power and
communications time are at a premium. Thus, encryption
techniques must be as fast and lightweight as possible to
maximize the available processing time and capabilities.
The amount of data overhead imposed by the technique
must also be kept to a minimum.

2.2 Prior Work on Block Ciphers

The Data Encryption Standard (DES) was one of the first
block ciphers widely used and accepted as a standard. It
was created by IBM, in cooperation with the National
Security Agency (NSA), and published in 1975 [26]. This
algorithm has been adapted multiple times as computers
have become more powerful and avenues of attack were
discovered.

In 2001, an Advanced Encryption Standard (AES) was
published and superseded DES [26]. It was created by
Vincent Rijmen and Joan Daemen, and is currently listed
in NSA Suite B of cryptographic algorithms for use in
encryption. It is a block cipher with a block size of 16
bytes, and variable key sizes ranging from 16, 24, or 32
bytes. AES is a symmetric standard, which uses the same
keys to encrypt and decrypt data. Prior work has evalu-
ated the performance of AES and other symmetric algo-
rithms [10] and its power consumption when processing
different types of data [19].

More recently, a new field of cryptographic algorithms
has been investigated, namely lightweight cryptographic
algorithms. While these may be less secure than other,
heavier algorithms, they are created with the goal of being
used on systems with limited resources, such as sensor net-
works or RFID tags. A family of lightweight algorithms
was recently published by the NSA in 2013 [3]. Known as
the SIMON and SPECK family of algorithms, SIMON
was optimized for hardware and SPECK for software.
Both families have been proposed as the standard for
lightweight algorithms, although more testing is needed
to prove their security.

2.3 Prior Work on Encryption for Space

Quantum Cryptography is a field of cryptographic re-
search that is being investigated for use in satellites.
Hughes et al. [14] investigated the technique of using
Quantum cryptography to securely generate keys for
use on either ground station/satellite communications or
satellite/satellite communications. Their tests were suc-
cessful. Rarity, Tapster, Gorman and Knight [23] also
investigated the possibility of using Quantum Cryptogra-
phy to create a secure key exchange technique between
a ground station and a satellite, and their work suggests
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that there are no technical obstacles to building such a
system, within their technical specifications.

In 2011, Challa, Bhat and Mcnair [4] proposed a se-
curity solution for CubeSats called CubeSec and GndSec.
Their proposed scheme involved using AES and DES en-
cryption operating in Galois/Counter mode on hardware
that supports AES and DES encryption. Specifically,
they tested their algorithm on an ATXMega128 micro-
controller, and achieved throughput of between 43 KBps
and 256Kbps depending on the configuration. However,
they did not investigate a solution based solely on soft-
ware implementation.

As mentioned previously, Muhaya investigated the
possibility of combining AES with a chaotic encryption
scheme [21]. In his work, Muhaya looked at the possibil-
ity of using an Arnold Cat Map [22] to shuffle pixel values,
and using a Chaotic Henon Map [7] to generate a random
sequence of key values for the AES algorithm. However,
while the results listed were promising, no analysis was
performed looking at either the performance or security
of AES or the chaotic algorithms operating separately.

Encryption techniques used in space are well-served by
making use of ongoing development of terrestrial proto-
cols and advancements. Attackers are, similarly, able to
make use of Earth-based advances in protocol-cracking
techniques, driving a need for spacecraft developers to
stay current. Advances may come from areas such as sen-
sor networks [18], the encryption of specific types of data
(such as images [9, 16]) or supporting technologies (such
as seed generators [2]).

3 Proposed Technique

This section presents the proposed novel algorithm, based
on the prior work of [13]. First, a general overview is
presented. Then, specific elements of the approach are
discussed, including the use of the Lorenz system, key
generation, diagonal and anti-diagonal permutation, and
block-based diffusion.

3.1 Overview

The first step of the proposed algorithm, which is based
on prior work [13], is to read the data into an n×n matrix.
The data is then permuted along the diagonal and anti-
diagonal lines. This randomizes the location of each pixel
throughout the matrix. Then, block-based diffusion is
performed on the matrix. As adjacent pixels normally
have a high correlation with their neighbors, block-based
diffusion helps remove this correlation. A general diagram
of the novel algorithm is shown below.

3.2 Lorenz System and Key Generation

The algorithm uses the Lorenz system of equations (see [6]
for a more detailed discussion of the Lorenz system) to
generate several values used in both the Diagonal/Anti-
diagonal permutation step and the Block-based diffusion

step. The Lorenz system of equations is as shown below.

ẋ = m(y − x) + u1

ẏ = rx− y − xz + u2 (1)

ż = xy − bz + u3

Where m, r, and b are constants and x, y, and z are
initial values. For values m = 10, r = 28, b = 8/3, and
u1 = u2 = u3 = 0, the Lorenz system is in a chaotic
state, which in essence means that it will diverge from
another Lorenz System with similar starting values. In
other words, given a set of {x1, y1, z1} similar to {x, y, z},
the two systems will soon look completely different. Note
that in [13], they use a Time-delay Lorenz System, as seen
below:

ẋ = m(y − x) + u1

ẏ = rx− y − xz + u2

ż = xy − bz(t− ) + u3 (2)

For the sake of simplicity, in this paper the algorithm
uses the regular set of Lorenz Equations shown in Equa-
tion (1). Using this simpler set of equations preserves the
essence of the original algorithm while making it easier
for the reader to understand. It also offers prospective
speed benefits, as well as making the implementation and
testing of the proposed algorithm simpler.

Given the Lorenz system, initial values x, y, and z are
chosen (as discussed in [13]). These are the secret key set.
As mentioned above, given enough time, the Lorenz sys-
tem will diverge from Lorenz systems with similar starting
values. Hence, the system of equations is iterated some
number p times to preserve this quality and to give suffi-
cient time for the system of equations to diverge. In [13],
p was chosen to be equal to 30. In this paper, p was
similarly chosen to be 30. Next, the system is iterated
an additional n amount of times, where n is equal to the
length of one side of the n×n data matrix. This generates
the values used in the Diagonal/Anti-diagonal permuta-
tion step and the Block-based diffusion step.

Each x, y, and z value set generated is stored in an
array with each other x, y, or z value. At the end of
this process, the algorithm has generated three arrays of
length n, each array storing either the x values, the y
values, or the z values. As each x, y, and z values in
a given successive sequence are generally increasing or
decreasing, each x, y, and z value are processed via the
equation:

m = abs(m ∗ 103)− floor[abs(m ∗ 103)] (3)

Where abs(a) returns the absolute value of a, and
floor(b) returns the nearest integer less than or equal to
m. Note that this differs from the original equation found
in [6], which is:

m = abs(m ∗ 1014)− floor[abs(m ∗ 1014)]. (4)

At this point, as was done in [13], the array that holds
the x values are copied into a second array and sorted.
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Figure 1: A general outline of the steps taken during the encrypting of data

This then produces two arrays, one with the x values
in their original positions, and one with the x values in
sorted order. Both of these arrays will be used in the
diagonal/anti-diagonal permutation steps. Similarly, the
y values are processed so that there are now two arrays,
one which holds the y values in their original position and
one which holds the y values in sorted order.

3.3 Diagonal and Anti-diagonal Permuta-
tion

The algorithm, as was performed in [13], now starts the
process of permuting the matrix of data along the diago-
nal and anti-diagonal lines. First, it is important to note
that each diagonal line in the matrix has a different num-
ber of elements. For example, the diagonal which reaches
from the top left corner down to the bottom right corner
holds n elements, while the diagonal to the right holds
n− 1 elements. This can be fixed by patching each diag-
onal with another diagonal so that, together, they have n
elements. In the above example, the diagonal with n− 1
elements is patched with either the element in the top
right or bottom left corner (which is in a diagonal of 1).
Thus, together they make a diagonal with n elements. By
doing this to each diagonal, it is now possible to permute
each diagonal symmetrically.

To permute the diagonal line, the proposed algorithm
uses the two arrays of x values (sorted and unsorted) pro-

duced in the key generation step. Consider a given ele-
ment in the unsorted array. There is a similar element
in the sorted array, however, the position is different. By
looking at the difference in positions, it is possible to gen-
erate a key that will permute a given diagonal. Consider
the case where each pixel on a given diagonal is mapped
to an element in the unsorted array of x values. For ex-
ample, the first pixel is mapped to the first element of the
unsorted array of x values, the second pixel is mapped to
the second element, and so on. With this mapping com-
plete, it becomes possible to permute the pixels by simply
matching them with the position of their assigned value
of x in the array of sorted x values. Permutation in the
anti-diagonal direction is performed similarly, except the
arrays of sorted and unsorted y values are used.

During the block-based diffusion step, the original val-
ues of each pixel are modified using the diffusion matrix
calculated from the values iterated from the Lorenz se-
quence. The goal of these steps are to harden the data
against known plaintext attacks, as well as reduce cor-
relation between pixels that were adjacent in the source
image [13].

3.4 Block Based Diffusion

This step, based on [13], begins by breaking the n × n
matrix into two matrices of size n/2 by n, which will
be called matrices A and B. If n is an odd number, the
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data will need to be padded by adding one more row to
make n even. Next, n2/2 values must be selected from
the arrays of X, Y, and Z values randomly. These will
form a diffusion matrix which will be applied to a. The
diffusion matrix will be called D. It is important to note
that for n > 6, more values must be selected than there
are unique elements in X, Y, and Z. In addition to creating
the diffusion matrix, a value t is calculated:

t = (ΣB) mod (
n

2
) + (ΣB) mod (n)

+(ΣB) mod (
n2

2
) + 1.

(5)

where Σ B is the sum of the elements in B, and (a) mod
(b) applies the modulo(b) operator to a. The matrix A is
then diffused via the following equation, where G is the
resulting matrix and Gi,j is a position in matrix G:

Gi,j = (Ai,j + (t ∗Wi,j)) mod (256). (6)

The matrix B is diffused with the following equation,
where H is the resulting matrix and Hi,j is a position in
matrix H:

Hi,j = (Bi,j + Gi,j) mod (256). (7)

While the algorithm discussed in [13] was originally cre-
ated to encrypt pictures, and hence deals with pixels and
pixel values the proposed algorithm has been extended to
support any type of data that can be placed in an n× n
matrix. This makes it possible to use the algorithm as a
general block-based cipher, and allows for easier compar-
ison with common algorithms.

4 Experimental Methods and Re-
sults

The process of testing the proposed cryptographic algo-
rithm and characterizing its performance relative to other,

more common algorithms is now presented. The goal of
this work is to determine what techniques would be well-
suited for use in the domain of small satellites. As such,
there are several constraints that limit possible solutions,
which were discussed previously. It is important that al-
gorithms not be inefficient in terms of processing time or
overall data size. Thus, algorithms that double or triple
the size of the ciphertext, as compared to the plaintext,
would be inefficient in this environment.

Two other cryptographic algorithms were chosen to
compare the proposed algorithm to. The first algo-
rithm chosen was the Advanced Encryption Standard
(AES). Specifically, AES operating in Electronic Code-
book (ECB) mode was chosen to compare against the
novel algorithm for several reasons. Firstly, being a block
cipher with a block size of 16 bytes, it is easy to com-
pare against the proposed algorithm. In addition, it is a
common protocol for terrestrial computing and arguably
could be a first choice for use on most platforms, including
small satellites. ECB mode of operation was chosen be-
cause it appeared to operate most closely to the proposed
algorithm, and thus made for balanced testing. Note that
AES operating in ECB mode of operation is known to be
insecure [6]. However, similar techniques to those used in
the other forms of AES could prospectively be used (with
similar performance and other impacts) to increase the
security of the proposed algorithm.

The other algorithm that was chosen was SPECK.
SPECK is a relatively new lightweight encryption algo-
rithm that was created and proposed by the National Se-
curity Agency. While new, it appears to be secure, and
may be a seen as a possible standard Lightweight En-
cryption approach [6]. Specifically, Speck (128/128) was
chosen for testing, for several reasons. Firstly, SPECK
(128/128) is also a block cipher with a block size of 16
bytes. In addition, lightweight algorithms are increasing
in popularity and also have the potential to be used in the
domain of small satellites. Hence, it is important to con-
sider how the novel algorithm compares to a lightweight
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algorithm.

The tests were run on a Raspberry Pi Model B. The
code of the proposed algorithm, as well as the crypto-
graphic algorithms with which the proposed algorithm
was compared to, were written in the C++ programming
language. AES code was implemented with the use of the
Crypto++ Library version 5.6.2.

4.1 Experimental Setup

This section provides an overview of the configuration and
design choices made in implementing the experimental
design. Several areas are now discussed.

In the block-based diffusion step, a number of elements
iterated from the Lorenz System must be chosen to fill a
diffusion matrix. In the implementation presented in this
paper, this was achieved by using a pseudo-random num-
ber generator with a seed based on the current time. To
generate the seed, both the encryption and decryption al-
gorithms have a file that stores the current seed. When
the algorithm encrypts a file, it encrypts the current time
as well and sends it with the ciphertext. It also stores this
new value in the local file, overwriting the previous seed.
When the decryption program decrypts the ciphertext, it
then reads the new random number seed that was sent
and overwrites the old seed. Both algorithms use the last
known random seed when encrypting and decrypting, and
with each transmission creates a new seed to use. It is im-
portant to note that by using this approach, the seed is
overwritten with each transmission. Hence, if one trans-
mission is not sent or received properly, it may create a
scenario where all future transmissions are unrecoverable.
This is an issue that will need to be addressed to facilitate
the use of this algorithm in a real-world environment.

Additionally, the internal clock on a Raspberry Pi re-
sets every time the system restarts. Even if the system
is designed to never shut down, unexpected restarts may
happen. This means that random number seeds may not
be unique, given enough time. One potential solution
to this is to set the current time from an external source,
such as a GPS, or to send an updated time via the ground
station during transmission, minimizing the amount of
time that the Pi is running off of an old time.

4.2 Results

In this paper, six files were encrypted and decrypted to
test the throughput of each algorithm. One text file, three
JPEG pictures of varying size, and two QuickTime movie
files of different size were used for testing. The picture and
movie files were sources from NASA imagery and would
be typical of images that could be transmitted from a
spacecraft. The text file contains a short paragraph. This
sort of a text file might be generated after the satellite
runs a debug or system check. While it is uncommon for
small satellites to transmit movies (due to bandwidth and
communication window limitations), as small spacecraft

capabilities advance it is not impossible for this to occur
in the near future.

The file sizes of the test data are as follows. The
text file was 67,655 bytes. The three picture files had
sizes of 148,497 bytes (small) 409,306 bytes (medium) and
538,156 bytes (large). The small movie was 5,493,374
bytes, and the large movie was 9,689,032 bytes. Each
file was encrypted and decrypted a total of 150 times, in
groups of 50 operations of encryption and decryption at a
time. In addition, the initial key values used in our novel
algorithm testing are the same values used in [13]: x=-
0.175, y=0.216, and z=-0.811. Multiple block sizes of the
proposed algorithm were tested. Namely, n = 4, 8, 16, 32,
64, 128, and 256, where n is one side of a square matrix.
Block sizes for the algorithm are respectively 16, 64, 256,
1024, 4096, 16384, and 65536 bytes. Results from these
experiments are presented in Tables 1 to 4.

As this testing occurred on mission-realistic hardware
(and the Raspberry Pi units are single core computers,
meaning that system processes could impair a given test),
noise was introduced into the data set. For this reason,
both the mean (which is more impacted by the interfer-
ence, but would be an accurate measure of performing
multiple encryptions/decryptions over time) and the me-
dian values (which provide a better view of the single file
encryption cost) are presented. For sake of consistency,
the median values are used as the comparison metric.

5 Analysis of Results

As shown in Tables 1 and 3, AES encrypted and de-
crypted the files faster than both SPECK and the pro-
posed algorithm. The processing times for SPECK and
the proposed algorithm are comparable, however SPECK
performed better than the proposed algorithm across all
scenarios. It is important to note, however, that the Rasp-
berry Pi has built-in hardware support for AES which
the Crypto++ Library has been built to take advantage
of this feature [8]. Previous testing [24] has shown that
(hardware aided) AES-NI is several times faster than AES
encryption without the hardware optimization.

Note that times were also compared where SPECK
and the novel algorithm were both added to AES encryp-
tion. While some nominal overhead is expected, these
values demonstrate to how the algorithms would perform
if they were combined with AES (mirroring the work done
by [21]). While SPECK + AES was faster than the pro-
posed algorithm combined with AES by a reasonable mar-
gin, it is possible that, with further optimization, the pro-
posed algorithm combined with AES could produce simi-
lar result times. This will serve as a prospective topic for
future work.

A comparison of the performance of the algorithms un-
der the various conditions also produces data of some in-
terest. Considering Table 2, for example, it is clear that
encryption times for the Test file vary, with the 256 and
1025 byte block size encrypting in the least amount of
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Table 1: Mean and media, showing comparison between encryption times of AES, SPECK, and the novel algorithm
with a block size 16 bytes. Times shown are in milliseconds.

Text File Small Picture Medium Picture Large Picture Small Movie Large Movie

AES Mean 122.21 155.67 208.36 218.67 1896.95 3369.14
Median 26.44 59.07 167.11 192.11 1820.96 3307.72

SPECK Mean 133.48 229.60 563.94 768.55 7565.59 13180.98
Median 92.53 199.89 545.28 717.17 7558.81 13131.20

16 bytes Mean 247.08 321.14 721.23 938.66 9376.04 16380.62
Median 116.39 249.53 677.43 890.02 9310.50 16276.60

AES 118.96 258.96 712.40 909.27 9379.77 16438.92
+ SPECK

AES 142.83 308.59 844.54 1082.13 11131.46 19584.32
+ 16 bytes

Table 2: Mean and median times of encryption for each file, showing data from the novel algorithm for block sizes
of 16, 64, 256, 1024, 4096, 16384, and 65536 bytes. Times shown are in milliseconds.

Text File Small Picture Medium Picture Large Picture Small Movie Large Movie

16 bytes Mean 247.08 321.14 721.23 938.66 9376.04 16380.62
Median 116.39 249.53 677.43 890.02 9310.50 16276.60

64 bytes Mean 235.02 280.08 630.58 820.12 8162.89 14142.78
Median 181.70 214.81 584.57 768.05 8079.60 14058.80

256 bytes Mean 294.86 376.05 615.42 770.55 7944.10 13910.27
Median 94.40 202.35 549.64 721.93 7707.64 13622.30

1024 bytes Mean 216.49 261.31 588.56 771.28 7735.40 13503.79
Median 96.97 206.13 556.55 730.85 7686.17 13365.95

4096 bytes Mean 611.32 396.03 641.75 811.43 7726.50 13618.76
Median 586.87 205.07 543.04 714.36 7490.01 13251.30

16384 bytes Mean 524.18 539.65 590.94 780.36 8044.89 14309.31
Median 551.14 343.87 555.32 730.54 7804.75 14235.70

65536 bytes Mean 370.34 475.52 961.50 1217.91 10073.63 14139.14
Median 294.81 306.69 679.57 865.36 8117.33 14030.40

Table 3: Comparison between the mean and median decryption time data results between AES, SPECK, and the
novel algorithm with a block size of 16 bytes. Times shown are in milliseconds.

Text File Small Picture Medium Picture Large Picture Small Movie Large Movie

AES Mean 103.43 141.83 183.75 196.29 1800.80 3171.62
Median 24.46 51.70 137.42 170.73 1775.65 3093.66

SPECK Mean 122.53 225.49 573.42 748.60 7624.45 13264.09
Median 92.25 201.15 548.90 722.06 7608.54 13212.20

16 bytes Mean 230.21 326.44 770.75 990.79 10051.66 17379.17
Median 123.84 265.01 718.77 945.63 9938.16 17243.20

AES 116.70 252.85 686.32 892.79 9384.18 16305.86
+ SPECK

AES 148.30 316.71 856.19 1116.36 11713.80 20336.86
+ 16 bytes
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Table 4: Comparison between the mean and median decryption time data results for the novel algorithm for block
sizes of 16, 64, 256, 1024, 4096, 16384, and 65536 bytes. Times shown are in milliseconds.

Text File Small Picture Medium Picture Large Picture Small Movie Large Movie

16 bytes Mean 230.21 161.50 770.75 990.79 10051.66 17379.17
Median 123.84 265.01 718.77 945.63 9938.16 17243.20

64 bytes Mean 228.58 309.22 676.09 880.58 8695.97 15322.08
Median 107.81 232.37 628.41 824.79 8656.10 15104.05

256 bytes Mean 228.81 400.91 680.78 820.42 8457.53 14827.25
Median 101.27 218.52 591.57 777.03 8119.46 14551.20

1024 bytes Mean 213.35 309.07 636.41 851.08 8328.38 14533.98
Median 105.23 222.94 600.10 788.16 8269.76 14382.65

4096 bytes Mean 482.16 479.97 672.05 843.53 8427.94 14958.49
Median 105.81 222.31 588.58 776.07 8064.88 14661.90

16384 bytes Mean 512.90 599.42 687.79 829.91 8575.43 15253.62
Median 586.59 463.81 600.59 788.52 8162.46 14906.35

65536 bytes Mean 350.06 486.52 1034.06 1315.57 10737.79 15190.99
Median 286.71 328.53 727.43 930.95 8681.52 15062.95

time. For the small picture, the 256, 1025, and 4096 block
sizes are all comparable, and all slightly faster than the 16
byte block size. For larger file sizes, the larger block sizes
appear to function faster than the smaller block sizes.
The medium picture was best encrypted by the 256, 1024,
4096, and 16384 block sizes, with the 64 block size only
marginally slower. The same trend occurs when looking
at the large picture. The small picture was best encrypted
by the 4096 block size, with 256, 1024, and 16384 slightly
slower. It is important to note that, as we look at these
large file sizes, the 16 byte encryption algorithm is per-
forming the slowest. Finally, the large movie was best en-
crypted by the 4096 block size, with 256 and 1024 block
sizes performing slightly slower.

Reviewing the data in Table 4 shows that the results
for the text file and the small picture are similar, with
block sizes of 64, 256, 1024, and 4096 all performing best
and within very close limits to one another, with 16 block
encryption close behind. The medium picture is also sim-
ilar, with 245, 1024, and 4096 performing optimally and
similarly. However, the 16384 block size performs simi-
larly to the other three, and the 64 block size is operating
slightly slower. For the large picture, again, block sizes of
256, 1024, 4096, and 16384 perform best. The small movie
results are similar to the large picture. Finally, the large
movie was best encrypted by block sizes of 256, 1024, and
4096, with 64, 16384 and 65536 falling not unbelievably
far behind.

The foregoing demonstrates that, in addition to the se-
lection of an algorithm for use on the spacecraft, it may be
necessary to use multiple block sizes. Alternately, system
developers might choose to project the types of data that
will be sent in order to optimize the block size selected.

6 Conclusions and Future Work

The work performed has shown that, in the context of
the use of a single algorithm on the Raspberry Pi hard-
ware, AES seems to be a better choice for encrypting and
decrypting data on small satellites than the proposed al-
gorithm when hardware optimization is present. Further
testing is needed to consider how the proposed algorithm
compares to AES in a non-optimized environment. The
potential of implementing hardware enhancement for the
proposed algorithm could also be considered.

In addition, while the SPECK algorithm implementa-
tion performed better than the 16 byte block size version
of the proposed algorithm, the results are similar enough
that further optimization the proposed algorithm could
potentially increase the speed to the point of matching or
outperforming SPECK. The potential to hardware opti-
mize both would also bear consideration.

Finally, this paper has demonstrated the importance of
block size selection for optimization of the performance of
the proposed algorithm. It has provided data that may
aid block size selection, based on the size of the data being
encrypted and decrypted.
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