
International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 383

Detecting Improper Behaviors of Stubbornly
Requesting Permissions in Android Applications

Jianmeng Huang, Wenchao Huang, Fuyou Miao, and Yan Xiong
(Corresponding author: Wenchao Huang)

School of Computer Science and Technology, University of Science and Technology of China

Elec-3 (Diansan) Building, West Campus of USTC, Huang Shan Road, Hefei, Anhui Province, China

(Email: huangwc@ustc.edu.cn)

(Received June 13, 2018; Revised and Accepted Nov. 22, 2018; First Online July 16, 2019)

Abstract

Android applications may stubbornly request permissions
at initialization: if the user does not grant the requested
permissions, these applications would simply exit, refus-
ing to provide any functionalities. As a result, users are
urged by this behavior to grant sensitive permissions and
users actually lose the power to control their sensitive
data, which may cause permission abuse and privacy leak-
age. In this paper, we propose an approach to automati-
cally detect the improper behaviors of stubbornly request-
ing permissions. Experiments on real-world applications
demonstrate the effectiveness of our approach and reveal
that almost 24% analyzed applications contain stubborn
permission requests.

Keywords: Android Security; Improper Behaviors Detec-
tion; Privacy Leakage; Stubborn Permission Requests

1 Introduction

The dramatic growth of Android applications (apps for
short) has raised significant security concerns. Android
dominated the smart phone market with a share of 85%
in 2017 [14]. Most of the apps provide functionalities
relying on sensitive user data (such as SMS and contacts),
as well as certain system features (such as camera and
microphone). However, a number of malicious apps abuse
their privileges on private data [9], which threatens users’
privacy.

To protect users’ privacy, the Android permission
mechanism [10] provides control on whether an app is
allowed to access certain sensitive resources. On Android
6.0 and higher versions, if an app wants to access sensi-
tive data, it should request corresponding permissions at
runtime [7]. The permission mechanism does restrict the
improper behaviors to a certain extent. For example, if a
user does not need the location services from an app or
does not trust the app, the user can deny the permission
of accessing GPS to this app. Overall, the newer Android
permission mechanism helps users to protect certain sen-

sitive data by granting or denying corresponding permis-
sions at runtime, allowing that only the functionalities
related to the denied permissions are restricted.

However, some apps may get their requested permis-
sions by urging users to grant them: if users do not grant
the permissions, these apps would exit. Two reasons may
account for the purposes of this behavior. First, these
apps intentionally collect user’s sensitive data. They gain
profit from user’s privacy, so they need to get correspond-
ing permissions. Second, to reduce workload, the devel-
opers of these apps have not implement the codes which
handle the exception of not having sensitive permissions.
Hence, these apps are stubborn to get the permissions,
otherwise the apps may crash. In this paper, we call this
behavior as the stubborn permission request, which actu-
ally puts pressure on users to grant the requested permis-
sions.

Unfortunately, users are vulnerable to the stubborn
permission requests. On the one hand, users are not
aware of the stubborn permission request in the app be-
fore the app is installed and running. After the app is
installed, users may bother to uninstall it or choose an-
other app with similar functionalities. On the other hand,
users may be attracted by some functionalities of the app,
which makes users ignore the risk of privacy leakage and
hence grant the permissions. A survey [11] of 308 An-
droid users and a laboratory study of 25 Android users
found that only 17 percent paid attention to permissions.
If users yield to the stubborn requests, their privacy is
under threat for that the app would get full access to its
required sensitive data. At runtime, users are not aware
of when and which permissions are used. Therefore, it
is necessary to inform users about the stubborn permis-
sion requests of an app before the app is installed into the
device.

In this paper, we present an approach based on static
analysis to detect improper behaviors of stubbornly re-
questing permissions in Android apps. We first study and
model the behaviors of stubborn permission requests: if
the requested permissions are not granted, the app would



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 384

exit. Then we statically identify the behaviors in the de-
compiled codes. To the best of our knowledge, our ap-
proach is the first to detect stubborn permission requests
in Android apps. The experimental result shows that 24%
of the tested popular apps contain stubborn permission
requests. Such result indicates that users who are using
these apps are exposed to the potential risk of privacy
leakage, and the app market has not noticed the risk of
such improper behavior.

Our approach can be adopted by Android app mar-
kets. The app market could add a label to the app which
contains stubborn permission requests. As a result, users
could be warned by the label. If a user does not trust
the app, he/she could choose to install other alternative
apps. With the result of our detection, the market could
also conduct further detailed analysis on the apps in order
to figure out how the sensitive data are used.

The main contributions of this paper are as follows:

� We study the stubborn permission requests in An-
droid apps. To the best of our knowledge, our work
is the first to investigate this kind of behaviors.

� We propose a static analysis approach to detect stub-
born permission requests in Android apps.

� We demonstrate the effectiveness of our approach
and present our findings.

The rest of this paper is organized as follows: Section 2
describes the background and the current problem. Sec-
tion 3 presents the design of our approach and Section 4
describes experimental results. Section 5 describes related
work and Section 6 concludes the paper.

2 Background and Problem State-
ment

2.1 Android Permissions

The main purpose of Android permission mechanism is
to protect Android end users’ privacy. In the Android
system, every app runs in a limited-access sandbox. If
an app needs to use resources or information outside of
its sandbox, the app has to request the appropriate per-
missions (e.g., contacts, Bluetooth and location). Before
Android 6.0, the permissions are declared in the app man-
ifest file and granted by users at install time. This permis-
sion mechanism does protect users’ privacy to a certain
extent. However, the permission model cannot be easily
deployed, for that before appropriately using the Android
permission model against suspicious apps, users should
understand the program behaviors of the apps.

On Android 6.0 and higher versions, the system grants
the permission automatically or might prompt the user
to approve the request, depending on the level of the per-
mission. Particularly, the Android permissions are cate-
gorized into two levels: the normal and dangerous per-
missions [8]. Some permissions are considered “normal”

(e.g., Internet, setting alarm and NFC) so the system im-
mediately grants them upon installation. Other permis-
sions are considered “dangerous” (e.g., SMS, camera and
storage) so that apps must explicitly request for users’
agreements at runtime. Only dangerous permissions re-
quire users’ agreements. The proper way of utilizing the
dangerous permissions is:

1) Adding the permissions to the manifest;

2) If an app needs a dangerous permission, it must check
whether it has that permission every time it performs
an operation that requires this permission, because
the user can revoke the permission from the app at
any time;

3) If the app does not have the permission, the app
must prompt the user for that permission using cer-
tain APIs provided by Android, which brings up a
standard Android dialog that cannot be customized
by developers.

Besides, the permission request should occur at the time
that the operation needs the corresponding sensitive re-
source, so that the user could understand why the app
needs the permission in that circumstance and grants the
permission to the app if the request is reasonable. Af-
ter the user responds to an app’s permission request, the
system invokes method onRequestPermissionsResult()

in the app, passing the user’s response to the app. The
app should override this method to find out whether the
permission is granted.

The new permission mechanism further organizes per-
missions into groups related to a device’s capabilities or
features. Under this mechanism, permission requests are
handled at the group level and a single permission group
corresponds to several permission declarations in the app
manifest. For example, the SMS group includes both the
READ SMS and the RECEIVE SMS declarations. If an app
gets the permission of SMS group, it has both the two
permissions in this group.

2.2 Problem Statement

The permission mechanism on Android 6.0 and higher
versions helps users better understand the behaviors of
using sensitive permissions in an app and hence is more
effective in protecting users’ privacy. However, proper
deployment of the permission mechanism requires higher
workload of developers, since the app should always check
for and request permissions at runtime to guard against
runtime errors. Even if the user grants an app dangerous
permissions, the app cannot always rely on having them.
Because the user has the option to disable permissions in
system settings.

Some apps urge users to grant the requested permis-
sions when these apps begin to run. If the app has the
dangerous permissions, the app would continue to run;
Otherwise, the app would prompt the user for the per-
missions. If the user refuses to grant the permissions,



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 385

(a) The first permission request.(b) The second permission re-
quest.

(c) The explanation of permis-
sion usage.

(d) The final notification.

Figure 1: The permission request of an stubborn app.

the app would immediately exit. Figure 1 illustrates a
real-world app which would exit if it does not get the re-
quired permissions. Figure 1a and Figure 1b show the
standard Android dialogs which are used for requesting
permissions. If the user denies the request twice, and
chooses “Don’t ask again”, the dialog would not show at
following runs of the app. However, this app prompts its
own dialog (Figure 1c) which tells the users how to grant
the required permissions in system settings. If the user
denies all these requests, this app would inform the user
that it would exit if not granted the permissions (Fig-
ure 1d).

The permission requests at the initialization of an app
divorce from the original intention of the new Android
permission mechanism and stubborn permission requests
(i.e., if the user does not grant the permissions, the app
would exit) hurt the user’s rights of utilizing functional-
ities which do not require dangerous permissions. It is
reasonable for the app to disable the functionality that
relies on the required permission (not granted), but it is
not reasonable for the app to disable all the functionalities
if it does not get all of the requested permission.

Challenge: The challenge of automatically detecting
stubborn permission requests in Android apps is how
to precisely and concisely model this kind of improper
behaviors. To the best of our knowledge, the behav-
iors of stubbornly requesting permissions have not
been investigated by existing researches.

Hence, adequate investigations from Android apps are
required. Then, to automatically detect such improper
behaviors in Android apps, a precise and concise model
should be proposed. First, the model should be precise
so that the detection result could achieve high precision.
Second, the model should be concise so that the detection
could be efficient.

3 Design and Implement

To detect the stubborn permission requests in Android
applications, we propose a static analysis approach to find
situations that if not granted required permissions, the
app exits. This section describes our design and imple-
ment.

3.1 Overview

Our insight of detecting the improper of stubbornly re-
questing permission is based on the observation that all
such kind of improper behaviors share the same subpro-
cess that if the requesting result is “not granted”, the app
would finally finish all the activities. Hence, our detection
is implemented by searching such patterns in the app.

Definition 1. A stubborn permission request is an
improper app behavior that if the user does not grant an
app requested dangerous permissions, the app would not
provide any functionality, including functionalities which
do not need the requested permissions. Besides, when the
app is started next time, the app would check whether it
has certain dangerous permissions. If not, the app would
request for permissions again.

Definition 1 describes the improper behavior of stub-
bornly requesting permissions researched by this paper.
We argue that the permission requesting prompt should
provide users a choice of whether to share privacy with the
app, rather than urging users to grant the permissions.

Based on the above definition, our detection for stub-
born permission requests includes two steps. As the stub-
born permission requests begin with checking permis-
sions, our first step locates code fragments of checking
whether an app has dangerous permissions, which is used
as the entry points of our further analyzing. The sec-
ond step figures out whether the code fragments of entry



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 386

Figure 2: Framework of our approach

points would finally lead to the exit of the app. If there
exist code paths between the code fragments of check-
ing dangerous permissions and finishing activities, which
means that in certain conditions (e.g., the user denies the
permission requests), the app would exit after checking
whether it has the dangerous permissions, and the stub-
born permission requesting behavior is found.

3.2 Design

In this subsection, we first introduce how we choose the
entry points for our further analyzing. Then we describe
how we figure out whether the entry points would lead to
the exit of an app. Figure 2 shows the methodology of our
approach. Particularly, we use Soot [18] as the underly-
ing analysis infrastructure. Soot translates the bytecode
of an app to Jimple representation, a statement based
intermediate representation, and it can generate an ac-
curate call graph of the app. A call graph is a control
flow graph which represents calling relationships between
methods in an app. Then our approach locates the en-
try points and exit-methods (APIs which cause apps to
exit). Finally, we apply a reachability analysis to fig-
ure out whether there exists a code path between the
entry points and exit-methods. If found, we report the
improper behavior of stubborn permission requests. Sim-
ilar to prior static approaches [1,20], our analysis is based
on the Jimple representation and the call graph. We do
not adopt dynamic analysis approach because dynamic
analysis faces the problem of low testing coverage, which
causes insufficient analysis of the app.

Figure 3: Flow of a stubborn permission request

3.2.1 Entry Points and Exit-methods

As our approach focuses on detecting stubborn permis-
sion requests, we first figure out the processes of stub-
born permission requests. Figure 3 shows the normal
flow of a stubborn permission request. The app asks
for dangerous permissions first, then the user makes
a choice of denying it or allowing it. Afterwards,
the app could get the requesting result from method
onRequestPermissionsResult(). If the requested per-
mission is not granted, the app would inform the user to
grant the permission by a prompted dialog or through the
system setting. Finally, if the user still refuses to grant
the requested dangerous permissions, the app would exit.
Overall, whether the app is going to exit depends on the
results of method onRequestPermissionsResult().

Studying the processes of stubborn per-
mission requests, we find that method
onRequestPermissionsResult() could be consid-
ered as the beginning of analyzing stubborn behaviors.
Besides, we find that some app do not get the re-
sponse of the permission request in the recommended
method onRequestPermissionsResult(). There are
other ways of indicating whether users grant the
requested permission or not. First, an app could
call checkSelfPermission() to check permissions
and perform stubborn permission request if it is not
granted. Hence, method checkSelfPermission() and

checkCallingorSelfPermission() are also considered
as entry points by our approach. Second, an app
could indicate whether it has certain permissions. For
example, an app could invoke an Android API (e.g.,
getLongitude()) which requires a dangerous permission
and utilize Java exception handling to infer whether the
app has the permission. Table 1 lists some sensitive APIs
and their required corresponding permissions. Hence,



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 387

Table 1: Sensitive APIs and the corresponding permissions

Method Permission
com.android.internal.telephony.cdma.CDMAPhone:
java.lang.String getDeviceId()

READ PHONE STATE

android.location.Location:double getLongitude()
ACCESS COARSE LOCATION,
ACCESS FINE LOCATION

com.android.nfc.NfcService:void onSeApduReceived(byte[]) NFC
com.android.server.sip.SipService:void
open(android.net.sip.SipProfile)

USE SIP

android.media.AudioManager: void setRingerMode(int) RECORD AUDIO
android.telephony.SmsManager:void sendTextMessage(...) SEND SMS

the try-catch blocks which invoke sensitive APIs are also
considered as entry points.

Our approach locates all the entry point in an
app, by searching the method names of entry point
in the decompiled Jimple codes. Particularly, method
onRequestPermissionsResult() is a callback method
which would be invoked by Android system and it is over-
ridden by the app in order to handle the permission re-
quest response. As a result, this method is found by re-
trieving all the third party classes of the app. For the try-
catch blocks, we search all the try blocks in the Jimple
codes for sensitive APIs (list from PScout [2]). If found,
we record the corresponding catch blocks as entry points
for further analyzing.

Particularly, we denote exit-methods as APIs that
would finish the activities or cause the app to exit. Ta-
ble 2 lists the exit-methods monitored by our analy-
sis. Some of the methods directly finish the activities
or terminate the app process. For example, method
finish() and finishActivity() finish an Android ac-
tivity. The System.exit() method quits the current
program by terminating the running Java virtual ma-
chine. Method killBackgroundProcesses() kills all
background processes associated with the given package.
Method killProcess() kills the process with the given
PID. finishAndRemoveTask() finishes all activities in
this task and removes it from the recent tasks list. An-
other way of stopping users from utilizing the function-
alities of an app is to hide the activities of the app to
background. moveTaskToBack() moves the task contain-
ing this activity to the back of the activity stack.

3.2.2 Finding Stubborn Permission Requests

To figure out whether the entry points would lead to the
exit of an app under certain circumstance, we traverse
the call graphs which are rooted from the entry points.
Here, we introduce our reachability analysis, which finds
whether an entry point method would directly or indi-
rectly invoke methods that finish activities or cause the
app to exit.

Our reachability analysis is implemented by finding
method invocation chains from the entry points to exit-
methods in an app. The method invocation chain indi-

Table 2: The exit-methods

Class API
android.app.Activity finish
android.support.v4.app.
ActivityCompat

finishAffinity

java.lang.System exit
android.app.Activity-
Manager

killBackgroundProcesses

android.os.Process killProcess
android.app.Activity moveTaskToBack
android.app.Activity-
Manager.AppTask

finishAndRemoveTask

Algorithm 1 Identifying stubborn permission requests

1: Input: the entry point methods entryPoints, and
the APK file app.apk

2: Output: whether the app has the stubborn permis-
sion request behavior

3: Begin
4: callgraph←generateCHACallgraphWithSoot(app.apk)
5: for all ep ∈ entryPoints do
6: if reachabilityAnalysis(ep, callgraph) then
7: return true
8: end if
9: end for

10: return false
11: End

cates that checking the permission request response would
finally lead to the exit of an app. In particular, the invo-
cation chain is a path in the call graph which starts with
an entry point and ends with an exit-method. Hence, if
there is a method invocation chain from an entry point
method to an exit-method, we report that the app con-
tains stubborn permission requests.

Algorithm 1 shows how our approach finds stubborn
permission requests. It accepts the entry points and the
apk file as inputs. The output of this algorithm is a judg-
ment about whether this app contains stubborn permis-
sion requests. Generally, Algorithm 1 recursively searches
the methods that could be triggered from the entry point



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 388

Algorithm 2 reachabilityAnalysis

1: Input: a method ep, a call graph callgraph, the
exitMethods

2: Output: whether method ep has the stubborn per-
mission request behavior

3: Begin
4: subgraph← callgraph.rootedWith(ep)
5: children← subgraph.getChildren(ep)
6: for all child ∈ children do
7: if child ∈ third party packages then
8: if reachabilityAnalysis(child, subgraph) then
9: return true

10: end if
11: else
12: if child ∈ exitMethods then
13: return true
14: end if
15: end if
16: end for
17: return false
18: End

methods.

In detail, Algorithm 1 first decompiles the apk file
into Jimple codes, then it utilizes Soot to generate a
call graph using the class hierarchy analysis (CHA) (i.e.,
line 4), which conservatively estimates possible receivers
of dynamically-dispatched messages. As a result, for ex-
ample, a virtual method could be invoked, which is due to
the use of polymorphism through which it is possible for
a subtype to override methods defined in its super-types.
The actual target of the virtual call is determined at run
time. The generated call graph would list the possible
target method in it.

Then we apply the reachability analysis (Algorithm 2)
for each entry point (i.e., line 5-9 in Algorithm 1 ). In
the reachability analysis, Algorithm 2 first gets a sub-
graph rooted with the method ep from the the call graph
of the app. Then, it travels the subgraph to check each
method. If a method in the call graph belongs to the
third party libraries (i.e., defined by the app), this al-
gorithm would recursively search for exit-methods inside
the method (i.e., line 6 to line 16 in Algorithm 2). If one
of the exit-methods is found in the sub-callgraphs rooted
with an entry point method, the algorithm would report
a recognition of stubborn permission request.

4 Evaluation

4.1 Experimental Setup

All experiments were conducted on a 4-processor 16GB-
RAM machine, and all the apps analyzed in this section
were collected from four third party Android app mar-
kets in China (i.e., wandoujia, anzhi, baidu-shouji, tecent-
yingyongbao) and Google Play. The collected apps were

among the top popular apps in each category sorted by
the app markets.

4.2 Real-world Apps Study

We first analyzed 104 apps downloaded from the four
third party Android app markets to figure out how com-
mon is the stubborn permission request in real-world apps
of China. The selected apps were the most popular apps
(sorted by the downloads) of all the apps in the market,
and all of them were listed by the four app markets. Note
that some apps may have different release versions of apps
targeted for different kinds of mobile devices. Besides,
some of the apps may have customized versions cooper-
ated with the app market for the purpose of advertising,
but main functionalities of these apps are the same. In our
experiments, we found that different versions of an app
have the same behaviors of permission requesting. Hence,
we treated the apps with same name as the same app. As
a result, we found that 25 (i.e., 24%) tested China apps
contained stubborn permission request behaviors.

We also investigated corresponding apps from Google
Play. Google Play serves as the official app store for the
Android operating system. Only 37 out of the 104 Chinese
apps are listed in Google Play. Other apps do not provide
international services. Among the 37 apps, 4 (i.e., 11%)
apps contain stubborn permission requests. We can con-
clude that apps in Google Play may also contain stubborn
permission requests, but apps in Google Play are with
lower ratio of containing stubborn permission requests
than apps in third party markets of China. Based on
the above experimental results, we suggest that app mar-
kets pay more attention to stubborn permission requests
in apps, especially third party Android app markets.

Table 3: Results of market apps study (P: precision, R:
recall)

Category
anal-
yzed

stub-
born

dete-
cted

P R

Movie
&Music

19 2 2 100% 100%

News 20 7 7 100% 100%
Social 18 4 3 100% 75%
Tools 19 6 6 100% 100%
Sport 19 5 4 100% 80%

Shopping 20 7 6 100% 86%
Weather 20 6 6 100% 100%

Furthermore, in order to investigate stubborn permis-
sion requests in different categories of apps, we ana-
lyzed 140 apps from 7 different categories, each of which
contains 20 apps, and each app was analyzed for maxi-
mum 30 minutes. As apps providing different function-
alities require different permissions, the occurrence fre-
quency of stubborn permission requests may be different.
For example, apps which provide “map” function natu-
rally requires GPS permission, and the stubborn permis-



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 389

sion requests are more likely to be found in these apps.
Table 3 lists the results of our investigation. Of the 140
apps, 5 (3.5%) apps were not analyzable, which is caused
by exceeding the RAM limit or the 30 minutes timeout,
and Soot exceptions while transforming bytecode to Jim-
ple representation.

The results show that stubborn permission requests
occur differently in each app category. Particularly, the
stubborn permission request occurs more among apps in
the categories of news, tools, shopping and weather than
others, which indicates that app providers in these cate-
gories are more likely to collect users’ privacy. Apps in
these categories provide functionalities frequently used by
users, which increases the possibility of leaking privacy.
As a result, we suggest app providers of these apps reg-
ulate the behaviors in the apps of requesting dangerous
permissions and utilizing users’ private data.

Table 4: Results of popular apps from different app mar-
kets

App Name Wandoujia Anzhi
Baidu-
shouji

Tecent-
yingy-
ongbao

Google
Play

UC
browser

© © © © ×

WeChat © © © © ©
Taobao © © © © ©
Zhihu × × × × ×
Meituan © © © © ©
DiDi © © © © ©
Ctrip × × × × ×
zhifubao © © © © ©
Pinduoduo × × × × −
QQ Mu-
sic

© © © © −

Toutiao × × × × −
Facebook − − − − ×
Reddit − − − − ×
Quora × × × × ×

© means that the app contains stubborn permission requests.
× means the app does not contain stubborn permission requests.
− means that the app is not listed on the corresponding app market.

Next, we present some detection results of popular apps
from different app markets. Table 4 lists our detection
results. The improper behavior of stubbornly permission
requests is not rare in the most popular apps. We observe
different results regarding to different app markets. For
example, some apps from Chinese app markets contain
stubborn permission requests, but the releases of them
on Google Play does not contain stubborn permission re-
quests (e.g., UC browser). Some apps contain stubborn
permission requests, and these apps are only listed on Chi-
nese app markets (e.g., QQ Music). We also observe dif-
ferent behaviors that do not contain stubborn permission
requests. For example, Zhihu does not request permission
when it is started to run, Ctrip requests permissions but
it does not exit even if users refuse the request.

4.3 Precision and Recall

To get the precision and recall of our analysis results, we
manually installed the tested apps and checked whether
these apps have stubborn permission requests. For apps
which require users to sign up the app before enjoying the
functionalities, we created accounts to test these apps.
We ran each app for 5 minutes, manually triggering all
the UI elements of each app’s activities, until we found
a stubborn permission request. Finally, the ground truth
of whether the tested apps have stubborn permission re-
quests was collected.

We consider two evaluation metrics, the precision and
recall.

Precision: The fraction of permission requests correctly
identified as stubborn among those reported by our
static approach.

Recall: The fraction of permission requests correctly
identified as stubborn among those manually tested,
i.e., the ground truth.

Given the ground truth information and the detection
results, there are four possible outcomes: True posi-
tive(TP), true negative (TN), false positive (FP) and false
negative (FN). TP means that an app contains improper
behavior of stubbornly requesting sensitive permissions
with respect to the ground truth and it is detected by
our approach. TN means that an app does not contain
improper behavior of stubbornly requesting sensitive per-
missions with respect to the ground truth and our ap-
proach does not find stubborn permission requests in the
app. FP means that an app does not contain improper
behavior of stubbornly requesting sensitive permissions
with respect to the ground truth but our approach re-
ports that the app contains stubborn permission behav-
iors. FN means that an app contains improper behavior of
stubbornly requesting sensitive permissions with respect
to the ground truth but our approach does not find stub-
born permission requests in the app. Finally, the precision
and recall are computed by the following formulas:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

The precisions and the recalls of the analysis results
for apps from different categories are listed in Table 3
(the last two columns). The third column lists the man-
ually analyzed results. For all the app categories, we got
100% detection precision, which means that all the re-
ported apps in our detection results have stubborn per-
mission requests. The recalls of our detection are also
high, which indicates the effectiveness of our work. There
exist apps which actually have stubborn permission re-
quests, but our static analysis approach didn’t recognize
them. Two reasons account for this situation. First, there
are other covert ways of checking whether an app has cer-
tain dangerous permission. For example, some malicious
app may use Java reflection to obfuscate method calls. It



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 390

is difficult for static analysis based approaches to handle
reflection [26]. In this situation, the method calls of entry
point methods may be missed by our static approach for
that our approach does not support handling reflection
currently. Second, we find that there exist apps which
do not exit after the permission requests are denied by
users. Instead, these apps continuously request for per-
missions. Even if the standard dialog of requesting per-
missions would not be shown after users choose “Don’t ask
again”, these app would present their own dialog (e.g., as
shown in Figure 1b and Figure 1c). Users could finish the
app by clicking the default Android “home” button. We
leave these as future work.

We believe that our approach is effective in detecting
improper behaviors of stubbornly requesting permissions
in Android applications. Although manual detection can
achieve high precision and recall, it is not applicable for
massive app audition. As our static analysis approach can
achieve similar detection results compared with manual
detection and it does not require human assist, we be-
lieve it can help app markets or analysts to automatically
detect stubborn permission requests in Android apps.

4.4 Findings

During our analysis on the market apps, we have some
findings. The PHONE and STORAGE are the two most
frequently requested permissions and they are also the
top permissions occurring in the stubborn permission re-
quests. We studied the corresponding apps that stub-
bornly request the two permissions to figure out why these
apps insist in getting the permissions.

We find that the some of the Android permission
groups are not properly designed , which actually con-
tributes to the concern about privacy leakage of stub-
born permission requests. For example, the PHONE per-
mission group contains READ PHONE STATE, CALL PHONE,

READ CALL LOG, WRITE CALL LOG, etc. Some apps need
to read the IMEI (International Mobile Equipment Iden-
tity) of a device for identifying the unique phone. For
instances, in some voting systems, it is required that
each device only has one vote. Mobile app developers
need to understand who are using their apps, and the
IMEI is often used to distinguish different users [22].
Hence, these apps request for the corresponding permis-
sion: READ PHONE STATE. However, the system informs
users by the permission group PHONE. Users may be wor-
ried about granting the app this group of permissions for
that if the app requests for other permissions in this group
latter, the system would directly grant it the permissions
without informing users again. The permissions in the
permissions group are organized by Android permissions
mechanism with the same sensitive resource, but as the
situation in this case, the READ PHONE STATE is more fre-
quently used by apps than other permissions in its group.
We believe that the frequency of the permissions used by
apps should also be taken into consideration. Based on
our study, we suggest that this permission could be taken

out from the permission group PHONE in order to reduce
the privacy concern.

We also find that different versions of an app may have
different behaviors of permission requests. For example,
Weibo and Weibo international are different versions of
the client app of Sina Weibo. The Weibo is an interface
for Chinese market, and the Weibo international aims to
be adapted by other cultures. However, Weibo contains
stubborn permission requests, while Weibo international
does not have ones. Different markets may have different
data protection rules, which may account for this situa-
tion that two apps of the same company have different
behaviors of stubborn permission requests. We believe
that users’ privacy should be put it in the first place, and
app providers should follow the same data protection rules
to develop their apps.

We observe that all the stubborn permission requests
occur at the initialization of an app. The purpose of
the stubborn permission is to urge users to grant the
requested permissions. Hence, stubborn permission re-
quests at the initialization of an app put pressure on users:
if they do not grant the permissions, they would not enjoy
normal app functionalities. As a result, it increases the
possibility for the app to get the requested permissions.
Besides, we observe some apps, which contain stubborn
permission requests, do not check whether they have the
permissions at runtime in the codes. Hence, stubbornly
requesting permissions at the initialization of an app guar-
antees that the app always has the requested permissions
at runtime, which reduces the workload of the app de-
velopers. Based on these observations, we suggest the
analyzers and users pay more attention to the apps which
stubbornly request permissions at initialization.

5 Related Work

Prior work demonstrates that install-time prompts of re-
questing permissions fail to protect users’ privacy because
users do not comprehend these permission requests or pay
attention to them [12,17]. Users often do not understand
which permission correspond to which functionalities in
apps before they are familiar with the apps. As a re-
sult, users are prone to grant the permissions. Apex [23]
and πbox [19] provide users with the ability to grant per-
missions to the app at runtime. This feature is now in-
tegrated in Android since the version of Marshmallow.
In our work, the stubborn permission request occurs at
the initialization of Android apps, which has the same
problem that users are not familiar with apps. Moreover,
stubbornly requesting permission urges users to grant the
permissions.

Researches have designed systems to recommend per-
missions for app developers to properly request permis-
sions [3, 16]. These researches are based on mining
technique or collaborative filtering technique. Other re-
searchers have developed systems to to predict permission
decisions at runtime based on contextual information and



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 391

machine learning methods [24]. By requiring users to re-
port privacy preferences, clustering algorithms have been
used to define user privacy profiles even in the face of
diverse preferences [21].

Wijesekera et al. [28] build a classifier to make pri-
vacy decisions on the user’s behalf by detecting when
context has changed and, when necessary, inferring pri-
vacy preferences based on the user’s past decisions and
behavior. It automatically grants appropriate resource
requests without further user intervention, denies inap-
propriate requests, and only prompts the user when the
system is uncertain of the user’s preferences.

There is a large body of work researching the improper
use of permissions in Android permissions. Wei et al. [27]
find that some Android Applications do not follow the
principle of least privilege, intentionally or unintention-
ally requesting permissions which are not related to the
declared app functions. Fauzia et al. investigate the com-
bined effects of permissions and intent filters to distin-
guish between the malware and benign apps [15]. Qian et
al. [25] use static analysis to determine whether an app
has potential risks, and then embed monitoring Smali
code for sensitive APIs.

As a result, their approach could reveal the mali-
cious behaviors of applications leaking users’ private data.
Zhao et al. [30] extract the API packages, risky API func-
tions and permission information and then use convolu-
tional neural network to identify Android malwares. Pe-
gasus [6] focuses on detecting the malicious behavior that
can be characterized by the temporal order in which an
app uses APIs and permissions. It can automatically
detect sensitive operations being performed without the
user’s consent. Our work detects a kind of improper be-
havior that stubbornly requests dangerous permissions.

To enhance the Android permission mechanism, Mock-
Droid [4] allows users to mock an application’s access to
a resource. It offers users with binary options that ei-
ther revoking access to particular resources or providing
full access to the app. However, MockDroid only works
for explicitly requested resources. To deal with innocu-
ous sensors, IpShield [5] performs monitoring of every
sensor accessed by an app and allows users to config-
ure privacy rules which consist of binary privacy actions
on individual sensors. Blue Seal [13] extends the An-
droid permission mechanism with semantic information
based on information flows, which allows users to exam-
ine and grant information flows within or across multi-
ple applications. It can remove unnecessary permissions
from over privileged apps and synthesize flow permissions
for the app. FineDroid [29] associates each permission
request with its application context and provides a fine-
grained permission control. FineDroid also features a pol-
icy framework to flexibly regulate context-sensitive per-
mission rules. SmarPer [24] relies on contextual informa-
tion and machine learning methods to predict permission
decisions at runtime.

6 Conclusion

This paper presents a static analysis approach which tar-
gets for detecting stubborn permission requests: if users
do not grant the required dangerous permissions, the app
would not provide any functionalities. This stubborn be-
havior threatens users’ privacy for that if users yield to
it, the app would get full access to sensitive data and the
users are not aware of how the app would use the sensi-
tive data. By statically analyzing the decompiled codes,
we identify the stubborn permission requests. Our exper-
imental results indicate that our approach is effective in
detecting the stubborn requests. Our work could be uti-
lized by app markets so that users can be informed if an
app contains stubborn permission requests.

Acknowledgments

The research is supported by National Natural Sci-
ence Foundation of China under Grant No.61572453,
No.61202404, No.61520106007, No.61170233,
No.61232018, No.61572454, Natural Science in Col-
leges and Universities in Anhui Province under Grant
No.KJ2015A257, and Anhui Provincial Natural Science
Foundation under Grant No.1508085SQF215. The
authors gratefully acknowledge the anonymous reviewers
for their valuable comments.

References

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bar-
tel, J. Klein, Y. L. Traon, D. Octeau, and P. Mc-
Daniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for
android apps,” in Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, vol. 49, no. 6, pp. 259–269,
2014.

[2] K. W. Y. Au, Y. Zhou, Z. Huang, and D. Lie,
“Pscout: analyzing the android permission specifica-
tion,” in Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pp. 217–
228, 2012.

[3] L. Bao, D. Lo, X. Xia, and S. Li, “What permissions
should this android app request?,” in International
Conference on Software Analysis, Testing and Evo-
lution (SATE), pp. 36–41, 2016.

[4] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan,
“Mockdroid: Trading privacy for application func-
tionality on smartphones,” in Proceedings of the 12th
Workshop on Mobile Computing Systems and Appli-
cations, pp. 49–54, 2011.

[5] S. Chakraborty, C. Shen, K. R. Raghavan,
Y. Shoukry, M. Millar, and M. Srivastava, “Ipshield:
A framework for enforcing context-aware privacy,”
in 11th USENIX Symposium on Networked Systems



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 392

Design and Implementation (NSDI’14), pp. 143–156,
2014.

[6] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai,
K. MacNamara, T. R. Magrino, E. X. Wu,
M. Rinard, and D. X. Song, “Contextual pol-
icy enforcement in android applications with
permission event graphs,” in NDSS, 2013.
(https://www.cs.cornell.edu/~tmagrino/
papers/ndss13-pegasus.pdf)

[7] Developer.android.com., Requesting Permissions
at Run Time. (http://developer.android.com/
training/permissions/requesting.html)

[8] Developer.android.com., Permissions Overview.
(https://developer.android.com/guide/
topics/permissions/overview.html#

normal-dangerous)
[9] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S.

Gaur, M. Conti, and M. Rajarajan, “Android secu-
rity: A survey of issues, malware penetration, and
defenses,” IEEE Communications Surveys & Tutori-
als, vol. 17, no. 2, pp. 998–1022, 2015.

[10] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wag-
ner, “Android permissions demystified,” in Proceed-
ings of the 18th ACM Conference on Computer and
Communications Security, pp. 627–638, 2011.

[11] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin,
and D. Wagner, “Android permissions: User atten-
tion, comprehension, and behavior,” in Proceedings
of the eighth symposium on usable privacy and secu-
rity, pp. 3, 2012.

[12] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller,
“Checking app behavior against app descriptions,”
in Proceedings of the 36th International Conference
on Software Engineering, pp. 1025–1035, 2014.

[13] S. Holavanalli, D. Manuel, V. Nanjundaswamy,
B. Rosenberg, F. Shen, S. Y. Ko, and L. Ziarek,
“Flow permissions for android,” in IEEE/ACM 28th
International Conference on Automated Software
Engineering (ASE’13), pp. 652–657, 2013.

[14] IDC, Smartphone OS Market Share, 2018. (http://
www.idc.com/promo/smartphone-market-share/

os).
[15] F. Idrees and M. Rajarajan, “Investigating the an-

droid intents and permissions for malware detec-
tion,” in IEEE 10th International Conference on
Wireless and Mobile Computing, Networking and
Communications (WiMob’14), pp. 354–358, 2014.

[16] M. Y. Karim, H. Kagdi, and M. Di Penta, “Mining
android apps to recommend permissions,” in IEEE
23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER’16), vol. 1,
pp. 427–437, 2016.

[17] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung,
N. Sadeh, and D. Wetherall, “A conundrum of
permissions: Installing applications on an android
smartphone,” in International Conference on Fi-
nancial Cryptography and Data Security, pp. 68–79,
2012.

[18] P. Lam, E. Bodden, O. Lhoták, and L. Hendren,
“The soot framework for java program analysis: A
retrospective,” in Cetus Users and Compiler Infas-
tructure Workshop (CETUS’11), vol. 15, pp. 35,
2011.

[19] S. Lee, E. L. Wong, D. Goel, M. Dahlin, and
V. Shmatikov, “πbox: A platform for privacy-
preserving apps,” in NSDI, pp. 501–514, 2013.

[20] L. Li, A. Bartel, T. F. Bissyande, J. Klein,
Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel, “IccTA: Detecting
inter-component privacy leaks in android apps,” in
IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE’15), 2015. ISBN: 978-1-
4799-1934-5.

[21] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, Modeling
Users’ Mobile App Privacy Preferences: Restor-
ing Usability in a Sea of Permission Settings,
2014. (https://www.usenix.org/system/files/
conference/soups2014/soups14-paper-lin.pdf)

[22] W. Liu, Y. Zhang, Z. Li, and H. Duan, “What you
see isn’t always what you get: A measurement study
of usage fraud on android apps,” in Proceedings of
the 6th Workshop on Security and Privacy in Smart-
phones and Mobile Devices, pp. 23–32, 2016.

[23] M. Nauman, S. Khan, and X. Zhang, “Apex: extend-
ing android permission model and enforcement with
user-defined runtime constraints,” in Proceedings of
the 5th ACM Symposium on Information, Computer
and Communications Security, pp. 328–332, 2010.

[24] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin,
M. E. Khan, and J. Hubaux, “Smarper: Context-
aware and automatic runtime-permissions for mobile
devices,” in IEEE Symposium on Security and Pri-
vacy (SP’17), pp. 1058–1076, 2017.

[25] Q. Qian, J. Cai, M. Xie, and R. Zhang, “Malicious
behavior analysis for android applications,” Interna-
tional Journal of Network Security, vol. 18, no. 1,
pp. 182–192, 2016.

[26] S. Rasthofer, S. Arzt, M. Miltenberger, and
E. Bodden, “Harvesting runtime values in an-
droid applications that feature anti-analysis tech-
niques,” in Proceedings of the Annual Sympo-
sium on Network and Distributed System Security
(NDSS’16), 2016. (https://www.bodden.de/pubs/
ssme16harvesting.pdf)

[27] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos,
“Permission evolution in the android ecosystem,” in
Proceedings of the 28th Annual Computer Security
Applications Conference, pp. 31–40, 2012.

[28] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon,
S. Egelman, D. Wagner, and K. Beznosov, “The fea-
sibility of dynamically granted permissions: Aligning
mobile privacy with user preferences,” in IEEE Sym-
posium on Security and Privacy (SP’17), pp. 1077–
1093, 2017.

[29] Y. Zhang, M. Yang, G. Gu, and H. Chen, “Rethink-
ing permission enforcement mechanism on mobile



International Journal of Network Security, Vol.22, No.3, PP.383-393, May 2020 (DOI: 10.6633/IJNS.202005 22(3).03) 393

systems,” IEEE Transactions on Information Foren-
sics and Security, vol. 11, no. 10, pp. 2227–2240,
2016.

[30] Y. Zhao and Q. Qian, “Android malware identifica-
tion through visual exploration of disassembly files,”
International Journal of Network Security, vol. 20,
no. 6, pp. 1061–1073, 2018.

Biography

Jianmeng Huang received the B.S. degree in computer
science from University of Science and Technology of
China in 2013. He is currently working towards the Ph.D.
degree at the Department of Computer Science and Tech-
nology, University of Science and Technology of China.
His current research interests include information secu-
rity and mobile computing.

Wenchao Huang received the B.S. and Ph.D degrees in
computer science from University of Science and Technol-

ogy of China in 2006 and 2011, respectively. He is an asso-
ciate professor in School of Computer Science and Tech-
nology, University of Science and Technology of China.
His current research interests include information secu-
rity, trusted computing, formal methods and mobile com-
puting.

Fuyou Miao received his Ph.D of computer science from
University of Science and Technology of China in 2003.
He is an associate professor in the School of Computer
Science and Technology, University of Science and Tech-
nology of China. His research interests include applied
cryptography, trusted computing and mobile computing.

Yan Xiong received the B.S., M.S., and Ph.D degrees
from University of Science and Technology of China in
1983, 1986 and 1990 respectively. He is a professor in
School of Computer Science and Technology, University
of Science and Technology of China. His main research in-
terests include distributed processing, mobile computing,
computer network and information security.


