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Abstract

The network transmission is an important way to ex-
change information between Android applications and
their own backend or other third-party servers. How-
ever, some network transmissions are superfluous for the
apps’ functionalities. Superfluous network transmissions
not only increase the network traffic but also may leak
users’ sensitive data. To identify the superfluous net-
work transmissions, we propose a static-analysis based
approach. Evaluation with real world market apps shows
that 62% apps contain superfluous network transmissions,
and 48% of the analyzed network transmissions are super-
fluous, and our approach could effectively detect superflu-
ous network transmissions in Android apps.

Keywords: Android Security; Privacy Leakage; Superflu-
ous Network Transmissions

1 Introduction

In recent years, smartphone plays an important role in
people’s daily life. It is not simply a communication
tool now, but also a data container and a personal assis-
tant. Various functionalities of smartphones are provided
by multifarious applications (apps), which can be down-
loaded from the app market or third parties. In 2017,
the number of available apps in the Google Play Store
was placed at 3 million apps [19]. As the development
of Android apps, the functionalities provided by apps be-
come more refined and personal customized. As a result,
sensitive data are collected and may be transmitted via
network to support these functionalities [20]. For exam-
ple, an app which sells movie tickets may utilize the GPS
data of the smartphone, transmitting the GPS data to re-
mote servers and getting the recommendation of nearby
cinemas.

While some network transmissions are needed to fulfill
apps’ functionalities, other network transmissions are su-
perfluous. The superfluous network transmission means
that the transmission is not necessary: No matter the

transmission is success or not, it is of no help for the apps
functionalities. Some malicious apps may intentionally
leak users’ privacy via network transmissions [8]. These
network transmissions are superfluous and have no aid
to the app functionalities. Even in benign apps, there
may also be superfluous network transmissions which col-
lect users’ privacy. The superfluous network transmission
does not benefit users. First, the superfluous network
transmission increases the network traffic and consumes
the power resource of mobile devices. Second, the su-
perfluous network transmission may leak users’ privacy.
Since the transmission is not necessary for app function-
alities, it is of high possibility that the transmission is
useful to app providers. For example, an app provider
may collect users data for advertisement purpose or user
habit analysis.

Existing techniques are insufficient in detecting such
superfluous network transmissions. Rubin et al. propose
a technique [16] which focuses on detecting covert com-
munications that have no effect on the user-observable
application functionality. Its core idea is to look for cases
when no information is presented to the user neither on
success nor on failure of the connection. We argue that
this definition about covert communication is not proper.
First, covert communication could also present informa-
tion to the user when the connection failure occurs, e.g.,
when a device is put in disconnected environment or air-
plane mode, for that warning the user about network fail-
ure would not expose the purpose of the malicious net-
work communication. Second, some network transmis-
sions could also be necessary for app functionalities even
though these transmissions have no direct effect on the
user interface. For example, at initialization, an app may
synchronize data from remote server and store it, which is
not used by the app immediately but used latter by other
app functionalities. Hence, it is not always appropriate to
distinguish necessary network transmissions and superflu-
ous ones by figuring out whether the transmissions (either
on success or on failure of the transmission) could directly
result in affecting the user interface. LeakSemantic [10]
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targets for locating abnormal sensitive network transmis-
sions from mobile apps. It consists of a program analy-
sis component to precisely identify sensitive transmissions
and a machine learning component to further differenti-
ate between the legal and illegal network transmissions.
It focuses on the sensitive data, but users’ behavior data
are also privacy. Besides, it uses lexical features derived
from the set of URLs in the traffic traces to train clas-
sifiers, which only works for connections using HTTP GET

request.
In this paper, we propose a novel approach to detect

the superfluous network transmissions in Android apps.
We model superfluous network transmissions as the trans-
missions of which the responses are not utilized by apps.
Our key insight is that if a network transmission is nec-
essary, the response of the network connection should be
utilized by the app. Our approach decides whether a net-
work transmission is necessary by the information of how
the response of the network transmission is handled. It
is different from existing researches [10, 23, 25] that de-
tect network transmissions by figuring out how sensitive
data are generated, utilized and finally transmitted out
of the device. Our approach concentrates on figuring out
whether the responses of network transmissions are uti-
lized by the app. If not, we consider corresponding net-
work transmissions as superfluous. Our approach is also
different from the research [16] which detects covert com-
munications that have no effect on the UI. We argue that
only if the response of the network communication is not
utilized by the app, the communications is superfluous.
Overall, our approach detects superfluous network com-
munications from a different aspect. Existing researches
could be complementary to our work and they can work
with our approach side by side to enhance user privacy.

To figure out whether the response is used by the app,
we utilize the information flow analysis to track how the
response is used. Here, we address two challenges. First,
how to choose the sources and sinks of the information
flow analysis. Improper sources and sinks may lead to
the insufficient identification or false positives. Second, we
use a novel light-weighted approach to handle the implicit
data flow of the response.

Our contributions are summarized as follows.

� We study superfluous network communications and
propose a new way of distinguishing superfluous and
necessary network communications.

� We propose a static analysis approach which auto-
matically detects superfluous network transmissions
in Android apps.

� We demonstrate the effectiveness of our approach
with real-world Android applications.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background and states the problem.
Section 3 details the design of our approach and after
that, Section 4 describes experimental results. Section 5
discusses the future work of our approach and Section 6

describes related work. Finally, Section 7 concludes the
paper.

2 Background and Problem State-
ment

2.1 Network Transmissions in Android
Apps

In order to perform network operations in Android appli-
cations, many APIs are developed. Table 1 lists the base
classes and methods which are responsible for network
connections and data transmissions. The third column
of the table lists the methods which are responsible for
getting the return value of network connections. Most
network-connected Android apps use HTTP to send and
receive data. Besides, developers could also use other ba-
sic JAVA network connecting APIs, which is listed in the
last four rows in the table.

Developers should use an asynchronous task for net-
work transmissions so the UI thread doesn’t freeze. If
the UI thread freezes, Android will show an “Application
not responding” dialog to the user. To avoid creating an
unresponsive UI, it is recommended not to perform net-
work operations on the UI thread. By default, Android
3.0 and higher versions require apps to perform network
operations on a thread other than the main UI thread;
if not, a NetworkOnMainThreadException is thrown. To
facilitate the deployment of network transmission, many
third-party libraries provide APIs to encapsulate asyn-
chronous network operations. Generally, these libraries
are implemented based on the base classes and methods.

In some network transmission libraries, using asyn-
chronous requests forces developers to implement a
Callback with its two callback methods: success and
failure (i.e., onResponse and onFailure()). When call-
ing the asynchronous getTasks() method from a service
class, developers have to implement a new Callback and
define what should be done once the request finishes.

2.2 Problem Statement

1 public String sendData (){
2 String message;
3 try {
4 OkHttpClient client = new OkHttpClient

();
5 FormBody.Builder formBody = new

FormBody.Builder ();
6 formBody.add(‘‘username ’’,‘‘foo’’);
7 Request request = new Request.Builder

()
8 .url("http ://www.sample.com")
9 .post(formBody.build())

10 .build();
11 Response response = client.newCall(

request).execute ();
12 // if (response.isSuccessful ()) {
13 // message = response.message ();
14 // }
15 } catch (Exception e) {
16 e.printStackTrace ();
17 }
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Table 1: The considered network connection APIs

Class or Interface Connecting Getting Response
java.net.URLConnection Connect GetInputStream
java.net.URL OpenConnection OpenStream
org.apache.http. client.HttpClient Execute Execute
java.net.Socket GetInputStream getOutputStream GetInputStream
com.squareup. okhttp.OkHttpClient NewCall NewCall

18 return message;
19 }

Listing 1: An example of network transmission

As a motivating example, Listing 1 shows an example
of superfluous network transmission. The network trans-
mission is implemented based on the okhttp. It sends the
keyword username to the remote server by HTTP POST
request. If the response of the network connection is not
used by the app (i.e., the codes commented from line 12
to line 14), the function of method sendData is simply
sending data to the remote server. This network trans-
mission may be useful for the app provider, but it is of no
use for the app’s functionalities for that the app does not
gain any feedback from the network transmission.

To handle the problem, we face the challenge of de-
ciding whether the response of a network transmission
is utilized by the app. First, we should trace how the
response is used and figure out whether it is used for nec-
essary app functionalities. Second, there may be implicit
information flow using the response, which increases the
difficulty of tracing the use of the response.

3 Design and Implement

We propose a static analysis approach to find the superflu-
ous network transmissions in Android applications. This
section describes how we model the superfluous network
transmissions and how we identify them in Android apps.

3.1 Overview

The core idea behind our approach is to look for cases
where the responses of network transmissions are not uti-
lized by apps. We determine whether a network transmis-
sion is superfluous by tracking how the response is used
by the app. If the response is not utilized by the app
or improperly used, we deem the network transmission
superfluous.

Guided by this idea, Figure 1 shows the work-flow of
our approach. Given an app, we first translate the apk
file of it into an intermediate representation (e.g., Jimple
representation, a statement based intermediate represen-
tation), based on which we could apply static analysis.
This process is commonly used by static analysis for An-
droid apps [1, 4, 22]. Then we search the code segments
which are responsible for network transmissions in the

Figure 1: Work-flow of our approach

intermediate representation. Afterwards, we apply infor-
mation flow analysis to check whether the responses of
network transmissions are utilized by app functionalities.
Here, the information flow analysis tracks how sensitive
information is propagated through an application. Fi-
nally, we find the superfluous network transmissions by
identifying unused responses.

To apply the information flow analysis, we use Flow-
Droid [1] as the underlying analysis infrastructure. Flow-
Droid provides taint analysis which presents potentially
data flows to human analysts or to automated app-
detection tools which can then decide whether a data use
actually constitutes a policy violation. It adequately mod-
els Android-specific challenges like the application lifecy-
cle or callback methods, which helps reduce missed leaks
or false positives. Our analysis is based on information
flow analysis of FlowDroid on Android apps. Information
flow analysis is a common technique used for analyzing
Android apps in that it can track how data are potentially
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be used by the app, which helps to distinguish different
use of the data (e.g., improper use and legitimate use).

We use static analysis based approach because it is usu-
ally more efficient [13]. Static analysis is applied without
executing the code. It relies on Java bytecode extracted
by disassembling an application. As a result, static anal-
ysis could help analyst to inspect all the behaviors of an
app. We do not adopt dynamic analysis approach because
dynamic analysis faces the problem of low testing cover-
age, which causes insufficient analysis of the app. In dy-
namic analysis, analysts have to execute (or emulate) the
app in order to collect runtime information used for fur-
ther analysis. However, it cannot be guaranteed that all
the code paths in an app are executed during the dynamic
analysis, because some code paths require particular trig-
ger conditions. For example, for a shopping app, an app
behavior may only occur when the user buys something.
Besides, dynamic analysis executes only one code path of
an app at one time, while static analysis could be applied
in parallel. Overall, compared with static analysis, it is
not efficient to test apps with dynamic analysis.

3.2 Design

In this subsection, we describe how we find the super-
fluous network transmissions. We first introduce cases
which are considered to be superfluous network transmis-
sions. Then we describe how our static analysis approach
handles these cases.

3.2.1 Models of Superfluous Network Transmis-
sions

To automatically detect superfluous network transmis-
sions in Android apps, we first study network transmis-
sions in malicious and benign Android apps to find the
superfluous ones and draw the common points of them.
We also study the different features between legitimate
network transmissions and superfluous ones. Particularly,
we denote the connect method as method which is respon-
sible for creating connections between devices and remote
servers, and we denote response method as method which
is responsible for getting responses from the connection.
Table 1 shows the connect methods and response methods
monitored by our approach. Overall, we summarize the
following three categories as superfluous network trans-
missions considered in this paper.

Category 1: A network transmission calls the connect
method but does not call the response method. In
this category, the network connection is established,
but the response of the connection is not handled.
As a result, the transmission simply sends data to
remote server. The app is not going to establish the
connection again if the transmission fails. Usually,
for a necessary network transmission, the app would
at least query the status of the transmission (e.g.,
querying the HTTP status code) to check if the net-
work transmission fails. If it fails, the app would han-

dle the failure in an exception and then inform users
that the network is not available. Network trans-
missions in this category are deemed superfluous for
that they are not properly deployed and the purposes
of these transmissions are not clear. These superflu-
ous network transmissions may be caused by careless
app developing or malicious privacy collecting which
avoids being noticed by users.

Category 2: A network transmission calls both connect
method and response method, but the app does not
actually utilize the response of the network trans-
mission. At the code level, the response method is
invoked, but the value of the response is not passed
to other codes (i.e., methods developed by the app)
in the app. In this category, although the app gets
the response of the network transmission, it does not
make use of the response for the app functionalities.
Hence, the network transmission does not contribute
to the normal app functionalities. Network transmis-
sions in this category may be caused by the iterative
development of the app. Some functionalities of the
app are discarded but the corresponding codes are
not clearly removed.

Category 3: A network transmission calls connect
method more than one time, and the URLs of the
connection are different. We find that some apps
send the same data to multi servers simultaneously.
One of the transmission addresses belongs to the app
provider, but other ones are data centers. We con-
sider that at least one of the network transmissions
is superfluous, because the transmitted data are the
same and one response from the remote server is
enough for the app functionalities. The purpose of
network transmissions in this category is that one
network transmission is used for necessary app func-
tionalities, and others are used for transmitting users’
data to data centers, which consumes the network re-
sources of mobile devices. Note that if the network
transmissions are in different branch statements, we
do not consider them as superfluous ones. Because
the app provider may own multi servers, some of
which are alternate servers. Hence, in case the main
server is down, the network transmissions in different
branches could be established.

3.2.2 Finding Superfluous Network Transmis-
sions

We further develop a static analysis approach to iden-
tify superfluous network transmissions in the above cat-
egories. To handle the three categories of superfluous
transmissions, we develop an algorithm based on informa-
tion flow analysis. Information flow analysis tracks sensi-
tive “tainted” information through the app by starting at
a pre-defined source (e.g., an API method returning the
response of a network transmission) and then following
the data flow until it reaches a given sink (e.g. a method
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Algorithm 1 Identifying superfluous network transmis-
sions
1: Input: The map of connect method and response

method methodMap, and a method m in the app
2: Output: Whether the app has superfluous network

transmissions
3: Begin
4: Count ⇐ times of methodMap.key() invoked by m
5: if count > 1 then
6: if sending same data to different addresses then
7: return true
8: end if
9: end if

10: if count > 0 then
11: for all connect method invoked by m do
12: response method ⇐

methodMap[connect method]
13: if response method is also invoked then
14: response ⇐

the result of methodMap[connect method]
15: if response is not propagated out of m or the

callback method then
16: return true
17: end if
18: else
19: return true
20: end if
21: end for
22: end if
23: return false
24: End

writing the information to a UI element), giving precise
information about which data may be leaked.

Algorithm 1 shows how we identify superfluous network
transmissions. It accepts the maps of connect method and
response method, and a method m in the app. Here, the
maps of connect method and response method are pairs
of methods of the same network transmission library, and
the overloaded methods are also included in the maps.
The output of this algorithm is a judgment about whether
the app contains superfluous network transmissions. We
first decompile the apk file into bytecodes, then we uti-
lize Soot [21] to translate the bytecodes to intermediate
representation (i.e., Jimple). Based on the Jimple repre-
sentation, we get all the methods defined by the classes

in the app. Then, we look for superfluous network trans-
missions in each method using Algorithm 1.

For each method m in the app, we look for network
transmissions and then figure out whether the transmis-
sions are superfluous. Figure 2 illustrates the methodol-
ogy of Algorithm 1. It first checks superfluous network
transmissions in category 3. It figures how many times
the connect methods are invoked in the method m. If the
connect methods are invoked more than one times, which
is the situation in category 3, we check whether there exist
more than two network transmissions send the same data

Figure 2: Methodology of identifying superfluous network
transmissions

to different addresses. If found, we report the superfluous
network transmissions (i.e. line 6 to 8).

Then, Algorithm 1 checks superfluous network trans-
missions in category 1, as shown by Figure 2. If connect
methods are invoked, Algorithm 1 would check each of the
connect methods (i.e., line 11). Then for each connect
method, we check whether the corresponding response
method is called in the method m or whether there is a
corresponding callback method (e.g., onResponse), which
is designed for asynchronous purpose. If not, we report
the connection as superfluous one.

Otherwise, Algorithm 1 checks whether the result of
the response method is utilized by the app (i.e., line 13
to line 17). The process is illustrated by Figure 2. Here,
the information flow analysis is used to handle the situ-
ation in category 2. Specially, we set the results of the
response methods as sources and the return statement of
the method as the sink. Besides the response methods, we
also include other APIs, which utilizes the response of net-
work connection, in the sources. e.g., HttpURLConnec-
tion.getResponseCode(), HttpResponse.getStatusLine(),
HttpResponse.getEntity(). As a result, if the response
is propagated via the data flow out of the method m or
the callback method, which indicates that the response
would be utilized by other methods, this network trans-
mission is deemed necessary. Otherwise, the connection
is deemed superfluous.

We set the sources and sinks in two configuration files,
which enables the scalability of our approach. As a result,
if we find new third party libraries which are responsible
for network transmissions, we can add the corresponding
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methods into our configuration files.
Additionally, we handle the implicit data flow of utiliz-

ing responses of network transmissions. Listing 2 shows
an example of returning the status of a network transmis-
sion. The response is used to get the status code of the
network transmission (i.e., line 6). The AllSuccess indi-
cates that whether the connection succeed, but there is no
explicit data flow from the response to the AllSuccess.
To handle this situation, we could take advantage of
existing approaches, such as EdgeMiner [4], which ad-
dresses implicit flows in static analysis. As we only need
to handle implicit data flow for specific resources (e.g.,
getStatusCode()), we use a lightweight way to handle
this problem.

1 public boolean sendData (){
2 boolean allSuccess = true;
3 try {
4 ...
5 HttpResponse response = client.execute

(http , httpContext);
6 if (response.getStatusLine ().

getStatusCode () != 204) {
7 allSuccess = false;
8 }
9 } catch (Exception e) {

10 e.printStackTrace ();
11 }
12 return allSuccess;
13 }

Listing 2: Implicit data flow of utilizing response

Our lightweight way specifically monitors the branch
statements to address the implicit data flow of using
response. In detail, we first locate the methods which
contain network transmissions in the app. Then we lo-
cate the branch statements in these methods. If the con-
ditional statement of the branch calls the APIs which uti-
lize the response of the network connection, we would
trace the variables in the branches. Finally, if none of
these variable contributes to the variable which is to be
returned by the method, we consider this network trans-
mission as superfluous.

4 Evaluation

In this section, we intend to evaluate our approach in the
following aspects. First, how effective is our approach in
identifying superfluous network transmissions? Second,
how often does superfluous network transmission occur
in real-world applications?

4.1 Real World Apps Study

We first apply our approach to real-world apps in order
to assess its effectiveness. We analyze 12 apps with our
approach and manually check the results. As there are no
researches or reports about superfluous network transmis-
sions in Android apps, we need to manually inspect the
source codes to get the ground truth of the tested apps.
Hence, we choose four open-source apps from F-Droid [7],

an installable catalogue of free and open source appli-
cations for the Android platform. To include commer-
cial apps, other four apps are from wandoujia, a popular
third party Android app market, and Google Play. The
experiments are conducted on a 4-processor 16GB-RAM
machine.

The names and package names of apps, as well as the
analysis results, are listed in Table 2. Given the ground
truth information (i.e., the results from manual inspect-
ing) and the analysis results, there are four possible out-
comes: True positive (TP), true negative (TN), false pos-
itive (FP) and false negative (FN). TP means that an app
contains superfluous network transmissions with respect
to ground truth and our approach detects the superfluous
transmissions. TN means that an app does not contain
superfluous network transmissions with respect to ground
truth and our approach does not find superfluous network
transmissions in the app. FP and FN have similar mean-
ings. The metric accuracy is computed by the following
formulas:

Accuracy =
TP + TN

TP + FP + FN + TN

For open source apps, our approach finds all the net-
work transmissions, and it detects no superfluous network
transmissions in these apps. The results are manually
checked by reviewing the source codes. As these apps
are open-source, the functionalities of these apps are ex-
plicit. If there exist superfluous network transmissions
which may leak users’ privacy in these apps, the devel-
opers would be blamed. Thus there are no superfluous
network transmissions which have no use for the app func-
tionalities. As listed in the last column in Table 2, we do
not find superfluous network transmissions in these apps
both with our approach or manually checking the source
codes. The analysis results on open source apps show that
our approach has no false positives. Besides, the analysis
results have no false negatives. As a result, we get 100%
accuracy of analyzing open source apps.

For the market apps, after our automatically analy-
sis, we also manually check the results in the decompiled
codes. As these commercial apps does not provide the
source codes of them, we utilize dex2jar and jd-gui to
get the decompiled Java codes and retrieval the detected
results in the decompiled codes. The first 4 apps are
from wandoujia market and the last 4 apps are down-
loaded from Google Play. The results, listed in Table 2,
show that our approach successfully finds all the network
transmissions in the app and precisely identifies superflu-
ous network transmissions of the three categories. The
accuracy of the analysis result is also 100%. Overall, ex-
perimental results of the 8 apps demonstrate the accuracy
of our approach on commercial apps.

Our experiments also show that the time overhead of
our static analysis is acceptable, regarding to the size of
each app. Similar to approaches based on information
flow analysis [1, 11], it is time-consuming to analyze the
app when the size of the app is large, because the method
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Table 2: Results of app study (M: manually checked; A: automatically detected)

App sources App Name Size Time Network transmissions (M/A) Superfluous (M/A)

Open source

Battery Dog 22K 3s 0/0 0/0
ArchWiki
Viewer

1.1M 6s 1/1 0/0

Commons 20M 138s 3/3 0/0
External IP 9.9K 3s 1/1 0/0

App market

zuimei weather 18M 514s 7/7 4/4
sogou novel 12M 220s 18/18 11/11
Kugou Music 47M 1672s 10/10 4/4
karaoke 42M 941s 18/18 6/6
Vault-Hide SMS 11M 244s 12/12 4/4
Duolingo 21M 518s 8/8 2/2
ibis Paint X 31M 729s 9/9 2/2
Magzter 16M 331s 31/31 12/12

invocation relations in the app become complicated. In
our experiments, we observe that the open source apps
have smaller sizes than market apps, and the time over-
head is lower. The reason may be that most market apps
are obfuscated to avoid code plagiarism and vulnerabil-
ity searching [3]. The released apps are more complexed
after obfuscation, increasing the analysis time overhead.
Unlike the approach [16] which identifies a network trans-
mission by judging whether the result of the transmis-
sion has direct effect on the user interface, our approach
adopts some simplifications to improve scalability, such as
judging whether the response of a network transmission
is utilized by the app by tracing the data flow of the re-
sponse until the return statement of the current method.
As a result , we demonstrate that the our static analysis
achieves relatively high performance.

Furthermore, we analyze 100 apps downloaded from
wandoujia and 100 apps from Google play to figure out
how common is the superfluous network transmissions in
real world apps. The analyzed apps are the most popu-
lar apps in the market collected from different categories
such as games, tools, entertainment, weather, social and
sports. Experiments on these apps show that for the apps
from wandoujia market, 62% of the apps contain super-
fluous network transmissions. Besides, of all the network
transmissions in these apps, 48% of them are identified
as superfluous network transmissions by our app. For
the apps from Google Play, 22% of the apps contain su-
perfluous network transmissions, and 43% of the network
transmissions are identified as superfluous ones. Overall,
we can conclude that superfluous network transmissions
exist in real world apps with high proportion.

4.2 Finding and Case Study

We find that most of the superfluous network transmis-
sions are collecting users’ data to remote servers. Most of
the transmitted data are related to user’s identity (e.g.,
device id, product id, IMEI, etc.). Besides, the super-
fluous network transmissions are often triggered by UI
elements which are frequently triggered. We can con-

Figure 3: The GUI of KugouMusic

clude that collecting user’s personal data are an impor-
tant purpose of superfluous network transmissions. For
example, KugouMusic is a popular music app in the app
market. Our approach finds that it has 4 superfluous net-
work transmissions. We decompile the apk file and locate
the code segments of the superfluous network transmis-
sion. Then we trace back to the event which leads to the
superfluous network transmission: as shown in Figure 3,
the Watch button would lead to the network transmis-
sion. In users’ expectation, the Watch button should only
provide the function of switching between different UIs.
It should not lead to any network transmission. Hence,
this network transmission here is superfluous for the app
functionality. Furthermore, we inspect the address of the
superfluous network transmission at runtime, we find the
address belongs an Internet Data Center (IDC) provider
in Beijing rather than the command and control server.
Hence, we believe that our insight of detecting superfluous
network transmission is reasonable and useful.

We also find that blocking the superfluous network
transmission would not impact the app functionalities.
We manually disable the detected superfluous network
transmission in the tested apps and repackage the apps.
Then we compare the app functionalities between the
original apps and repackaged apps. For the two versions
of each app, we feed them with the same inputs. If the
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user interfaces which represent the functionalities are dif-
ferent during the test, e.g., the repackaged app crashes or
some information in the user interfaces of the repackaged
app is missing, the corresponding app functionality are
impacted. Finally, we observe that the blocked superflu-
ous network transmissions have no impact on the normal
app functionalities.

5 Discussion

After identifying the superfluous network transmissions in
apps, the results could be reported to app markets or app
providers. Our approach can be used by app markets to
display the detection result of each app, which urges the
app provider to make a clear statement about how the app
would use users’ private data in the privacy policy (listed
in the app market). The app could also prompt a privacy
collecting request to users. If users do not agree the app to
collect their private data, the app should not transmit pri-
vate data to remote servers. Besides, our approach can be
adopted by app providers to check whether the identified
superfluous network transmissions are caused by careless
coding, which helps to improve the code developing of the
app.

The superfluous network transmissions can be blocked
to reduce the risk of privacy leakage if the app provider
does not provide revised version of the app. There are two
possible solutions to automatically block the detected su-
perfluous network transmissions. The first one is to stat-
ically disable the code segments which are responsible for
superfluous network transmissions. Similar to prior re-
searches [5, 12, 17], we could reduce the unwanted code
segments which are responsible for superfluous network
transmissions, and then repackage the app. As a result,
the repackaged app does not contain superfluous network
transmissions. The second solution is to record the pat-
terns of the superfluous network transmissions, and then
disable the transmissions at runtime, which could take ad-
vantage of the framework of a prior approach [14]. Block-
ing the superfluous network transmissions is beyond the
research scope of this paper and we leave it as our future
work.

6 Related Work

There are several approaches to analyze the behaviors of
Android apps. FlowDroid [1] and DroidSafe [11] provide
static taint-analysis tools to detect potentially malicious
data flow in Android applications. Our approach utilizes
the data flow analysis provided by FlowDroid. Taint-
Droid [6] and TaintART [18] propose system-wide infor-
mation flow tracking tool that can simultaneously track
multiple sources of sensitive data. They are dynamic-
based approaches and hence face the problem of low test
coverage. Amandroid [22] presents a general static anal-
ysis framework for security analysis of Android applica-
tions. It can precisely track the control and data flow of

an app across multiple components, and can compute an
abstraction of the app’s behavior in the forms of an inter-
component data-flow graph and data dependence graph.
However, high privacy requires more time and comput-
ing resources. Qian et al. [15] combine static and dy-
namic techniques to find potential risks in an app and
then embed monitoring code in the app. As a result,
their approach could report the content of data transmis-
sions when users are running the app. However, it is not
efficient because it relies on users’ help to decide whether
the application leaks users’ privacy. Zhao et al. [26] de-
tect Android malwares based on the idea that most of
the malware variants are created using automatic tools.
Their approach statically extracts necessary features from
each app and uses convolutional neural network to iden-
tify malwares, but it is not target for newly released mal-
wares.

To reveal data leaks in apps and protect users’ privacy,
AppAudit [24] comprises a static API analysis that can
effectively narrow down analysis scope and an innovative
dynamic analysis which could efficiently execute applica-
tion bytecode to prune false positive and confirm data
leaks. AppIntent [25] detects the improper behavior that
when a data transmission is not intended by the user, it is
more likely a privacy leakage. It helps analysts to deter-
mine whether a data transmission is user-intended or not
by providing a corresponding sequence of GUI manipula-
tions. Apposcopy [9] presents a semantics-based approach
for identifying a prevalent class of Android malware that
steals private user information. MUDFLOW [2] learns
“normal” flows of sensitive data from trusted applications
to detect “abnormal” flows in possibly malicious appli-
cations. Leaksemantic [10] identifies suspicious sensitive
network transmissions from mobile apps automatically. It
utilizes machine learning classifiers to differentiate among
the disclosures based on features derived from URLs in
the traffic traces. These approaches focus on detecting
data transmissions which are malicious or not intended
by users, and they concentrate on revealing the process of
data transmissions. Rubin et al. propose a technique [16]
which focuses on detecting covert communications that
no information is presented to the user neither on success
nor on failure of the connection. In our work, we de-
tect superfluous network transmissions by investigating
the responses of network transmissions. Our approach
studies the features of network communications and con-
cludes the common points of how apps handle responses
of superfluous network transmissions. Then we utilize the
static information flow analysis to identify the superflu-
ous network communications of which the responses are
not used by the app. Overall, our work can be used as a
complementary with existing researches.

7 Conclusion

The network transmission is an important way to ex-
change information between Android apps and remote
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servers for user required app functionalities. However,
it is also used by improper behaviors to leak users’ pri-
vacy. We propose a novel solution to detect superflu-
ous network transmissions in Android applications. We
take advantage of static information flow analysis to track
how the responses of network transmissions are used by
apps. The network transmissions are deemed superfluous
if their responses are not utilized by apps. Our experimen-
tal results show that superfluous network transmissions
are commonly existed in Android apps, and our approach
can effectively detect superfluous network transmissions
in Android apps.
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