
International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 271

ETS (Efficient, Transparent, and Secured)
Self-healing Service for Pervasive Computing

Applications

Shameem Ahmed, Moushumi Sharmin, and Sheikh I. Ahamed

(Corresponding author: Sheikh I. Ahamed)

Department of Mathematics, Statistics and Computer Science

Marquette University, 1313 West Wisconsin Avenue, Milwaukee, WI 53233, USA

(Email: {sahmed02, msharmin, iq}@mscs.mu.edu)

(Received Nov. 15, 2005; revised and accepted Jan. 3, 2006)

Abstract

To ensure smooth functioning of numerous handheld de-
vices anywhere anytime, the importance of self-healing
mechanism cannot be overlooked. Incorporation of effi-
cient fault detection and recovery in device itself is the
quest for long but there is no existing self-healing scheme
for devices running in pervasive computing environments
that can be claimed as the ultimate solution. Moreover,
the highest degree of transparency, security and privacy
attainability should also be maintained. ETS Self-healing
service, an integral part of our developing middleware
named MARKS (Middleware Adaptability for Resource
discovery, Knowledge usability, and Self-healing), holds
promise for offering all of those functionalities.

Keywords: ETS self-healing, MARKS, pervasive comput-
ing, ubiquitous computing

1 Introduction

Ubiquitous computing [22], also known as pervasive com-
puting has evolved during the last few years due to the
rapid developments in portable, low-cost, and lightweight
devices. It extends human thought and activity as well as
provides a pragmatic world augmented by the behavioral
context of its users [15].

Despite the prevalence of embedded handheld devices,
limited processing capability, restricted battery life, inad-
equate memory space, slow expensive connections, recur-
rent line disconnection, confined host bandwidth etc. are
the challenges in pervasive computing arena till date [16].
Middleware has evolved to play an important role to cope
with these ever-growing requirements.

The system that continues its operation even in pres-
ence of faults is termed as fault tolerant system [11]. The
contour of self-healing goes beyond fault tolerance since it
also provides the device with the capability of recovering

from fault by itself or with the assistance of other devices
present in the network. Pervasive computing makes it
even complex as the resource poor devices are not con-
nected to any fixed infrastructure and the network they
work is ad-hoc in nature.

Considerable research has already been done in dis-
tributed dependable real-time system [6]. Some solutions
along with prototype for pervasive computing fault tol-
erant systems have been advised [7]. Self-healing au-
tonomous systems are also addressed in [21]. But no so-
lution has been proposed for self-healing system in perva-
sive computing yet, let alone the implementation of such
a system. Since future technology trend lies in pervasive
computing, it is utmost important to have an efficient,
transparent, and secure self-healing system. Currently, we
are developing a middleware named MARKS [1, 2, 19, 20],
which is suitable for embedded devices running in perva-
sive computing environments. The Self-healing unit plays
a vital role from the above perspectives. We have named
it ETS self-healing and also developed its first prototype
on a test bed of PDAs, which are connected with short
range ad hoc wireless.

Any healing approach will be in vain without proper
setup of security. Efficiency should also not be overlooked.
ETS self-healing is unique from those perspectives too.
Modified secret sharing approach [18], not only to cope
with the limited storage capacity of the embedded devices
but also to guarantee the security, is being used in our
approach.

Should it be called self-healing if it needs more inter-
vention of users to heal? Simple answer is, no. Being
conscious about this, ETS self-healing provides the third
feature (transparency) by performing most of the healing
process without users’ interference.

To auto revive the device from specific fault like system
failure (e.g. low battery power, insufficient signal strength
etc.) with the help of other devices is an intricate healing

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 272

process. Albeit ETS self-healing is capable to handle it in
some particular cases, some special kinds’ of failures are
not addressed in our implementation yet. We have rec-
ommended some solutions that we are planning to include
in our next prototype.

We detail the approach in the remainder of this paper
from the light of ETS. To offer the exhilarating glance
of power of ETS self-healing mechanism, some practical
scenarios have been described in Section 2. We illustrate
the description of our design in Section 3 along with the
working procedure that ETS self-healing mechanism fol-
lows. How our approach maintains all the aspects of ETS
is portrayed in Section 4. The result of investigation of
several other researches is mentioned in Section 5. The
implementation details along with evaluation are depicted
in Section 6. We conclude with some novel directions of
our future research in Section 7.

2 Motivation

Scenario 1:

A group of high school students appear in a wireless
examination. After getting the questions in their PDAs
from their teacher Dr. John’s PDA (let X , the healing
manager), they start their tests. During the exam, all
on a sudden, one student’s PDA (let Y) starts unusual
behavior. After calculating the rate of changes of all
of the status of the device, Y finds out that there
might have a fault due to the malfunction of a running
application. Without any delay, Y sends SOS message
along with the student’s answer files. X isolates Y from
the entire network by removing all entries of Y as a
service provider. By this time, Y informs the student
about the problem. By using the system interrupt, Y
kills that application. As a result, the device starts to
operate smoothly.

Scenario 2:

Returning from a visit of a museum, a group of high
school kids want to share their experience (stored in their
PDAs) to enrich their knowledge. During their informa-
tion exchange, the healing manager gets informed by SOS
message of one device that it is having a high probability
of going down and wants to store some of its important
information for future use.

To avoid the loss of data stored in that device, heal-
ing manager disseminates the stored information to the
remaining devices in a secure manner. Consulting the
logbook, necessary measures are taken to restore the de-
vice’s prior working state. Disseminated information con-
tent will be refurbished to the device to help it to work
to its full extent.

Components

CoreComponents

Transport LayerProtocols forAdHocNetworks

MARKS

Sensors

Object Request Broker

Device Discovery

O
p
e
r at in

g
S

y
ste

mResource

Discovery

Other

services
Self healing

Service

Knowledge

UsabilityService

Self-healing

Service

Universal Service

Access

Trust

management

Communication

Context

Service

Components

CoreComponents

Transport LayerProtocols forAdHocNetworks

MARKS

Sensors

Object Request Broker

Device Discovery

O
p
e
r at in

g
S

y
ste

mResource

Discovery

Other

services
Self healing

Service

Knowledge

UsabilityService

ApplicationObjects

Self-healing

Service

Universal Service

Access

Trust

management

Communication

Context

Service

Figure 1: MARKS architecture [1, 2, 19, 20]

3 ETS Self-healing: Design
Overview

ETS Self-healing service is an integral part of MARKS
[20]. The fault detection and fault recovery related issues
are taken care of by this service. Figure 1 depicts the
MARKS architecture along with the self-healing service.

To uphold an effective self-healing scheme, any system
should have the following properties:

• No regular functionality of the network will be ham-
pered due to any fault of any device.

• All significant information of the faulty device should
be preserved in secured fashion.

• The device will be facilitated to heal its fault by itself
or at best with the assistance of other devices of that
network.

• After reviving, the faulty device should be able to
regain its previous states in such a way that it should
feel there was no fault.

To address these challenges in an apposite manner,
ETS Self-healing pursues quite a few steps:

• Fault Detection

• Fault Notification

• Faulty Device Isolation

• Alteration

• Information Distribution

• Fault Healing

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 273

Application

Fault Detection

Alteration

Device Isolation

Agent

ETS

Self
-
healing

Fault Healing

Fault Notification

Information Distribution

Operating System

MARKS
-
ORB

Figure 2: ETS self-healing architecture

Figure 2 shows the architecture of ETS self-healing
unit embedded in MARKS. The fault-detection and fault-
notification unit is used by each device running MARKS.
The fault detection unit may be utilized by both the heal-
ing manager and the device itself. But the other three
units of ETS Self-healing unit (faulty device isolation, al-
teration, information distribution) are employed only by
the healing manager.

3.1 Fault Detection

High-quality fault detection, the first stride of self-healing
process, not only prevents loss of resources but also
lessens healing time. To ensure supreme-quality, ETS
Self-healing periodically monitors as well as assembles the
status of all of the running applications, memory, power,
communication signal etc. Drastic changes in those values
will generate faults.

By using the rate of change of these over time, it tries
to figure out the existence as well as the reason of fault,
if there is any.

Here is the formal definition of fault detection:
Device Status: Let Zt(x) be the status of a device at time
t, where x represents an arbitrary input vector [e.g. rate
of change (dy/dt) of power, memory, communicational
signal etc. over time]
Test: T = {v1, v2, . . . vn} where v1, v2, . . . vn are input
vectors and Zt(vi) represents the status of the device ac-
cordingly.
Fault Detection: T detects a fault in the device if [
(Zt(vi) Zt + 1(vi)) > predefined threshold value].

For an example, if the change of signal strength is 10%

at time t and change of memory space is 25% at time
(t+1) and if the threshold value is 12% then since the rate
of change of memory space is greater than the threshold
value, so according to our approach, there should be fault.

3.2 Fault Notification

Not only to push any information but also to notify its
aliveness or its fault, the device itself need to commu-
nicate with the healing manager periodically. In Gaia,
Chetan et al. [7] used heart beat message mechanism
only to inform the aliveness of any device. Absence of
heart beat message implies the existence of fault. Think-
ing ahead a little bit more, we have incorporated generic
message passing scheme not only to facilitate the func-
tionality of heart beat message but also the efficacy of
SOS message for helping the healing manager to be in-
formed about the faulty device’s current situation. In
this scheme, each device will send any one of the follow-
ing messages to the healing manager:

• OK message: it simply sends a packet containing
“OK” string. It’s nothing but a heart beat message.

• SOS message: After identifying any fault in its own
device, ETS self-healing of that one sends SOS mes-
sage, which may include some file names along with
that message. An example of such type of message is:
“SOS, exam3cosc060, log status”. This means that
the faulty device is requesting to save files named
“exam3cosc060” and “log status”.

• If the healing manager doesn’t get such type of mes-
sage for a pre-fixed threshold period of time, right
away it will commence the next steps (device isola-
tion, information distribution, alteration) assuming
that the device is in fault. If the healing manager
gets SOS message along with some file names, then
healing manager will initiate to get the files from the
device and will store those among other devices in a
secured distributed manner.

3.3 Faulty Device Isolation

The isolation of faulty devices from remaining network,
a grand challenge of fault tolerant as well as self-healing
system, is achieved in ETS Self-healing in a very simple
way. In case of MARKS, every device is mapped with
another one by means of service availability in these de-
vices. It is adequate to remove the entry of the faulty
device from that mapping to ensure its isolation from the
entire network.

Table 1 shows the mapping of the service # and the
service provider. We have followed a standard for the
service #. For an example, service # 1 means “inter-
net service”, service # 2 means “office software”, service
100 means “music software”, etc. ETS Self-healing
incorporates a list named serviceList by which the ser-
vice can easily be identified. For an example, serviceList

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 274

Table 1: Mapping of service # and provider

Service # Service provider
1 D1 D7 D9 D3
2 D19
3 D12 D12 D2
4
5 D1 D3 D4 D9
. D20
100 D2 D9 D18

Table 2: Mapping of service #, service provider, and ser-
vice consumer

Service Service consumer
provider

D1 D2 D3 . . . D9 . . . D20
D1 1 1,5
D2 100 100
D3 5

D9 1,5 5
.
D20 15 99

(100) will return “music software”. Table 2 exemplifies
the three-dimensional mapping of service provider, service
consumer, and service #. Here D1 means Device 1, D2
means Device 2, etc. These mappings are implemented in
ETS self-healing by using hash table. By means of stan-
dard “remove” function, ETS Self-healing can remove the
entry of faulty device from the hash table as well as from
the entire network.

3.4 Alteration: Responsibility Re-
assignment in Other Devices

Since there might have some devices largely depending
upon the faulty device for any specific service, it is also im-
perative to have some alternative to continue the smooth
functionality. Some middleware like Gaia [7, 15] uses
surrogate device concept for alternate solution, where it
needs to find out another device that is available as well as
compatible with the faulty device [7]. These two fold pro-
cesses (availability and compatibility) can be performed
effortlessly in ETS Self-healing since the previously men-
tioned hash tables, regulated and updated by healing
manager, shows only those devices that are compatible
as well as available.

3.5 Information Distribution

To assist the faulty device to keep all the important
information safe and secured, the healing manager will

distribute the important information (e.g. important
database) among other existing devices. To cope with
the limited storage capacity of all other devices, secret
sharing (N, t) approach [18] has been used in ETS Self-
healing. In Secret Sharing (N, t) approach the secret is
shared among N number of devices and at least t number
of devices has to be present to recover the secret. We
modified this slightly and added the owner of the device
among t devices. This preserves the security (make in-
formation inaccessible from any intruder or unauthorized
user). In this case, without the faulty device’s consent,
the information of the faulty device can’t be retrieved by
anyone even not by the healing manager.

3.6 Fault Healing

ETS Self-healing of the faulty device itself, first of all,
will try to heal the fault. Failure to do so compels itself
to take help from the healing manager.

3.6.1 Healing by Device Itself

In case of typical problems like abrupt change of memory
status or processor speed or signal strength, ETS Self-
healing unit of the device itself simply restarts the system
by calling interrupt. Before doing so, it always prompts
message to the user about the problem as well as its action
what it is going to do in that regard. In the evaluation
section we presented screen shots of our prototype.

To treat the unusual behavior (abrupt change of mem-
ory status or processor speed or signal strength) of the
system due to the use of any specific application, ETS
Self-healing simply kills that application without notify-
ing the user.

3.6.2 Healing by Healing Manager

Healing manager, in the majority of the circumstances,
is not directly associated to healing, rather it assists the
device to revamp its previous impeccable situations. It
stores all the crucial information including logstatus file
of the faulty device when the device falls in trouble. After
recovering from fault, healing manager re-collets all those
information and sends it to that device including logsta-
tus file so that the device can restore easily its previous
condition. In case of failure due to the lack of memory
space, healing manager can help by storing its important
but not currently using information among other devices
using modified secret sharing approach [19]. The user
of the faulty device will have to choose those file names
through ETS self-healing.

3.7 Service Manager

Healing manager is also not beyond of any fault. To pre-
vent one point failure due to the collapse of the healing
manager itself, service manager [19] is used as an alter-
native in ETS Self-healing. It will not only act as healing
manager after any fault of the current healing manager

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 275

ETS Self -

healing

Fault ?
no

yes

Can send

msg ?

Send SOS

Start fault

healing

ETS Self -

healing

?K?

msg

Empty

queue ?

Check msg

queue

SOS ?

Msg

queue

Device

isolation

Alternati

on

Info .

Distribution

Fault

Healing

yes
no

yes

no

Device

Healing Manager

Figure 3: Flow diagram of ETS self-healing

but also help to find out the Byzantine problem [17] if
there is any by consulting healing manager.

3.8 Selection of Healing Manager

It depends on different criteria like fast processing capa-
bility, large available memory space, more functionality
and mostly the nature of the applications running among
the devices of the ad-hoc network. In the first prototype
of ETS Self-healing, a simple yet powerful approach is
being used. The main communication point like a server
in distributed computing is primarily selected as healing
manager. To identify that central point, the status of
running application has been checked. The device, which
involves the applications mostly, is considered as the heal-
ing manager. For an example, in case of wireless exam
application (it would be discussed shortly), the teacher’s
device acts like a server (it sends exam to all student’s
and also gets answer from them) and that is why it is
chosen as the healing manager.

3.9 How Does ETS Self-healing Work?

The entire healing process is based on the combined ef-
fort of the device and the healing manager. The diagram
of the message flow between a normal device and healing
manager is shown in Figure 3. If a device cannot send any
msg (“OK” or “SOS”) for a threshold time, then the heal-
ing manager will understand that the device is in fault.

Table 3: Space for ETS self-healing service and MARKS-
ORB

Lines of Code Size of EXE File
(KB)

ETS Self-Healing 4974 124
Service
MARKS-ORB 416 7

3.10 Relevant Functionalities of
MARKS-ORB

Due to the ad-hoc nature of the pervasive computing en-
vironment, healing manager needs to perform two impor-
tant activities:

1) Device discovery, to find which device is present
within its network range.

2) Continuous wireless communication between all the
devices and the healing manager.

To make the healing manager free from discovery and
communication related activities, MARKS-ORB will per-
form those actions on behalf of it.

4 ETS Self-healing: Attributes

ETS Self-healing is based on three most crucial attributes
that ought to be included in every effective self-healing
mechanism. The way to achieve these features in our
approach is described here.

4.1 Efficient

ETS self-healing is efficient from various standpoints:

Space: One replica of healing manager is preserved in
service manager. Even then it is less space consuming
since in this approach it is not needed to keep the replica
of all the devices while this is a common scenario for
most of other schemes. Moreover, MARKS-ORB and
ETS Self-healing service occupy a very little space in
the PDA. Table 3 shows the lines of code and the size
of the executable file of ETS Self-healing Service and
MARKS-ORB.

Healing: In most cases, the faulty device, with the help
of ETS self-healing, is adequate to heal itself though in
some cases the help of the healing manager might be
needed.

Speed: The time complexity for different functions of
ETS Self-healing service and MARKS-ORB is shown in
Table 4.

According to the flow diagram of ETS Self-healing ser-
vice, there is a loop for message queue inside of which four

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 276

Table 4: Time complexity of various functions of ETS
self-healing service and MARKS-ORB

Functions Time
Complexity

Info. Distribution O(n)
ETS Device Isolation O(1)
Self-healing Alteration O(1)

Fault Healing O(n)
MARKS-ORB Device Discovery O(n)

Communication O(n)

functions named Info. Distribution, Device Isolation, Al-
teration, and Fault Healing are running. Since the com-
plexity of each of these functions is O(n), the overall time
complexity for ETS Self-healing is O(n2).

On the contrary, Device discovery and Communica-
tion, the two functions of MARKS-ORB are independent
to each other and that is why the time complexity for
MARKS-ORB is O(n).

This low time complexity makes our approach efficient
from speed perspective.

4.2 Transparent

ETS self-healing tries to assure the nominal involvement
of user. In most cases, without any kind of user’s inter-
ruption, the faulty device would be healed by itself or at
best with the assistance of the healing manager of the
ad-hoc network. ETS self-healing involves the users when
decision largely depends upon the users’ preference.

4.3 Security

ETS Self-healing maintains security in different stages.

Authentication: In Healing Manager and other

devices:

To provide a high degree of security, a simple yet
effective secret code system has been devised in ETS
Self-healing. No one will be able to use the device unless
it knows the secret code. In the evaluation section we
present the authentication screen that we added in our
prototype implementation.

Security: Regarding Information Distribution:

Modified secret sharing approach, in the very first
prototype of ETS Self-healing has been implemented
in a very simple fashion. Random number procedure
has been chosen to generate the key that is XOR-ed
with all the information that should be distributed
among N devices. Only t (t¡=N) devices are needed to
extract that actual information. After revival of faulty
device, its participation is needed to extract that actual
information. This approach promises the security that
no device will be able to abuse the information of the

faulty device.

Privacy: Responsibility Re-assignment:

During updating the hash table regarding service re-
assignment, the consent of the service provider, a member
of that ad-hoc network, is needed which ensures user’s
privacy as well as security.

5 Current State of the Art

The issues of self-healing are addressed from different
standpoints. Researchers are working on several poli-
cies like architecture based System [8, 10], infrastructure
based approach [3] for a long time. Most of these models
are suitable for physically connected computers in dis-
tributed computing environment. There is no established
method that provides solution for devices running in per-
vasive computing environment where it is assumed that
the devices are connected to each other wirelessly.

Soila and Priya presented proactive recovery in Dis-
tributed CORBA [14] applications. They did not concen-
trate on fault-prediction technique; rather they focused
on the exploitation of fault prediction in systems that
had real time deadlines. Our system deals with perva-
sive computing and it can predict the fault by calculating
different states of the system.

To handle transient software failures, a proactive ap-
proach named software rejuvenation, was proposed by
Huang et al [12]. According to this approach, if errors
are accumulated beyond a threshold, then it will kill and
re-launch the application. A lot of works about rejuvena-
tion policies, to increase system availability and to reduce
the cost of rejuvenation, were done by [5, 9, 23]. However,
to hand-off the existing state of the faulty device just after
its re-launching was overlooked here. Our approach pre-
serves this state among other devices in a secured manner
(Secret Sharing) so that the healing manager can help the
faulty device to get its actual state after healing.

Garlan and Schmerl presented a system [10] that uses
architectural model for monitoring, problem detection,
and repair. But their main focus is on distributed sys-
tems with high performance requirement.

Eric et al. [8] describes a system based on software ar-
chitecture that uses software components and connectors
for repair. This system is also targeted for distributed
systems. They use infrastructure support for repair pur-
poses.

Gordon et al. [4] in their paper presented an analysis
of the role of “Reflection” to support self-healing systems.
They also suggested that middleware would be the appro-
priate place for including self-healing unit. They offered
their primary analysis based on distributed systems. But
they did not implement the middleware and also not the
self-adaptive, self-healing unit.

AMUN [21] is a middleware that deals with self-healing
for ubiquitous environment but they concentrate only in
indoor environment like inside an office building. They

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 277

use “Smart Doorplates” that use and display situational
information of the owner of the office. This idea restricts
its use only in a smart environment.

L. Kant [13] proposed a self-healing mechanism for
wireless network. He claimed that this mechanism can
provide seamless restoration of affected services due to
random/sporadic network facility failures. But this ap-
proach is not suitable for pervasive computing since the
ad-hoc nature is totally overlooked here.

6 ETS Self-healing: Prototype
Implementation and Evaluation

The first prototype of ETS self-healing, of late, to uphold
the design, has been developed and integrated along with
our current developing middleware named MARKS [20].
WinCE running on a set of Dell Axim X30 pocket PCs
(Process type is Intel@PXA270 and speed is 624 MHz),
to demonstrate our approach, are used as platform. .NET
Compact framework along with C# is used as implemen-
tation language. Bluetooth, as the underlying wireless
protocol, has been used though it is also suitable for IEEE
802.11.

Socket and thread programming have been used for
successful communication among all the devices in the
pervasive computing. In healing manager, one thread
is used for each device. The thread number is also dy-
namic due to the ad-hoc nature of the network. SQLCE
database, to store the information, is also used.

To evaluate the performance of ETS Self-healing, sev-
eral applications have been developed. Wireless exam is
such an application by which one teacher can send ques-
tions to the students (PDA to PDA communication) and
also can collect the answers from the students. There are
some selected screen shots captured from the implemented
prototype below.

Figure 4 presents a log file stored in an embedded de-
vice (a pocket pc exploited in the application which used
the first prototype of ETS self-healing). Figure 5 illus-
trates the nature of rate of change of used memory space
over time through which ETS self-healing can determine
the possibility of a problem between time stamp 14 and
15 due to the sharp change of rate of used memory space.

Figure 6 presents the status of the battery power for
five devices where the prototype our ETS Self-healing and
MARKS-ORB are running. The sharp change of the sta-
tus of the battery power for D4 indicates that there is
some problem in that device and needs healing immedi-
ately.

By using the “status changing rate” process, ETS self-
healing of the student’s device itself tries to find out the
fault as well as the reason if there is any. Figure 7 shows
a typical message generated by the devices’ healing unit.
This message is intended to inform the user about the
abrupt change of device status and action taken by the
ETS Self-healing.

Figure 4: Status of a device

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time

c
h

a
g

e
o

f
u

s
e
d

m
e
m

s
p

a
c

e
(%

)

Figure 5: Rate of change of used memory space

1 2 3 4 5 6 7 8

D1

D3

D5

0

10

20

30

40

50

60

70

80

90

100

B
a

tt
e
ry

P
o

w
e
r

(%
)

Time (min)

Devices

D1
D2
D3
D4
D5

Figure 6: Status of the battery power of five devices

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 278

Figure 7: Message to the user regarding low processor
speed

Figure 8: Device 2 is running without any problem

Figure 9: Device 9 sends SOS message

Figure 10: No signal from device 5

There are situations where all the devices operate with-
out any error. Then only the “OK” message is sent to the
healing manager periodically. Let device 2 has no prob-
lem and it periodically sends OK message to teacher, the
healing manager of this network. Within a specified pe-
riod of time, it also sends all the answers to the teacher’s
PDA. This scenario is shown in Figure 8.

Now device 9 finds some problem. It simply sends SOS
message including file name exam3cosc060. Without any
delay, the healing manager will collect that file from this
device. Figure 9 portrays this event.

Another case can occur where the device is unable to
send any message due to fault. If the healing manager
does not get any message for a long period of time from
any device, it will take appropriate action assuming that
the device is in fault. Device 5 is unable to send any mes-
sage for a long time. So, the healing manager takes rapid
action regarding device 5. This incident is illustrated in
Figure 10.

As both device 5 and 9 are faulty now, healing manager
removes the entry of device 5 and 9 from hash table. It
also updates the table to reassign the services.

Along with the SOS message, device 9 sends the list of
important file names (selected by the user of that device)
that need to be saved. This is shown in Figure 11. Device
5 and 9 will try to be healed without the help of others.
After healing, healing manager will resend the files that
it got before their fault.

Simple yet powerful authentication scheme is provided
in our first prototype. A random combination of 7 digits
is used as the secret code to operate the ETS self-healing
unit. To break this authentication system, even if one full
secret code is entered within 1 second, it will take approx-
imately 9 years. Figure 12 depicts the user authentication
screen.

We have also developed the MARKS-ORB, to provide
the device discovery and communication functionality of
the devices. Figure 13 shows the battery power consump-
tion with respect to time while MARKS-ORB is run-
ning in that device. Here S1 indicates the battery power

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 279

Figure 11: Important files name selected by user to be
saved

Figure 12: Authentication of the user

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23

Time (min)

B
a

tt
e

r
P

o
w

e
r

(%
)

S1 S2 S3

Figure 13: Time (min) vs. battery power (%) for
MARKS-ORB

consumption while the Pocket PC is on but the wireless
mode is off (no wireless communication via 802.11 or Blue-
tooth). S2 means that wireless mode is on. S3 indicates
that wireless mode is on and MARKS-ORB is running in
the device. It clearly indicates that MARKS-ORB con-
sumes a very little amount of battery power.

MARKS-ORB itself transfers data mainly for device
discovery. It broadcasts its own IP address and receives
the IP addresses of other devices reside in the same ad-
hoc network. Figure 14 shows the data transmission by
MARKS-ORB in every 5 seconds. It clearly shows that
it does not need to transmit so much data for device dis-
covery.

7 Conclusion and Future Direc-

tion

In this paper, we have described the design as well as
the implementation of a ETS Self-healing service, a fun-
damental part of MARKS, a dependable middleware de-
signed for devices running in pervasive computing envi-
ronments. Fault detection and healing are covered in this
unit. It promises the least possible time not only to detect
the fault but also to restore its smooth functionality. It
also promises the lowest degree of user intervention and
hence the highest level of transparency. The powerful au-
thentication scheme augments its security features.

In future, we will develop a generic approach to han-
dle different kinds of healing (system failure, link failure,
Byzantine problem, etc.). Moreover, hard healing (recov-
ery process for special kind of system failure) problem will
also be taken care of. For an example, to heal a faulty
device running out of battery power, power would be col-
lected from other devices of the same ad-hoc network and
supplied to the faulty device in packet format. The suit-
ability of self-healing protocol will be evaluated using sim-
ulations and other more generic applications. To develop

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 280

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

Time (Sec)

D
a

ta
T

ra
n

s
m

is
s

io
n

(B
y

te
s

)

Figure 14: Time (sec) vs. data transmission (Bytes) for
MARKS-ORB

a really effective benchmark to select healing manager is
another goal of near future.

References

[1] S. I. Ahamed, M. Sharmin, S. Ahmed, M. J. Hav-
ice, and S. Anamanamuri, “An assessment tool for
out of class learning using pervasive computing tech-
nologies,” Journal of Information, vol. 8, no. 5, pp.
751-768, Sept. 2005.

[2] S. Ahmed, M. Sharmin, and S. I. Ahamed, “Knowl-
edge usability and its characteristics for pervasive
computing environments,” in Proceedings of the 2005
International Conference on Pervasive Systems and
Computing (PSC-05) in conjunction with The 2005
International Multi-conference in Computer Science
and Engineering, pp. 206-209, Las Vegas, NV, USA.
Jun. 27-30, 2005.

[3] K. J. Appavoo, M. S. Hui, R. W. Wisniewski, D. D.
Silva, O. Krieger, and C. A. N. Soules, “An infras-
tructure for multiprocessor run-time adaptation,” in
Proceedings of the first workshop on Self-healing sys-
tems, pp. 3-8, Charleston, South Carolina, 2002.

[4] S. Blair, G. Coulson, L. Blair, H. D. Limon, P.
Grace, and R. M. N. Parlavantzas, “Reflection, self-
awareness and self-healing in OpenORB,” in Proceed-
ings of the first workshop on Self-healing systems, pp.
9-14, Charleston, South Carolina, 2002.

[5] A. Bobbio and M. Sereno, “Fine grained software
rejuvenation models,” in Computer Performance and
Dependability Symposium (IPDS 98), pp. 4-12, Sept.
1998.

[6] T. D. Bracewell and P. Narasimhan, “A mid-
dleware for dependable distributed real-time
systems,” in Joint Systems and Software Engi-
neering Symposium, Falls Church, VA, Apr. 2003.
URL:http://www.ece.cmu.edu/ mead/raytheonSymp-
2003.pdf (accessed in May 2006).

[7] S. Chetan, A. Ranganathan, and R. Campbell, “To-
wards fault tolerant pervasive computing,” in Perva-
sive 2004 Workshop on Sustainable Pervasive Com-
puting, pp. 38-44, Linz/Vienna, Austria, Apr. 2004.

[8] E. M. Dashofy, A. V. D. Hoek, and R. N. Taylor, “To-
wards architecture-based self-healing systems,” in
Proceedings of the first workshop on Self-healing sys-
tems, pp. 21-26, Charleston, South Carolina, 2002.

[9] S. Garg, A. van Moorsel, K. Vaidyanathan, and
K. Trivedi, “A methodology for detection and esti-
mation of software aging,” in International Sympo-
sium on Software Reliability Engineering, pp. 283-
292, Nov. 1998.

[10] D. Garlan, and B. Schmerl, “Model-based adapta-
tion for self-healing systems,” in Proceedings of the
first workshop on Self-healing systems, pp. 27- 32,
Charleston, South Carolina, Nov. 18-19, 2002.

[11] D. Garlan, V. Poladian, B. Schmerl, and J. P. Sousa,
“Task-based self-adaptation,” in Proceedings of the
ACM SIGSOFT 2004 Workshop on Self-Managing
Systems (WOSS’04), pp. 54-57, Newport Beach, CA,
Oct-Nov 2004.

[12] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton,
“Software rejuvenation: Analysis, module and ap-
plications,” in International Symposium on Fault-
Tolerant Computing, pp. 381-390, Pasadena, CA,
Jun. 27-30, 1995.

[13] L. Kant, “Design and performance modeling & simu-
lation of self-healing mechanisms for wireless commu-
nication networks,” in Proceedings of the 35th Annual
Simulation Symposium, pp. 35-42, Apr. 2002.

[14] S. Pertet and P. Narasimhan, “Proactive recovery in
distributed CORBA applications,” in IEEE Confer-
ence on Dependable Systems and Networks (DSN),
pp. 357-366, Florence, Italy, Jun. 2004.

[15] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, and K. Nahrstedt, “Gaia: A mid-
dleware infrastructure for active spaces,” IEEE Per-
vasive Computing, pp. 74-83, Oct-Dec 2002.

[16] M. Satyanarayanan, “Fundamental challenges in mo-
bile computing,” in ACM Symposium on Principles
of Distributed Computing, (PODC’96 invited lec-
ture), pp. 1-7, 1996.

[17] F. B. Schneider, “Byzantine generals in action: Im-
plementing fail-stop processors,” ACM Transactions
on Computer Systems, vol. 2, no. 2, pp. 145-154, May
1984.

[18] Secret Sharing, URL: www.cmpe.boun.edu.tr/
courses/cmpe471/spring2003/download/cmpe47109-
2003.ppt (accessed in May 2005).

[19] M. Sharmin, S. Ahmed, and S. I. Ahamed, “SAFE-
RD (Secure, adaptive, fault tolerant, and efficient
resource discovery) in pervasive computing envi-
ronments,” in Proceedings of the IEEE interna-
tional Conference on Information Technology (ITCC
2005), pp. 271-276, Las Vegas, NV, USA, Apr. 4-6,
2005.

International Journal of Network Security, Vol.4, No.3, PP.271–281, May 2007 281

[20] M. Sharmin, S. Ahmed, and S. I. Ahamed, “MARKS
(Middleware adaptability for resource discovery,
knowledge usability and self-healing) for mobile de-
vices of pervasive computing environments,” To ap-
pear in Third International Conference on Informa-
tion Technology: New Generations (ITNG 2006),
Apr. 2006, Las Vegas, NV, USA.

[21] W. Trumler, J. Petzold, F. Bagci, and T. Ungerer,
“AMUN - An autonomic middleware for the smart
doorplate project,” in System Support for Ubiquitous
Computing Workshop at the Sixth Annual Confer-
ence on Ubiquitous Computing (UbiComp 2004), pp.
274-275, Notthingham, England, Sep. 7, 2004.

[22] M. Weiser, “Some computer science problems in
ubiquitous computing,” Communications of the
ACM, vol. 36, no. 7, pp. 75-84, Jul. 1993.

[23] B. Yujuan, S. Xiaobai, and K. S. Trivedi, “Adaptive
software rejuvenation: Degradation model and re-
juvenation scheme,” in International Conference on
Dependable Systems and Networks, pp. 241-248, Jun.
2003.

Shameem Ahmed is a gradu-
ate student in the department of
Math., Stat., and Computer Sci-
ence at Marquette University, USA.
Ahmed received his B.Sc. in com-
puter science and engineering from
the Bangladesh University of Engi-
neering and Technology, Bangladesh

in 2003. His research interests are user mod-
eling in ubiquitous/pervasive computing, location-
aware computing, and human computer interface.
He can be contacted at shameem.ahmed@mu.edu;
http://www.shameemahmed.com

Moushumi Sharmin is a grad-
uate student in the department
of Math., Stat., and Computer
Science at Marquette University,
USA. Sharmin received his B.Sc. in
computer science and engineering
from the Bangladesh University
of Engineering and Technology,

Bangladesh in 2003. Her research interests are re-
source discovery in ad-hoc networks, sensor networks,
and middleware for ubiquitous/pervasive computing.
She can be contacted at moushumi.sharmin@mu.edu;
http://www.mscs.mu.edu/ msharmin.

Sheikh I. Ahamed is an assistant
professor in the department of Math.,
Stat., and Computer Science at Mar-
quette University, USA. He is a mem-
ber of the IEEE, ACM, and the IEEE
Computer Society. Dr. Ahamed re-
ceived the B.Sc. in computer science
and engineering from the Bangladesh

University of Engineering and Technology, Bangladesh
in 1995. He completed his Ph.D in Computer Sci-
ence from Arizona State University, USA in 2003.
His research interests are security in ad hoc networks,
middleware for ubiquitous/pervasive computing, sen-
sor networks, and component-based software develop-
ment. He serves regularly on international conference
program committees in software engineering and per-
vasive computing such as COMPSAC 04, COMPSAC
05, COMPSAC 06, and ITCC 05. He is the Work-
shop Program Co-Chair of International Workshop on
Security, Privacy, and Trust for Pervasive Computing
(SPTPA 06). He also directs the Ubicomp research
lab (www.mscs.mu.edu/ ubicomp) in the the department
of Math., Stat., and Computer Science at Marquette
University, USA.. Dr. Ahamed can be contacted at
iq@mscs.mu.edu; http://www.mscs.mu.edu/ iq.

