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Abstract

To hide data in credentials is a key problem in informa-
tion security. In this paper, a summary of the work on
data hiding-capacity is made and several communication
channel models and several statistical host data models
have been considered by the application of information
theory. Based on the foundation, a solution is given to
the problem about how many bits can be hidden in host
data transparently and robustly.
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1 Introduction

Data hiding refers to the general process by which a dis-
crete information stream is embedded within a multime-
dia signal by imposing nearly invisible changes on the
host signal, such as text, audio, image, or video. There is
a variety of data one may want to hide in such data sets.
The hidden information may be a textual description of
image features, some complementary information (words,
sound, etc.) about the original scene, or something has
nothing to do with the host data. Information hiding has
many application areas, such as the copyright protection
for digital media watermarking, fingerprinting, steganog-
raphy and data embedding. In data hiding applications,
the hidden data can represent authorship information, a
time stamp, or copyright information.

Mostly, information hiding method is applied when
people try to transmit some information secretly, but
there must be some malicious opponents apply various
operations to interfere with the process, they want to get
this information, or corrupt this information. Transmitter
must be able to recognize the presence of an attacker who
attempts to disrupt the communication of hidden data de-
spite that information is corrupted only by un-malicious
manipulation.

Our focus is on transferring significant amounts of in-
formation to a decoder. Channel capacity is the maximum
data transmission rate across a communication channel

with the probability of decoding error-approaching zero,
and the rate distortion function is the minimum rate
needed to describe a source under a distortion constraint.

2 Channels Model

Moulin and O’Sullivan have set up a channel model in
[6], which has be accepted and applied so widely that it
becomes a standard model. Here, we setup a channel
model based on that model, shown in Figure 1.
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Figure 1: Information communication problem

M is the hiding information, SN = (S1, S2, · · · , SN ) is
host data set, KN = (K1, K2, · · · , KN) is side informa-
tion. M is to be hidden into SN through the side informa-
tion KN . Encoder must select a good method to imple-
ment this hiding work, i.e. to find a good expression for
fN = (M, SN , KN). After encoding, we get embedded in-
formation XN , which is certain to suffer from some attack
in information communication, then the decoder receives
Y N from the communication channel AN (yN | xN ), the
decoder must try his best to get the hidden information
through φN (Y N , KN ). The message M̂(M̂ ∈ ℘) must
have some difference with M due to the attack.

To the encoder, he must guarantee the transparency
and robustness of information hiding, so XN should have
a little difference with SN , in order to control the dif-
ference; the encoding progress should be subject to the
expected-distortion constraint as Equation (1):

EdN (SN , XN ) ≤ D1. (1)
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Meanwhile, there is a relative formula as follows:

dN (xN , yN) =
1

N

N∑

k=1

d(xk, yk).

To the attacker, he must guarantee his attack is ac-
ceptable, otherwise Y N has nothing to do with XN . In
that way, his attack loses meaning, so the attack progress
should be subject to some distortion constraint.

EdN (XN , Y N ) ≤ D2. (2)

Then C(D1, D2) is defined as the super-mum of all
achievable rates for distortions D1, D2. A rate R =
1
N

log |℘| is achievable for distortions (D1, D2), too. Lit-
erature [5] presents a more concrete expression for Equa-
tion (1), which assumes that ℘ follows proportional distri-
bution, the dependencies between S and K are modelled
by a joint distribution p(s, k), then ℘ is independent of S
and K, so Equation (1) can be expressed as:

∑

sN∈SN

∑

kN∈KN

∑

m∈℘

1

|℘|
p(sN

, k
N )dN

1 (sN
, fN (sN

, m, k
N )) ≤ D1.

Equation (2) can be expressed as:

∑

xN∈XN

∑

yN∈Y N

dN
2 (xN , yN )A(yN |xN )p(xN ) ≤ D2.

The average probability of error is described as:

Pe,N =
1

|℘|
∑

m∈℘

Pr[φN (Y N , KN ) 6= m|M = m]

=
1

|℘|
∑

m

∑

sN

∑

(yN ,kN ):φN(yN ,kN ) 6=m

AN (yN |fN (SN , m, kN))p(sN , kN).

In the recent years, many models have been set up, but
they are all subject to analogy distortion constraint. For
example, M. Barni et al have put forward their ideas in
[1]. They consider that information hiding consists in the
modification of a set of DCT, DFT, or DWT coefficients,
and the amount of modification each coefficient undergoes
is proportional to the magnitude of the coefficient itself
as expressed by the following rule:

xi = si + γmi|si|. (3)

Where si indicates the original DCT, DFT, or DWT
coefficients, xi indicates the hided coefficients, mi is the
i-th component of the hiding information, i presents the
position of the marked coefficients within the frequency
spectrum, and γ is a parameter controlling the hiding
strength.

Cover and Chiang have designed four channel particu-
larities in [3], the four channels denote four special case
of channels:

1) Channel C00: neither the encoder nor the decoder
knows the side information.

2) Channel C11: both the encoder and the decoder know
the side information.

3) Channel C01: only the decoder knows the side infor-
mation.

4) Channel C10: only the encoder knows the side infor-
mation.

Then Cover and Chiang research on hiding capacity of
the four channels according to the character of them.

3 Encode, Attack and Decode

In order to guarantee the transparency and robustness
of information hiding, encoding must be constrained by
the exception-distortion (1). At the same time, encoder
should consider the reasonability and complexity of his
algorithm.

As we can see that many encoders would like to hide
their information into image, video, audio and so on.
When they hide information into image, they consider
that embedding information into the frequency of the
image is safer than just embedding into the original
one. They may select discrete cosine transform, discrete
Fourier transform, discrete wavelet transform or Walsh
transform. Moulin and O’Sullivan have compared their
hiding capacity [6], especially, they compare Block-DCT
with Wavelet EQ model and the comparison reveals that
capacity estimating under the Wavelet EQ model is lower
than that under the Block-DCT model. Since both ex-
pressions are upper bounds on actual capacity, so we
should consider more concrete distribution of information
when we choose transformation.

Before they decide to select a kind of transformation
they must consider its characters first. After that they
should decide which coefficient can be modified without
corrupting transparency. Mostly they choose the coeffi-
cients that have large variance around them. Barni et
al. [1] have analyzed the changeful trend of image data
hiding capacity as the coefficient variance increases, and
explained the reason of the result.

Barni et al. hide information according to their rule,
which is expressed in Equation (3), this kind of algorithm
is widely used. However, if encoder uses this algorithm,
the decoder must have the host information SN , other-
wise, he cannot extract the hide information. In many
cases, decoder has not the host data set, so the encoder
needs other algorithms to deal with. A great deal of al-
gorithms which can realize blind examination are manip-
ulated by adjusting the linear connection between coef-
ficients, so the decoder can get hidden information by
analyzing the relation in coefficients, a good example is
used in [10].

From Figure 1 we can get Y N = AN (yN |xN ). An
attacker passes XN through a random attack chan-
nel AN (yN |xN ) to produce corrupted data Y N . Here
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AN (yN |xN ) depicts the statistics dependence between in-
put signals and output ones. The decoder who has plenti-
ful experiences can deduce which kind of attack has taken
place, and then he may extract hidden information more
exactly.

The capacity estimates of data hiding systems under
some practical attacks must be considered because the
attack is inevitable. Information hiding can be thought
as a game among two cooperative players (the information
hider and the decoder) and an opponent (the attacker).
The first player tries to maximize a payoff function, the
opponent tries his best to minimize it, so the function
should have connection with encode fN , decode φN , at-
tack AN . Surely, the game must obey the two expected-
distortion constraints (1) and (2), so the hiding-capacity
is the function of fN , φN , AN , D1, D2, we define payoff
function as follows:

J(fN , φN , AN , D1, D2)

= max
fN ,D1,φN

{ min
AN ,D2

{C(fN , φN , AN , D1, D2)}}.

If D1, D2 is decided at first, then

J(fN , φN , AN ) = J(fN , φN , AN , D1, D2).

Here, let’s define the support set of p(s, k), Ω =
{(s, k) ∈ S × K : p(s, k) > 0}.

We introduce an auxiliary variable U (Maybe U in-
cludes some information about host data, side informa-
tion, attack channel, or nothing important). We use
Q(x, u|s, k) denote a conditional probability distribution
function (pdf) from S × K to X × U . The function
Q(x, u|s, k) has depicted all information about encoding
procession. Furthermore, it includes some other informa-
tion with respect to U . Additionally, φN is determined
by fN in a certain degree, so Q(x, u|s, k) can substitute
fN and φN , we can derive that:

J(Q, A) = J(fN , φN , AN ).

Then we can get data hiding - capacity by the appli-
cation of information theory:

J(Q, A) = I(U ; Y |k) − I(U ; S|K).

This equation denotes that payoff function is equal to
the discrimination between the quantity of information
that can be got about U from Y and the quantity of
information that can be got about U from S under the
same assumption that side information is known.

Conclusion 1: Assume that for any N ≥ 1, the attacker
knows fN , the decoder knows both fN and the attack
channel, a rate R is achievable for distortion D1 and at-
tacks in the class {A(fN )}, if and only if R < C, where
C = maxQ(x,u|s,k)∈Q minA(y|x)∈A(Q) J(Q, A) and U is a
random variable defined over an alphabet U of cardinal-
ity of |U | ≤ |X ||Ω| + 1.

4 Estimates of Data Hiding - Ca-

pacity

Recent research has shown that the data hiding capac-
ity is the value of a mutual-information game among the
encoder, decoder and attacker. The capacity of channel
is given as C = maxp(M){I(M ; Y N )} by Claude Shan-
non in [8]. In this section, we will give some conclusions
about the capacity of some kinds of channels and models,
such as non-blind channels, blind channels, gauss chan-
nels, parallel gauss channels, and AR-1 models as well.

4.1 Non-Blind Channels

4.1.1 A Simple Non-Blind Case

Let’s first discuss a simple non-blind case, the data hiding
capacity can be written as follows:

C = max
p(M)

{I(M, Y N |SN)} (4)

= max
p(M)

{H(M, SN ) − H(M |SN , Y N )} (5)

≤ H(M∗|SN). (6)

Equation (4) is the definition of the capacity for the
non-blind case (decoder knows host data set SN ). Equa-
tion (5) is the definition of the mutual-information by the
theory of information. Equation (6) is reached because of
the non-negativeness of entropy.

4.1.2 Gauss Channels

If S follows a Gaussian distribution, let S ∼ N(0, δ2),
d(x, y) = (x − y)2, this model is very special and widely
used. Literature [2, 5] gives an explicit solution to the
estimation of upper bounds on capacity of non-blind
Gaussian distribution S. They reached the following
conclusion:

Conclusion 2: Let S = X = Y = R (R is the set of
real number) and d(x, y) = (x − y)2 be the squared-error
distortion measure. Assume that K = S, let α be the
maximized of the following function:

f(α) =
[(2α − 1)δ2 − D2 + D1][D1 − (α − 1)2δ2]

[D1 + (2α − 1)δ2]D2
,

in the interval (αinf , 1 +
√

D1/δ), where αinf =

max(1, δ2+D2−D1

2δ2 ). Then we have:

1) If D2 ≥ (δ +
√

D1)
2, the hiding capacity is C = 0.

2) If S is non-Gaussian with mean zero and standard
deviation δ >

√
D2 −

√
D1, the hiding capacity is

upper-bounded by

CG =
1

2
log(1 +

[(2α − 1)δ2 − D2 + D1][D1 − (α − 1)2δ2]

[D1 + (2α − 1)δ2]D2

). (7)
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3) If S ∼ N(0, δ2) and D2 < (δ +
√

D1)
2, the hid-

ing capacity is given by Equation (7). The opti-
mal covert channel is given by X = αS + Z, where
Z ∼ N(0, D1 − (α− 1)2δ2) is independent of S. The
optimal attack is the Gaussian test channel from rate-
distortion theory,

A∗(y|x) = N(β−1x, β−1D2), (8)

where β =
δ2

x

δ2
x−D2

, and δ2
x = D1 + (2α − 1)δ2.

The role of the host-signal scaling parameter α ≥ 1 in
Conclusion 2 is to increase the value of δ2

x and thereby to
reduce the effective noise variance δ2

w of the Gaussian test
channel. From Equation (7) we can give C = 1

2 log(1 +
δ2

z

δ2
w

), where δ2
w decreases as α increases, and δ2

z increases

as tends to 1. Hence the optimal value of α results from
a tradeoff.

4.1.3 Parallel Gauss Channels

Parallel Gaussian models are useful in that they are rea-
sonably tractable and provide capacity expressions for re-
alistic signal models. They also provide upper bounds
on capacity if the actual distribution of S differs from the
model are a more important reason. For instance, any cor-
relation between subsignals Sk would decrease capacity,
as well as any deviation from a Gaussian distribution with
the same second-order statistics [7]. For non-Gaussian S,
the Gaussian upper bound on capacity is asymptotically
tight as D1 and D2 approach zero, and in this case the
capacity-achieving distributions are the same as in the
parallel-Gaussian case. A fundamental implication of this
result is that the exact distribution of the source plays
only a second-order effect in a small-distortion scenario.

4.1.4 Spike Models

Let us consider a rate-distortion bound for still-image
compression, under a so-called spike model that captures
the sparsity of wavelet image representations [9]. It ap-
pears that this model is very useful in data hiding as well.
Under a spike model, there are two types of channels:
those with large variance δ2

k << D1, D2 and those with
low variance δ2

k >> D1, D2. The signal components are
independent. Assume that δ2

k >> D1, D2 for 1 ≤ k ≤ K∗

and δ2
k << D1, D2 for K∗ < k < K. Then, we will get

C = 1
2r∗ log(1 + D1

D2−D1

), where r∗ =
∑K∗

k=1 rk ∈ [0, 1] is
the fraction of strong signal component. In conclusion,
for spike models:

1) The optimal power allocations by the data hider and
the attacker are independent of the signal variances
in the strong channels, provided that these variances
are much relative to D1 and D2.

2) The optimal data-hiding strategy equalizes the power
among the strong channels, and likewise, the opti-
mal attack strategy equalizes the noise power among

strong channels. Negligible power is allocated to
weak channels.

3) The (per-sample) capacity Ck is the same for all
strong channels and is negligible for the weak chan-
nels. The capacities {Ck} are in the strong channels
and C =

∑
k rkCk depends only on the distortion

levels D1 and D2, rather than the variances δ2
k.

4.1.5 AR-1 Models

AR-1 model is a classical model. First, we assume the
host-image source is a separable AR-1 Gaussian process
[4]. The distribution of this process is parameterized by
four quantities: mean µ, variance δ2, horizontal and ver-
tical correlation coefficients ρx and ρy respectively. The
two-dimensional (2-D) spectral density of S is given by

S(fx, fy) =
δ2(1 − ρ2

x)(1 − ρ2
y)

|1 − ρxe−j2πfx |2|1 − ρye−j2πfy |2 ,

− 1

2
≤ fx, fy ≤ 1

2
.

Compute data-hiding capacity estimates for image
sources characterized by different values of ρx, ρy and
δ2. The capacities are computed using the numerical
algorithm mentioned in [6]. Finally, several results are
reached:

1) There is a threshold of 2 D2 to C to be satisfactory
in the sense that the approximation is quite accurate
(except for very low values of D2/D1 − 1).

2) There is a saturation of the capacity Ck in a given
channel when the variance δ2

k in that channel in-
creases, and Ck is proportional to δ2

k for small δ2
k.

3) For relatively low values of ρx = ρy (say less than
0.8), capacity is essentially the same as in the i.i.d.
Gaussian case: C ≈ 1

2 log(1 + D1

D2−D1

).

4) As ρx = ρy approaches 1, capacity tends to zero, as
more and more channels (frequencies) become weak
and hence are unable to hide significant information.

4.2 Blind Channels

Rate of reliable transmission for blind information hiding
clearly cannot be higher than the rate in the case that
the decoder has access to side information and host data.
So hiding-capacity is upper-bounded by Equation (7) for
any p(s). In the following, Theorem 5.3 in [5] has given
the optimal blind-information-hiding strategy and opti-
mal attack for Gaussian p(s). The optimal attack A(y|x)
comes from the Gaussian test channel (8).

Conclusions show that the hiding-capacity for blind
channels is the same as Equation (7), i.e. the achiev-
able rate of reliable transmission is the same whether or
not the host data are known of the decoder. Of course,
Equation (7) is an upper bound on hiding capacity if S is
non-Gaussian with mean zero and variance δ2.
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Now, we continue to analyze the channels in [3]. Cover
and Chiang have assumed that the channel is embedded
in some environment with state information SN

1 available
to the sender, correlated state information SN

2 available
to the receiver, and a memoryless channel with transition
probability p(y|x, s1, s2) that depends on the input X and
the state S1, S2 of the environment.

We assume that (S1,i, S2,i) are i.i.d. p(s1, s2),
i = 1, 2 · · · . The output has conditional distribution
p(yN |sN

1 , sN
2 ) =

∏N
i=1 p(yi|xi, s1,i, s2,i).

Conclusion 3: The memoryless channel p(y|x, s1, s2)
with state information (S1,i, S2,i) i.i.d. ∼ (s1, s2), with
SN

1 available to the sender and SN
2 available to the re-

ceiver, has capacity of

C = max
p(u,x|s1)

[I(U ; S2, Y ) − I(U ; S1)].

Conclusion 4: The four capacities with state in-
formation are special cases of Conclusion 3: C00 =
maxp(x) I(X ; Y ), C11 = maxp(x|s) I(X ; Y |S), C01 =
maxp(x) I(X ; Y |S), C10 = maxp(u,x|s)[I(U ; Y ) − I(U ; S)].

Conclusion 5: For a bounded distortion measure d(x, x̂)
and (Xi, S1,i, S2,i) i.i.d. ∼ p(x, s1, s2), where X , S1,
S2 are finite sets. Let SN

1 be available to the encoder
and SN

2 to the decoder. The rate distortion function is
R(D1, D2) = minp(u|x,s1)p(x̂|u,s2)[I(U ; S1, X) − I(U ; S2)],
where the minimization is under the distortion constraint
(e1) and (e3).

Conclusion 6: The four rate distortion functions with
state information are special cases of Conclusion 5: R00 =
minp(x̂|x) I(X ; X̂), R11 = minp(x̂|x,s) I(X ; X̂|S), R10 =

minp(x̂|x) I(X ; X̂), R01 = minp(u|x)p(x̂|u,s)[I(U ; X) −
I(U ; S)].

5 Conclusions and Expectations

Many researchers have characterized data-hiding capac-
ity for realistic image sources, or other host data, by
the application of information theory on some kinds of
channels. This paper has made a summary of the work
about data-hiding capacity, several statistical image mod-
els have been considered. We hope that those results can
be a guard when deciding how much bits of secret informa-
tion can be hidden into the host data without corrupting
the transparency and robustness.
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