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Abstract

A critique of the proposed encryption scheme based on the
DLP γ = αaβb is provided. It is described how a plaintext
can be obtained from a valid ciphertext by computing
a single traditional discrete logarithm in a cyclic group.
Furthermore, it is shown that the proposed encryption
scheme is in fact equivalent to the ElGamal encryption
scheme.
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1 Introduction

In 2006, Sunil Kumar Kashyap, Birendra Kumar Sharma,
and Amitabh Banerjee proposed [4] a discrete logarithm
problem in cyclic groups based on two generators and a
public-key encryption scheme based on this discrete log-
arithm problem. In the proposal, the authors claim that
it is necessary to compute two traditional discrete loga-
rithms to solve their discrete logarithm.

This contribution shows that the proposed asymmetric
cryptosystem - an encryption scheme which is a modifi-
cation of the ElGamal encryption scheme - can be in fact
broken by computing a single traditional discrete loga-
rithm. In addition, a careful analysis of the ciphertext
allows for selection and computation of particular values
that render the proposed encryption scheme equivalent to
the ElGamal encryption scheme.

1.1 The Traditional DLP and the ElGa-

mal Encryption Scheme

Let G be a finite cyclic multiplicatively written group of
order n, α a generator of this group, and β any group
element. The traditional [1] discrete logarithm problem
(DLP) is defined to be the problem of finding a (0 ≤ a <

n) such that αa = β.
The complexity of the DLP is based on the group repre-

sentation. For example, the DLP in cyclic additive group
Zn of order n is of polynomial complexity. The groups
that have a ”hard” DLP and are commonly used [3, 5]
are:

• a (prime order) subgroup of Z
∗

p, where p is a prime,
and

• a (prime order) subgroup of the group of points on
an elliptic curve over a finite field.

The first encryption scheme that takes an advantage
of this DLP was the ElGamal encryption scheme [2]. A
brief description follows:

Key generation: Let G be a finite cyclic multiplica-
tively written group of order n. Let α be a generator
of G. Choose a random integer a (0 ≤ a < n) and set
β := αa. The private key is a, the public key consists
of G, α, and β.

Encryption: To encrypt a message x ∈ G, one randomly
chooses integer k (0 ≤ k < n) and computes the
ciphertext (y1, y2), where y1 := αk and y2 := xβk.

Decryption: To decrypt a ciphertext (y1, y2), one com-
putes y−a

1 y2 in order to obtain the plaintext.

2 The Proposed DLP γ = αaβb in

Cyclic Groups

In 2006, Sunil Kumar Kashyap, Birendra Kumar Sharma,
and Amitabh Banerjee proposed [4] a discrete logarithms
problem in cyclic groups based on two generators and
an encryption scheme based on this discrete logarithm
problem.

They [4] define the discrete logarithm with two differ-
ent exponentiations and two distinct integers (2DL) to be
γ = αaβb in a finite cyclic group G of order n, such that
α 6= βi and a 6= bi, where α and β are two distinct gen-
erators of G, γ ∈ G, and a, b are two distinct integers
to be determined. In other words, the 2DL problem is:
given two distinct generators α and β of G and γ ∈ G,
determine integers a and b such that γ = αaβb.

Based on this 2DL problem in a group G = Z
∗

p, where
p is a prime, Kashyap, Sharma, and Banerjee proposed a
public-key encryption scheme [4]. The scheme is a mod-
ification of the original ElGamal encryption scheme. A
description follows:
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Key generation: Let α and β be two distinct genera-
tors of the multiplicatively written group Z

∗

p of the

integers modulo prime p such that α 6≡ βi (mod p).
Select two random integers a and b such that a 6= bi

and 0 ≤ a, b < p − 1. Compute γ := αa and δ := βb,
all computations modulo p. The public key is p, α,
β, γ, and δ. The private key is a and b.

Encryption: To encrypt a message x ∈ Z
∗

p, one ran-
domly chooses an integer k with 0 ≤ k < p − 1 and
computes the ciphertext (y1, y2, y3), where y1 := αk,
y2 := βk, and y3 := xγkδk (again, all computations
modulo p).

Decryption: To decrypt a ciphertext (y1, y2, y3), one
obtains the corresponding plaintext by computing
y−a
1

y−b
2

y3 mod p.

3 Critique and Cryptanalysis

The authors claim [4] that their 2DL problem involves two
traditional DLPs. This is however not true. We now de-
scribe an attack against the proposed encryption scheme
that needs only one solution of the traditional DLP. Note,
that the attack is described for an abstract multiplica-
tively written cyclic group G, since it holds in general
setting, not just for the group Z

∗

p and its subgroups.
Suppose an attacker has a ciphertext (y1, y2, y3). Then

from the definition of the encryption we have

y1y2 = αkβk = (αβ)
k
,

therefore we can obtain the integer k as a single tradi-
tional DLP of y1y2 to the base αβ. Having k, we can
then easily proceed to recover the plaintext message as
γ−kδ−ky3 since γ and δ are public.

Moreover, the condition α 6= βi of the 2DL problem
and of the proposed encryption scheme cannot be satis-
fied in any cyclic group. Since α is a generator of the fi-
nite cyclic group, every element can be expressed as some
power of α, say β = αm. Therefore the 2DL problem
γδ = αaβb can be always rewritten as

γδ = αaβb = αa(αm)
b

= αa+mb. (1)

In particular, we show that the proposed encryption
scheme described in the previous chapter is equivalent to
the ElGamal encryption scheme.

We show this by reduction: Using the notation from
above, consider the ciphertext pair (y1, y3). We have y1 =
αk and

y3 = xγkδk = x(αa)k(βb)
k

= x(αa)k((αm)b)
k

= xαak+mbk = x(αt)
k
,

for some integer t. In reality, t := a+mb. Hence (y1, y3) is
exactly the definition of ElGamal encryption of the mes-
sage x using random integer k, private key t, and the
public key α and αt.

Note, that even without knowing m, we can obtain
t as a traditional single discrete logarithm of γδ to the
base α as shown in the Equation (1). In addition, the
obtained knowledge of t leads to decryption of every other
ciphertext.

In other words, this argument shows that the proposed
encryption scheme has the same security as the original
ElGamal encryption scheme. Hence the known problems,
vulnerabilities, and attacks that are valid for ElGamal
encryption scheme are valid for the new scheme, too.

4 Conclusion

The idea of extending the traditional discrete logarithm
problem to two (or more) generators in highly interesting.
However, the cryptanalysis of the proposed encryption
scheme described here shows that the scheme is not su-
perior to the ElGamal encryption scheme. The proposed
encryption scheme requires more computations than the
ElGamal encryption scheme while maintaining the same
security and this effectively renders it obsolete.
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