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Abstract

In 1949, Shannon proved the perfect secrecy of the Ver-
nam cryptographic system (One-Time Pad or OTP). It
has generally been believed that the perfectly random
and uncompressible OTP which is transmitted needs to
have a length equal to the message length for this result
to be true. In this paper, we prove that the length of
the transmitted OTP actually contains useful informa-
tion and could be exploited to compress the transmitted-
OTP while retaining perfect secrecy. The message bits
can be interpreted as True/False statements about the
OTP, a private object, leading to the notion of private-
object cryptography.
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1 Introduction

Cryptography, the science and the art of communicating
messages secretly has been the subject of intense research
for the last 50 years. The field itself is much older, dat-
ing as far back as 1900 BC, when Egyptian scribes used
a derived form of the standard hieroglyphics for secure
communication.

In 1949, Shannon, the father of information theory,
wrote a seminal paper (see [8]) on the theory of secrecy
systems, where he established the area on a firm footing
by using concepts from his information theory [7]. In his
1949 paper, among other important contributions, he es-
tablished the perfect secrecy of the Vernam cryptographic
system, popularly known as the One-Time Pad or OTP
for short. OTP happens to be the only known perfectly
secure or provably, absolutely unbreakable cipher till date.
Shannon’s work meant that OTPs offer the best possible
mathematical security of any encryption scheme (under
certain conditions), anywhere and anytime − an aston-
ishing result.

There have been a number of cryptographic algorithms

[4] in the last century, but none can provide Shannon se-
curity (perfect security) other than the OTP. This is one
of our motivations to probe into the OTP and investigate
its properties. To the best of our knowledge there has
been very little work on the OTP since Shannon. Re-
cently, Raub and others [5] describe a statistically secure
one time pad based crypto-system. Dodis and Spencer [1]
show that the difficulty of finding perfect random sources
could make achieving perfect security for the OTP an im-
possibility. We shall not deal with the issue of random
sources in this paper. The questions we intend to address
in this paper are: what can we say about the length of
the OTP to be transmitted across the secure channel?
We prove a counter-intuitive result in this paper − the
length of the OTP to be transmitted need not always be
equal to the length of the message and that it is possible
to achieve Shannon security even if the transmitted OTP
length is actually smaller than the message length. Note
that we treat the OTP as perfectly random and uncom-
pressible. However, the length of the OTP is one piece of
information that is not exploited and is always compro-
mised in its traditional usage. We construct a protocol
where this piece of information can be used effectively to
reduce the length of the OTP to be transmitted while not
losing Shannon security for any of the bits of the mes-
sage. Although the average reduction in length of the
transmitted OTP we obtain is meagre (0.75−2 bits), this
could prove quite significant if a large number of relatively
‘short’ OTPs are shared between Alice and Bob (further-
more, one could envisage a protocol where the ensemble
of OTPs have random lengths, the random sequence be-
ing known only to Alice and Bob). The savings obtained
in such a scenario is non-negligible. Our investigation
of the OTP also results to an alternate interpretation of
the OTP encryption and this leads to a new paradigm of
cryptography called private-object cryptography.

The paper is divided as follows. In the next section,
we describe the OTP and its traditional interpretation
as XOR operation by means of a simple example. In Sec-
tion 3, we prove the central theoretical result of the paper
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− that it is possible to have the transmitted OTP length
less than the message length while still retaining perfect
secrecy. We first prove a 1-bit reduction of the transmit-
ted OTP length and then generalize for a k-bit reduction
for a message of length N > k bits. We also provide an
alternative method of compressing the OTP based on the
length information. In Section 4, we provide our new al-
ternate interpretation of the OTP as a private-object and
the encrytpion/decryption as equivalent to making state-
ments about the object. Section 5 talks more about the
new paradigm of private-object cryptography. We claim
that every private-key cryptography is essentially a form
of private-object cryptography and can provide theoreti-
cal security for at least one message of length equal to the
entropy of the crypto-system. We then ask the important
question − how should we invest N bits of secret? We
hint towards the use of Formal Axiomatic Systems (FAS)
for this purpose. We conclude in Section 6.

2 One-Time Pad

In 1917, Gilbert Vernam of AT&T invented the first elec-
trical one time pad. The Vernam cipher was obtained by
combining each character in the message with a character
on a paper tape key. There were other developments in
the 1920s which resulted in the paper pad system. An
OTP was used for encrypting a teletype hot-line between
Washington and Moscow. OTPs were also used success-
fully by the English in World War II. These were espe-
cially useful in battlefields and remote regions where there
were no sophisticated equipments for encryption, all that
they used were OTPs printed on silk. The final discovery
of significance and theoretical importance of the OTP was
made by Claude Shannon in 1949.

2.1 The Classical Interpretation of OTP

We describe the encryption and decryption of an OTP by
a simple example. Alice and Bob have shared an OTP
(K = 1011001001) in complete secrecy (assume that they
have met in private and shared the key). One fine day,
Alice wants to invite Bob to her house and wishes to send
the message ‘COME AT 8 PM’ to him. But she is afraid of
the interception of the message by Eve whom she dislikes.
She therefore encrypts her message as follows. She first
converts her message into binary (assume that she has a
dictionary which converts the message into the bits M =
0010110101). She then performs an XOR operation to
yield the cipher-text C = K ⊕ M = 1001111100. She
transmits this across a public channel. Bob receives the
cipher-text C. Since he has the OTP with him, he does
the XOR operation of the cipher-text with the OTP to
yield the correct message M = C ⊕ K = 0010110101. He
then looks up at the dictionary (this need not be secret)
and converts this to the more readable message ‘COME
AT 8 PM’.

To summarize (refer to Figure 1):

Alice  (encryption)


K:    
 1 0 1 1 0 0 1 0 0 1


M:     0 0 1 0 1 1 0 1 0 1


C: 
 1 0 0 1 1 1 1 1 0 0


K: 
 1 0 1 1 0 0 1 0 0 1


C:      1 0 0 1 1 1 1 1 0 0


M:     0 0 1 0 1 1 0 1 0 1


Bob  (decryption)


Figure 1: The one-time pad encryption and decryption
interpreted as XOR operation

1) The OTP is a random set of bits which is used as a
private-key known only to Alice and Bob.

2) The OTP encryption involves an XOR operation of
the message M with the OTP to yield the cipher-text
C.

3) The OTP decryption involves an XOR of the cipher-
text C with the OTP to get back the original message
M .

The classical interpretation of the OTP as XOR implies
the following two important observations.

1) The length of the OTP is completely compromised
in the process of encryption.

2) One bit of the OTP is employed to encrypt exactly
one bit of the message and this requires one XOR
operation. All bits of the message require the same
amount of effort to encrypt and decrypt.

We shall have more to say about the above observations
later. But what can we say about the security of the OTP
encryption?

2.2 Security of the OTP

Shannon, in his lucid 1949 paper on the theory of se-
crecy systems [8], defined perfect secrecy as the condition
that the a posteriori probabilities of all possible messages
are equal to the a priori probabilities independently of
the number of messages and the number of possible cryp-
tograms. This means that the cryptanalyst has no in-
formation whatsoever by intercepting the cipher-text be-
cause all of her probabilities as to what the cryptogram
contains remain unchanged. He then argued that there
must be at least as many of cryptograms as the messages
since for a given key, there must exist a one-to-one cor-
respondence between all the messages and some of the
cryptograms. In other words, there is at least one key
which transforms any given message into any of the cryp-
tograms. In particular, he gave an example of a perfect
system with equal number of cryptograms and messages
with a suitable transformation transforming every mes-
sage to every cryptogram. He then showed that the OTP
actually achieves this. In other words, the best possible
mathematical security is obtained by the OTP. Incidently,
this is the only known method that achieves Shannon se-
curity till date.
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3 Transmitted OTPs of Length

Less than the Message Length

It has generally been believed that the OTPs that are
transmitted are required to have a length equal to that
of the message in order for Shannon’s argument to hold
(although Shannon himself never mentioned this in his
paper). In this section, we show this is not the case. Al-
though the length of the OTP while encryption need to be
equal to the length of the message, the OTP that is trans-
mitted could be less. But this sounds quite paradoxical
because the OTP is assumed to have been derived from
a perfect random source and hence uncompressible. Even
if we are able to construct a compression algorithm that
compresses some of the generated OTPs, it has to expand
some other OTPs, it can’t losslessly compress all OTPs.
This is because of the Counting Argument [6] which states
that every lossless compression algorithm can compress
only some messages while expanding others. However, we
prove the central theoretical result of this paper that the
transmitted OTP length can be 0 ≤ k < N bits less than
the message length N while still retaining perfect secrecy.
Although we might not be able to achieve this reduction
all the time, our method never expands the transmitted
OTP. At worst, our transmitted OTPs are of the length of
the message. We first prove an easier case where the OTP
could be less than the message by 1-bit and the same idea
is employed for the k−bit reduction. We make use of our
earlier observation that the OTP encryption compromises
its length in its traditional usage which we can actually
avoid.

Theorem 1. For every message of length N bits, it is
equally likely that the transmitted OTP was of length N−1
or N bits while still retaining perfect theoretical secrecy.

Proof. We shall prove this result by constructing a (mod-
ified) protocol (Figure 2) where Alice and Bob exchange
a message of length N by using an OTP. However, in
this modified protocol, there is a 50% probability that
the transmitted OTP had a length of N − 1 or N bits
while still retaining perfect secrecy. We guarantee perfect
secrecy for all the N bits of the message. The protocol
works as follows:

Step 1: Alice performs a coin flip with a perfect coin. If
it falls HEADS, she constructs an OTP of length N and
if it falls TAILS she constructs an OTP of length N − 1.
It is assumed that Alice has access to a perfect random
source to construct the OTP in either events.

Step 2: Alice communicates the OTP through a secure
channel to Bob.

Step 3: On some later day, Alice intends to send a mes-
sage of length N bits to Bob. If the OTP she generated
has N − 1 bits, she appends an additional bit at the end
of the OTP. This additional bit is set to 1 if the length
N − 1 is ODD and to 0 if N − 1 is EVEN. In case the

OTP already has N bits, Alice forces the N th bit to 0 if
N − 1 is ODD and to 1 if N − 1 is EVEN.

Step 4: Alice then performs the XOR operation of the
message with the resulting OTP to yield a cipher-text C

which has N bits. She transmits C on the insecure public
channel to Bob.

Step 5: Bob receives C. Bob checks to see if the OTP
he had earlier received from Alice has sufficient bits to
decrypt the message. In other words, does it have N bits
or N − 1 bits. In case the OTP has N − 1 bits, he does
the exact same trick which Alice did i.e. appends an addi-
tional bit and sets it to 1 or 0 depending on whether N−1
is ODD or EVEN respectively. If the OTP already has
N bits, Bob forces the N th bit to 0 if N − 1 is ODD and
to 1 if N − 1 is EVEN.

Step 6: Bob decrypts C by performing an XOR with
the modified OTP and obtains the message.

We need not prove the perfect secrecy of the first N −
1 bits as Shannon’s arguments hold. We need to prove
that the N th bit is perfectly secure. We shall analyze the
situation from the eavesdropper Eve’s perspective. Eve
knows of this entire protocol. Eve intercepts the cipher-
text C which is of length N bits. She knows that there
is a 50% probability that it came from an OTP which
originally had N − 1 bits or N bits. She has no other
strategy but to make a random guess and the probability
of success is 50%. Hence, her guess of the N th bit is no
better than a 50% success. This proves the perfect secrecy
of the N th bit.

While this result seems highly theoretical and of little
practical value, it actually shows an interesting aspect of
the OTP which has been taken for granted. The fact that
the length of the OTP contains information is usually
neglected. Our proof was aimed at achieving theoretical
security for one additional bit by using the Least Signif-
icant Bit (LSB) of the length of the OTP (by ODD we
mean LSB= 1 and EVEN we mean LSB= 0) and we can
do this half of the time. The natural question to ask is −
can we make use of the other bits of the length?

Figure 2: The protocol for the transmitted OTP length
reduction by 1 bit
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3.1 k Bit Reduction in the Length of the

Transmitted OTP

Theorem 2. For every message of length N and
blog2(N − k)c + 1 ≥ k (N, k > 0 are integers), it is
possible that the transmitted OTP had one of the lengths
N − k, N − k + 1, · · · , N − 2, N − 1 or N with respec-
tive probabilities 2−k, 2−k, · · · , 2−k or 1− k2−k while still
retaining perfect theoretical secrecy.

Proof. We generalize the aforementioned argument for a
k−bit reduction in the length of the transmitted OTP.
The case k = 0 would imply the conventional OTP
and there is nothing new to prove. Let k > 0. Let
the binary representation of the numbers N, N − 1, N −
2, · · · , N − k be the following: < A0mN

· · ·A02A01 >, <

A1mN−1
· · ·A12A11 >, < A2mN−2

· · ·A22A21 >, · · · , <

AkmN−k
· · ·Ak2Ak1 > where each of the Aimj

is binary
for all i and j. Also mN = blog2Nc+1, mN−1 = blog2(N−
1)c+1, · · · , mN−k = blog2(N−k)c+1 (note that mN−k ≥
1 since N > k). Alice has a (k+1)-sided biased coin which
produces OTPs of length N, N −1, N −2, · · · , N −k with
probabilities 1−k2−k, 2−k, 2−k, · · · , 2−k respectively. As-
sume that the OTP thus generated is N−r bits long where
0 < r ≤ k. She transmits this N−r bits long OTP to Bob
over a secure channel. For encryption of a N bit message,
Alice first has to lengthen the OTP to N -bits (if it is not
already a N -bit OTP). She does this by appending the
required amount of bits (in this case r bits) at the end of
the OTP and set them to zero. She then forces the last k

bits of the OTP to the bits < Ark · · ·Ar2Ar1 >. Only for
the instance when Alice is generating an OTP of length N

bits, she ensures that the last k bits never have the same
sequence as the other k OTPs before sending it to Bob
on the secure channel. Moreover, she ensures that the re-
maining available combinations for the last k bits which
are 2k−k in number have each a probability of occurrence

1
2k

−k
(equally likely). This way, the last k bits of all the

OTPs are perfectly random because the probability of ob-
taining any particular binary sequence for the last k bits
is 2−k. The rest of the protocol remains unchanged.

With this, we have proved by construction that it is
possible for the transmitted OTP to have a length lesser
than the message length with a non-zero probability while
still attaining perfect theoretical secrecy. One can also
verify that for the case k = 1, this essentially reduces to
the earlier protocol.

3.1.1 An Example: N = 9 and k = 3

An example helps in understanding the protocol. We shall
take N = 9 and k = 3. The condition N ≥ k + 2(k−1) ⇒
9 ≥ 3 + 2(3−1) ⇒ 9 ≥ 7 is satisfied.

Alice generates OTPs of length 9, 8, 7 and 6 with
probabilities 1 − 3.2−3 = 0.625, 2−3 = 0.125, 2−3 and
2−3 respectively. The binary representations of 8,7 and
6 according to the protocol are < 1000 >, < 111 > and
< 110 >. In order to encrypt a 9-bit message, Alice has
to create 9-bit OTPs from the 8,7 and 6 bit OTPs. Let

us assume that she has generated an 8-bit OTP. She first
appends a zero bit at the end of the OTP to make it of
length 9. She then re-writes the last k = 3 bits of the
OTP by the last three bits of < 1000 > (namely 000).
She then encrypts the message with the resulting 9-bit
OTP.

On the other hand, if Alice had generated a 9-bit OTP,
she tosses another 3-sided coin which never give out the
following patterns: < 000 >, < 111 > and < 110 >. It
produces the other patterns < 001 >, < 010 >, < 011 >,
< 100 > and < 101 > with a probability of 1

5 each. She
uses the resulting 3-bit pattern to overwrite the last 3 bits
of the 9-bit OTP. She then performs encryption as before.

As it can be seen, the probability of occurrence of the
patterns < 000 >, < 111 > and < 110 > for the last
3 bits of the OTP would be 2−3 = 0.125 because this is
exactly the probability that an 8,7 or 6-bit OTP would be
generated. In the event of a 9-bit OTP being generated
(with a probability of 0.625), the patterns < 001 >, <

010 >, < 011 >, < 100 > and < 101 > can each occur
with a probability of 0.625 × 1

5 = 0.125. Thus, it is clear
that all possible 3-bit patterns (there are eight of them)
at the end of the OTP occur with an equal probability of
0.125 and hence ensures perfect secrecy.
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Figure 3: Average reduction in length of OTP A(k) =
k(k + 1)2−(k+1) vs. k. The diamond marked points are
those for which k is an integer. The maximum occurs at
k = 2 and k = 3 (average reduction = 0.75 bits).

3.1.2 Average Reduction in Length of Transmit-

ted OTP

It is interesting to see that for larger reductions (larger
values of k), the probability of obtaining a reduction re-
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duces. The average reduction is given by:

A(k) = 1.2−k + 2.2−k + 3.2−k + · · · + k.2−k

=
k(k + 1)

2
2−k

= k(k + 1)2−(k+1) bits.

Figure 3 shows the plot of average reduction A(k) vs.
the reduction k in bits. The best average reduction is for
k = 2 and k = 3, where we get 0.75 bits of reduction.
Note that in our protocol, we have not violated the
assumption that the OTP is perfectly random and
otherwise uncompressible.

3.2 Compression of Transmitted OTP

Based on Length Information

Alternatively, we can say that the transmitted OTP is
compressible to the extent it’s length information allows.
We provide a method of compressing the transmitted
OTP given the fact that the messages to be encrypted
are always of length N , which is publicly known.

Alice generates an N bit OTP. If the last bit is 1, she
deletes it to create an N − 1 bit OTP. If the last bit is
0, she deletes all bits which are zeros from the end up to
and including the bit which is 1. If the OTP has no 1s in
it, then Alice transmits it as is. As an example, consider
the N = 10 bit OTP ‘1011001001’. Since the last bit
is 1, Alice deletes to create the 9-bit OTP ‘101100100’.
If the N = 10 bit OTP happens to be ‘1011001000’, by
the above rule, Alice obtains the 6-bit OTP – ‘101100’.
Alice transmits the resulting compressed OTP across the
secure channel to Bob. Since the length of messages to
be encrypted is always N = 10, Bob decompresses the
received OTP to N bits by reversing the rule. In other
words, if Bob receives an N − 1 bit OTP, he appends a 1
to make it N bits. If the received OTP is of length N − k

bits, where k > 1, he appends a 1 followed by k− 1 zeros.
Thus, the OTP is correctly decompressed by Bob in all
instances. Table 1 illustrates the compression method on
all possible OTPs of length 4. In practice, the length of
OTPs used are much larger, but this serves as a good
example. Decompression is easy to see and is omitted for
the example.

An interesting thing to observe is that the OTP is
compressed for all instances except the case when it
has no 1s. There is only one such OTP (all 0s) which
is uncompressed by this scheme. At a first glance,
one might wrongly infer that we are contradicting the
counting argument. However, this is not the case. The
counting argument applies only to memoryless lossless
compression algorithms. In our case, Bob has the a
priori information about the length N (publicly known)
and hence it is not memoryless.

3.2.1 Average Reduction in Length of Transmit-

ted OTP

What are the reductions obtained by this method? We
can see that for 50% of the instances, there is a reduc-
tion by 1-bit only (the last bit is 1 for 50% of the cases).
Among the remaining 50%, one instance is uncompressed
(the OTP with all bits 0s) and one instance has a maxi-
mum reduction of all N bits (the OTP with a 1 followed
by N−1 zeros). For the remaining OTPs, the compression
ratios vary depending on the number of 0s in the end. For
example, an OTP with m zeros in the end has a reduc-
tion of m + 1 bits. There are 2N−m−1 such N−bit OTPs
which will compress to an OTP of length N −m− 1 bits,
a reduction by m + 1 bits. Thus, the average reduction is
given by:

B(N) =
1

2

N−1∑

m=0

(m + 1)2−m

=
1

2
{2N(1 − 2−N) −

N−1∑

m=0

2(1 − 2−m)}

= N(1 − 2−N ) −

N−1∑

m=0

1 +

N−1∑

m=0

2−m

= N(1 − 2−N ) − N + 2(1 − 2−N )

= 2 − (N + 2)2−N bits.

Figure 4 shows the plot of average reduction B(N) vs.
the reduction N in bits. It is interesting to observe that
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Figure 4: Average reduction in length of OTP B(N) =
2 − (N + 2)2−N vs. N by the second method. The circle
marked points are those for which N is an integer.

the average reduction for the first method is independent
of the length N whereas the average reduction for the
second method is independent of the reduction parameter
k. The first method allows one to choose the maximum
reduction desired (k) whereas the second method does
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Table 1: The transmitted OTP and the bit reductions obtained by the compression method on all possible OTPs of
length 4. The average reduction is 26

16 = 1.625 bits.

OTP Transmitted Reduction OTP Transmitted Reduction
OTP (bits) OTP (bits)

0000 0000 0 1000 − 4
0001 000 1 1001 100 1
0010 00 2 1010 10 2
0011 001 1 1011 101 1
0100 0 3 1100 1 3
0101 010 1 1101 110 1
0110 01 2 1110 11 2
0111 011 1 1111 111 1

not have this feature. However, the second method
yields a larger average reduction in the length of the
transmitted OTP.

4 An Alternate Interpretation of

the OTP as a Private-Object

In the previous section, we saw how we made use of the
length of the OTP in obtaining a reduction in its length.
The length happens to be a particular feature of the OTP,
as if it were an object. This leads us to the notion of a
private-object which we define as follows.

Private-Object: Any object which is known only to
the sender and the receiver is defined as a private-object.

The above definition is very broad. The object may
have any embodiment, not necessarily digital in nature.
The object could be a real physical thing or it could be an
one time pad (could even be multi-dimensional). An im-
portant thing to note is that every private-object enables
theoretically secure communication. This leads us to a no-
tion of ‘entropy’ of the private-object which is determined
by the number of independent True/False statements that
can be made about the object without revealing any in-
formation about it. The way a message is transmitted by
means of a private-object is described below.

Alice and Bob share a private-object P , known only to
them. Alice intends to send a message M (as an example,
the statement ‘COME AT 8 PM’ to Bob). The protocol
is as follows:

Step 1: Alice converts message M into binary represen-
tation (using a publicly known dictionary). Say ‘COME
AT 8 PM’ translates to M = 0010110101.

Step 2: Alice substitutes 0 = TRUE = T and 1 =
FALSE = F . Therefore M = TTFTFFTFTF .

Step 3: For each bit of the message M , Alice
makes statements about the private-object P which is

TRUE (if the bit is T) or FALSE (if the bit is F)
to obtain the cipher-text C. In other words C =<

statement1 >< statement2 > · · · < statement10 >

where < statement1 > is TRUE, < statement2 > is
TRUE, < statement3 > is FALSE etc. As a crude ex-
ample, assume that the private-object is a physical object
which has 3 eyes, 2 hands, 5 legs etc. Alice could make a
statement like ‘P has 3 eyes’ which is TRUE or a state-
ment like ‘P has 4 legs’ which is FALSE (the number of
legs and hands in this hypothetical object are independent
of each other).

Step 4: Bob receives the cipher-text C which is a col-
lection of statements about P . He verifies each statement
and determines whether they are TRUE (T ) or FALSE
(F ). He obtains a string of T s and F s by this process
(M = TTFTFFTFTF ).

Step 5: Bob substitutes 0 = TRUE = T and 1 =
FALSE = F in M to obtain the binary message M =
0010110101.

Step 6: Bob looks up at the dictionary for M to obtain
the message ‘COME AT 8 PM’.

The OTP can be thought of as a private-object P and
the above protocol can be used for secure communica-
tion. For our previous example of Section 2, the set of
statements which Alice would make are C = ‘the first bit
of the OTP is 1’, ‘the second bit of the OTP is 0’ · · · ‘the
tenth bit of the OTP is 0’. Bob verifies these statements
since he has the OTP with him and obtains the correct
message.

5 Private-Object Cryptography

In the previous section, we saw how the OTP could be
viewed as a private-object and statements about the ob-
ject can be made to transmit information securely. So
long as the statements are independent of each other, we
are guaranteed to achieve perfect secrecy. This is because
every statement encrypts one bit of the message and is
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making use of a unique feature of the private-object. For
the OTP, every bit is its unique independent feature. For
private-objects of the real physical world, the features
could be the number of edges or the number of faces etc.
Determining the number of unique and independent fea-
tures in a physical object might be difficult. This means
that the entropy of the object is difficult to compute. The
amount of information that can be securely transmitted
by this method is upper bounded by the entropy of the
object in bits. Private-key or symmetric-key cryptogra-
phy is a subset of Private-object cryptography where the
key happens to be a set of bits on which various mathe-
matical operations are made. In effect, every private-key
crypto-system is only making statements about the key
which is the private-object. Since the key of a private-key
is usually much shorter than the message, the statements
are not independent of each other. They formally map to
complex statements about the key.

Every symmetric-key crypto-system can encrypt ex-
actly one binary message having a length equal to the
entropy of the crypto-system with perfect theoretical se-
crecy. One can always make a certain number of unique
and independent statements about the crypto-system. We
can treat the crypto-system with its unique parameters
as a private-object having a certain entropy. These state-
ments are finite in number and can be used to communi-
cate a finite length binary message with perfect secrecy
(equivalent to an OTP of the same entropy). The length
of the message can be at most equal to the entropy of
the crypto-system without sacrificing Shannon security.
Finding the entropy of the crypto-system may not always
be easy.

Another interesting off-shoot is the definition of the
entropy of an object of the real world. We can define the
entropy of an object as the number of bits of information
that can be transmitted with perfect secrecy by making
independent statements about the object. In other
words, we claim that there exists a mapping from every
object of the real world to an OTP and the entropy of
that OTP is the entropy of the object. It may be hard
in practice to determine the entropy of objects. It is not
known whether this notion of entropy is the same as
Shannon’s entropy.

5.1 Investment of N-bits of Secret

Let us now relax the perfect secrecy constraint since we
need to send long keys (if not as long as the message) for
achieving this. Assume that we have a fixed bit-budget,
say N bits of secret. We wish to know what is the best
private-object to invest these N bits of secret so as to
achieve a high encryption efficiency. Here, we do not
wish to achieve perfect secrecy, but breaking the system
should be very hard. Here, we are being vague in our
definition. It suffices to say that we wish to obtain a
method where currently known methods of cryptanalysis
have a hard time in breaking, if not impossible. We wish

to propose using a Formal Axiomatic System (FAS) for
investing these N bits. This part of the paper is mainly
a motivation towards potential future research.

5.2 FACtS: Formal Axiomatic Crypto-

graphic System

A Formal Axiomatic System or FAS for short, refers to
a system of axioms and rules of inference which together
define a set of theorems [2]. An example of a FAS is Ty-
pographical Number Theory (TNT). Hilbert’s program
was to completely formalize the whole of Mathematics
using TNT. This ambitious plan was derailed by Gödel
who proved that all consistent and sufficiently powerful
axiomatic systems contain undecidable propositions. Be-
cause of this, Formal Axiomatic Systems are fascinating
objects.

We can view a FAS in another interesting way − the
compression view-point. A FAS is actually a compressed
version of all its theorems which can be proven within the
system. It is this viewpoint that motivates us to consider
an FAS as a private-object which is shared between Al-
ice and Bob. If Alice were given a bit-budget of N bits,
she could invest it in the construction of a FAS which
is consistent and sufficiently strong. These are the only
two requirements. She would have to define a set of ax-
ioms and rules of inference to completely specify the FAS.
She shares this as a private-object with Bob over a secure
channel. The way Alice and Bob can now exchange in-
formation is to make statements or strings in the FAS.
The receiver can verify whether a particular statement or
string is TRUE or FALSE in the FAS which they share.
If it is TRUE, then it implies that the string is a The-
orem and the bit conveyed is 0. If the string is FALSE,
then it is a Non-theorem and conveys the bit 1. We basi-
cally use the private-object paradigm with Theorems and
Non-theorems of the FAS acting as binary representations
for 0 and 1 respectively. We name such a system as For-
mal Axiomatic Cryptographic System (FACtS). Figure 5
shows the string space of a FAS [2].

Since the FAS is sufficiently strong, it would contain
Gödelian statements which are undecidable (the system
is incomplete). We believe that it may be possible to
confuse and diffuse the cryptanalyst by a clever use of
Gödelian statements in the cipher-text. This is a specu-
lation on our part, because we do not know of any proce-
dure which would enable us to construct such statements
in large numbers.

One of the biggest advantages of such a set-up is the
difficulty of breaking the system for Eve using brute-force
attack. In conventional systems such as the RSA and
other public-key and private-key methods [4], brute-force
attack would involve trying out all possible keys in the
key-space. For example, if the key length is 128-bit, it
would mean trying out 2128 (a huge number) guesses
for the private-key. A computer could mechanically
try out these number of possibilities until it found the
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Figure 5: The string-space of a Formal Axiomatic System
(FAS) [2]

right key. This would probably take a long time but
with a number of computers in parallel or by using
Quantum computers, this time could be sufficiently
reduced. The important thing to realize in this scenario
is that there is a mechanical procedure for trying out
all the combination and with exponential increase in
computational power over time, it could be eventual
broken (eg: the RSA-128 is already broken). In our
system, the equivalent would be to try out all possible
Formal Axiomatic Systems of a given length N . However
there would be several systems which are duds, those
that are inconsistent or meaningless. Computers which
are designed to try out different FASs might have a
difficult time to find out inconsistencies. They might
have to deal with the Turing Machine Halting problem [3].

6 Conclusions

To summarize, the central contribution of this paper is a
new result in the OTP literature. We have shown that the
length of the OTP which is traditionally compromised in
encryption could be avoided. We proved that it is possible
to reduce the key-length of the transmitted OTP (which
is perfectly random and uncompressible otherwise) while
still retaining perfect secrecy. Even though this reduction
is small, it is nevertheless useful in saving band-width for
crypto-systems which use OTPs on a regular basis (we
showed that we never expand the OTPs in any case un-
like compression algorithms which always expand some).
We also gave an alternate method of compression of the
transmitted OTP based on the length information. We
obtained analytical expressions for the average reduction
of the length of the OTP (in bits) for both the methods.

We have conceived a new paradigm called private-
object cryptography which makes use of statements
about an object (private to the communicating parties)
for secure message transmission and showed how the
OTP can be re-interpreted in this new paradigm. We

also claimed that all existing private-key crypto-systems
are a form of private-object cryptography. Further, they
are in essence making statements about the secret key.
We believe that these statements are not independent
but are necessarily more complex. We then suggested the
investment of N bits of secret in a FAS. The verification
of strings or statements of the FAS as theorems or
non-theorems could convey a bit of information. It
may be the case that the structure of the FAS and the
space of theorems and non-theorems could be designed
so that it is sufficiently random for cryptographic pur-
poses. More research needs to be done in these directions.
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