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Abstract

The notion of rational exchange introduced by Syverson
in 1998 is a particularly interesting alternative when an
efficient scheme for fair exchange is required but the exis-
tence of a trusted third party simply cannot be assumed.
A rational exchange protocol cannot provide true fairness,
but it ensures that rational –i.e. self-interested– parties
would have no reason to deviate from the protocol. In
this paper, we identify some weaknesses in Syverson’s ra-
tional exchange protocol which were neither detected by
the original author nor by subsequent analysis. After pre-
senting some attacks, we indicate how the scheme should
be modified to overcome these vulnerabilities. We also
provide a formal analysis of our enhancement using BAN
logic.

Keywords: Cryptanalysis, fair exchange, rational ex-
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1 Introduction

The problem of how to design a general procedure for two
parties to exchange items in a fair manner has attracted
much recent attention. Interest in this class of protocols
stems from its importance in many applications where
disputes among parties can occur, such as digital con-
tract signing, certified e-mail, exchange of digital goods
and payment, etc. In particular, assurance of fairness is
fundamental when the exchanged items include any kind
of evidences of non-repudiation, for this constitutes a key
service in most of the previously mentioned applications.
As a result, fair non-repudiation has experienced an ex-
plosion of proposals in recent years (see [4] for an excellent
survey).

Roughly, the property of fairness means that no party
should reach the end of the protocol in a disadvantageous
position, e.g. having sent their item but without having
received anything of value in return [1]. Interested readers
can find an introduction to the fair-exchange problem in
[7].

Formally, there is no protocol according to which a
number of parties can exchange items in a fair manner,
exclusively by themselves, and assuming that misbehav-
ing parties can take part in the protocol. Pagnia and
Gärtner proved this result and provided a formal anal-
ysis of the problem in [6]. The underlying idea can be
intuitively sketched avoiding technical details: during the
protocol execution, one of the parties has eventually to
go first in providing their item to the other party. At
that point, one of them is in a unfair condition of which
a misbehaving party can take advantage. As a result, the
simplest protocol that can provide true fairness relies on
the use of a trusted third party (TTP). However, recent
computing paradigms, such as ad hoc and peer-to-peer
networks pose a challenge to this fundamental limit. In
many cases, the operation of these systems is based on a
complete absence of fixed infrastructures, and it is unre-
alistic to assume that services such as those provided by
a TTP will be available. In fact, in these and in many
other scenarios we would probably be forced to renounce
to properties such as strong fairness.

It is precisely in this context where notions such as
rationality become particularly relevant. This concept,
widely known by game theorists, was first applied to se-
curity protocols by Syverson in 1998 [9]. Informally, a
rational exchange protocol cannot provide fairness, but
it ensures that rational (i.e. self-interested) parties would
have no reason to deviate from the protocol, as misbehav-
ing does not result in any benefit. Since rational exchange
protocols provide fewer guarantees, one would expect that
they also demand fewer system requirements, so they can
be viewed as a trade-off between complexity and true fair-
ness. In particular, rational exchange protocols do not
need a trusted third party.

In this paper, we analyze Syverson’s rational-exchange
protocol [9]. As we will describe in the following sec-
tions, there are significant weaknesses in the protocol, and
several attacks can be successfully mounted against the
scheme. The rest of the paper is organized as follows. In
Section 1.1, we introduce Syverson’s scheme, while Sec-
tion 2 serves to present some concepts used in subsequent
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A → B : m1 = (descitemA
, enc(k, itemA), w(k), σ1)

B → A : m2 = (itemB, m1, σ2)
A → B : m3 = (k, m2, σ3)

where:
σ1 = sig(k−1

A
, (descitemA

, enc(k, itemA),
w(k)))

σ2 = sig(k−1

B
, (itemB, m1))

σ3 = sig(k−1

A
, (k, m2))

Figure 1: Syverson’s rational exchange protocol

analysis. In Section 3, we describe some flaws present
in the protocol and how they can be exploited to mount
three different attacks. We also analyze the nature of
such attacks and some relevant factors. Section 4 is de-
voted to explain how the protocol can be fixed in order to
eliminate previous vulnerabilities, giving a formal proof
of our enhancement. Finally, Section 5 summarizes the
main conclusions of this work.

1.1 Syverson’s Rational Exchange Proto-

col

For completeness and readability, we first provide a brief
review of Syverson’s protocol. The scheme is illustrated
in Figure 1. A and B denote the two protocol parties,
with private keys k−1

A
and k−1

B
, respectively. We assume

that itemA and itemB are the items they would like to
exchange, being descitemA

a description of itemA. (There
is no equivalent description for itemB because the scheme
was introduced to serve as a payment protocol, in such a
way that itemB has the role of the payment for buying
itemA). Moreover, enc(k, m) is a symmetric encryption
algorithm that encrypts message m with key k. Likewise,
sig(k−1

i
, m) provides a digital signature on m by using

private key k−1

i
. Finally, w(·) is a WSBC (Weakly Secret

Bit Commitment) function [9]. For our analysis, it suffices
to know that w(x) keeps x secret, but it can be broken in
acceptable bounds on time.

In step one, A sends B her item itemA in a weakly en-
crypted form. Next, B sends A her item itemB in return,
along with acknowledgement of the first message. Finally,
A sends the appropriate key k and acknowledgement of
the second message.

We now proceed to analyze some aspects of the proto-
col just described. These will help in understanding the
type of scenarios where the protocol is suitable to use, as
Syverson’s protocol is not always appropriate.

Note that, at step three, A might fail to send message
m3 or it might not send it for a long time. Furthermore,
as B can only disclose the encrypted itemA when the
payment has already taken place, A could send a forged
itemA and still receive payment in return. The first de-
terrent against A delaying sending message m3 is that
A gains nothing by doing so, except a bad reputation

that could ruin its business. In the case of A sending
B the wrong itemA, B holds message m3 as a proof of
such misbehavior. However, an important issue arise from
both of the previous statements: both participants must
exchange during the protocol execution irrevocable evi-
dences to prove the other participant’s misbehavior. For
example, an scheme on entity A’s reputation can only be
implemented when it is not possible for B to accuse A

of misbehaving if A was honest, and viceversa. A fourth
message could be added in which customer B acknowl-
edges timely receipt for message m3. Likewise, for B to
be able to prove in front of an external judging entity that
A sent an invalid itemA, B must hold irrevocable proof
of such a message.

Given the observations above, the author identifies sce-
narios where the scheme could be used for: (1) If the
vendor A is selling relatively low value items, so it is not
worth it for the customer (in terms of computational cost
or the inconvenience of delay) to break the encryption to
recover the item; (2) the vendor A might be selling some-
thing that might be of timely and diminishing value, such
as short term investment advice or regularly changing lists
of bargain items for sale; or (3) the protocol might begin
one step earlier with a signed customer request for itemA.
The vendor A can then take the chance of trading with
unknown customers and refuse to service customers who
repeatedly fail to pay.

2 Preliminaries

In this section, we briefly introduce some concepts that
will be used throughout our analysis.

2.1 A Brief Overview of BAN Logic

Burrows, Abadi and Needham made a significant effort in
1989 defining a logic for the analysis of security protocols
[2]. BAN logic is a logic of beliefs. An inference process
develops from a set of initial beliefs to a set of final goals
for each protocol participant. Inference rules are defined
as part of the logic.

Next, we introduce a few concepts and two of the BAN
logic inference rules, which will be enough for the proofs
presented in this paper.

• Notation:

– ](M): Formula M is fresh, that is, M has not
been sent in a message at any time before the
current run of the protocol.

– P |≡M : Entity P believes M , entity P may act
as if M is true.

– P |∼M : P once said M .

• Inference Rules:
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1) Freshness Verification Rule (FVR): This rule ex-
presses that if a message is fresh, then the orig-
inator of such a message still believes in it:

P |≡ ](M), P |≡Q |∼M

P |≡Q |≡M
.

2) Encrypted Freshness Verification Rule (EFVR):
If a message or part of a message is known to
be fresh, then the encrypted message must also
be fresh.

](M)

]({M}
K

)
.

Given an entity P and a message M , the statement
“P said M” (P |∼M) implies entity P having said or sent
message M at some point in the past. By contrast, the
statement “P believes M” (P |≡M) implies entity P to
have said or sent M during the current protocol execution
–typically taken from the initial point of the protocol run–
, so M is fresh and A still believes M . This distinction is
crucial for our analysis.

2.2 Freshness of Messages and Replay

Attacks

Replay attacks consist of the capture of a message –or a
piece of a message– that is used at a later time, and prob-
ably with a different semantics. Freshness of messages is
a common and relevant element in security-related proto-
cols, in particular because of its importance as a mecha-
nism to prevent replay attacks. Within the context of a
protocol, freshness of a message will guarantee such a mes-
sage belongs to that specific protocol instance and that it
has never been used before in any other instances.

Linking a message to a particular protocol run is com-
monly obtained by the use of timestamps in messages and
timestamping Certification Authorities. Other methods
are also implemented, as the use of nonces (randomly cre-
ated identifiers generated fresh by a participant for each
protocol instance [5]), counter values, numbers provided
by synchronized pseudo-random number generators, or
fresh encryption. See [3] for a detailed description of
each of them. However, message replay can take place
in many different forms (see [8] for a full classification
and taxonomy) and usually more than one of these mech-
anisms has to be implemented to prevent the protocol
from one or another form of replay attack. Freshness of
messages is therefore a difficult and very important mat-
ter. In any given protocol, the recipient entity of any
message should be able to determine whether the mes-
sage received is fresh. Particularly, our cryptanalysis of
Syverson’s protocol is based on the impossibility for entity
B to determine freshness of message m1.

3 Cryptanalysis

All messages involved in the protocol are cryptographi-
cally signed (see Figure 1). Since such cryptographic al-

gorithms are assumed to be not directly breakable, the
primary focus for attackers or penetrators is on the pos-
sibility to reuse messages, even when they are not able
to read them or to produce them by themselves. By re-
playing old messages, dishonest parties can impersonate
other entities, mislead other participant actions or obtain
confidential information.

Syverson’s protocol, as defined and described by its
author, presents some vulnerabilities, and some attacks
can be successfully carried out.

3.1 Observations

The following observations will help in understanding the
overall analysis:

1) Message m1 could be used as a proof of A’s misbehav-
ior. Indeed, due to the nature of w(k), if A randomly
generates a ciphertext ε to include in m1, A can be
penalized whenever the commitment w(k) is broken
and k disclosed. Therefore, this kind of misbehav-
ior can always be proven to a judge. In this regard
and from B’s point of view, the protocol provides a
sort of weak fairness. However, also note that m1

ensures B that A is the author of such a message,
but it does not guarantee that A is also the sender
of such a message. It is not until step 3 of the pro-
tocol that B holds a valid NRO (Non-Repudiation
of Origin) token for itemA. Therefore, message m1

could be used to prove that A once generated a forged
message, but m1 cannot be used to prove that A is
actually the sender of such a message in the current
instance of the protocol.

2) Message m2 could serve as a NRR (Non-Repudiation
of Receipt) token for message m1 as well as a NRO of
itemB. B’s signature on message m2 ensures A that
B received itemA (weakly encrypted) and that B has
proceeded with the sending of itemB. Message m2

could always be used as a proof of B’s misbehavior
in the protocol.

3) Message m3 could serve as a NRR token for message
m2 as well as a NRO of itemA. A’s signature on
message m3 ensures B that A received itemB and
that A has generated and sent m1 with the correct
key. Message m3 could always be used as a proof of
A’s misbehavior in the protocol. A might not send
the third message, or not do it for a long time, but
A gains nothing by doing that apart from a poor
reputation that could damage their business. The
context in which to execute this protocol should then
be a regularly repeated scenario.

The protocol, therefore, when rationally executed
could provide with rational exchange of non repudiation
evidences. However, the non-repudiation evidences would
have to be linked to each particular protocol run to serve
the purposes of non-repudiation in future disputes. Since
A is asked to generate a fresh key k for each run of the
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protocol, k could be the unique label to reference each
different protocol run and the corresponding evidences.
In particular, notice how, although it is possible to deter-
mine whether m2 and m3 are fresh, this is not the case
for m1 unless some enhancements be made.

3.2 Attack 1

Consider the following scenario, where P (Q) means that
party P acts impersonating the role of party Q:

A → B : m1 = (descitemA
, enc(k, itemA),

w(k), σ1)
B(A) → C : m1 = (descitemA

, enc(k, itemA),
w(k), σ1)

C → B(A) : m2 = (itemC , m1, σ2).

This attack is based on B impersonating A, sending
the same message m1 to C and receiving itemC in re-
turn. B would have to quit the protocol after receiving
the payment as she has no key to send to C. Although
C has paid a full price for itemA, by the time that k

is disclosed to C, itemA would be of very little value to
C. The customer C could only present message m1 to
prove A misbehaved. However, A will claim that m1 was
never intended for C and that she was not part of such
a communication. Indeed, there is nothing in m1 linking
A and C as participants on the same protocol run. To
overcome this attack, new restrictions would have to be
placed over the communicating network or amendments
should be made to the structure of m1.

3.3 Attack 2

Let us suppose the following simplistic scenario: A is sell-
ing an access code to enable the viewing of a football
match on a private television network. Let us suppose
that A and B carried out a successful Syverson’s proto-
col execution and that they properly exchanged the en-
crypted access code enc(k, itemA), itemB and the corre-
sponding key k in messages m11, m12, and m13, respec-
tively. The access code that B has bought from A is
obviously of timely diminishing value, but B could still
have time to impersonate A and sell the access code to
other customers, receiving payment in return:

B(A) → C : m21 = m11

= (descitemA
, enc(k, itemA)

w(k), σA)
C → B(A) : m22 = (paymentC, m21, σC)

B(A) → C : m23 = m13 = (k, m12, σA).

In this scenario, by the time C receives message three
and realizes that there is a fraud going on, C has no ev-
idence of such a fraud to present in front of a judge and
has got the key k to decrypt the football match access
code and watch the match. However, A could claim that
C is watching a program without a licence and take ac-
tion against her. If the number of reselling codes is large,

the scale of the fraud would make it impractical to pur-
sue each of the individuals watching the match without
licence. Furthermore, trying to trail back the origin of
such messages would be practically impossible. Again,
the nature of the communicating network would have to
change or the content of the first message amended.

3.4 Attack 3

If a vendor sends the customer a message m1 contain-
ing garbage (i.e, a ciphertext which does not correspond
with the actual itemA), the vendor is indeed providing
the customer with evidence of such a form of cheating.
Message m1 could be presented to a judge and the ven-
dor would be charged with the appropriate penalty. Such
a penalty could greatly exceed the value of the goods,
so the vendor is completely discouraged from performing
such a scheme. However, the vendor could not be sued
and penalized twice for the same offence and, on these
terms, a vendor A could carry on sending the forged mes-
sage m1 to many others customers, receiving payments
in return. These new angry customers would only have
message m1 to blame vendor A. Vendor A would claim
that she never sent m1 to them and that they must have
got it from the first resentful customer. As a matter of
fact, there will be nothing in m1 to prove that A is using
the same forged message all over again. A’s reputation
would therefore stay untouched.

4 Fixing the Protocol

Even though the replay attacks one to three described
in the previous section correspond to simple deviations
from the protocol description, they represent real threats
to parties using the scheme to exchange their items. In
e-commerce transactions, neither vendor A nor customer
B would want to take the risk of being cheated.

However, previous weaknesses can be avoided if a bet-
ter cryptographic evidence is constructed. This can be
done in many ways. Probably the easiest one is just by
including the identity of B in m1, thus linking the message
with its intended receiver. Since A is asked to generate
a fresh key k for each protocol run, the tuple (k, B, A)1

could be the unique label to associate each m1 with the
corresponding protocol execution:

A → B : m1 = (B, descitemA
, enc(k, itemA), w(k), σ1)

where:

σ1 = sig(k−1

A
, (B, descitemA

, enc(k, itemA), w(k))).

Note how this modification suffices to prevent attacks
one to three. Now, in attack one, an entity C would
have sent a payment to a false entity A. With the new
structure of message m1, C would know that m1 is newly

1We assume that A’s identity is implicit in m1, since the message

contains A’s signature.
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formulated by A (since A is asked to create a fresh key
k for each instance of the protocol) and that C is the
intended recipient. Therefore, A could not claim that it
was not part of the protocol run.

In a similar way, this also prevents attack two, for en-
tity B can establish whether the other participant is able
to provide key k in the last message of the protocol. At-
tack three is also easy to prevent, as entity B can tell if
the message is an old message that entity A is trying to
replay in a new protocol run.

Next is the formalization of all concepts described in
this section.

4.1 Formal Analysis

We will formally establish the freshness of messages m1,
m2, and m3 after our proposed protocol enhancement.
Therefore, any type of replay attack with messages from
outside the current execution (old replayed messages) will
automatically be rejected, in particular attacks one to
three. Interleaving attacks (a type of replay attack occur-
ring when two instances of the same protocol are running
simultaneously) are not being considered in our analysis,
as Syverson’s protocol participants are assumed to run
only one instance of the protocol at the time. No other
form of attack is considered, as messages one to three are
digitally signed by algorithms which are assumed to be
cryptographically secure.

Below, only those steps of the formal process which are
relevant to our enhancement are explicitly shown. Notice
how these steps could not have been performed with the
original description of the protocol, so freshness of mes-
sage m1 could not be guaranteed.

4.1.1 Freshness of m1

When entity B receives m1, B knows A’s public key and
is able to verify A’s signature on m1. Once B verifies
the signature, B can be sure that the originator of that
message was entity A. In BAN logic notation, we would
express:

B |≡A |∼m1. (1)

Furthermore, B can see their name as part of the mes-
sage so B is convinced she is the intended recipient. The
item descitemA

serves B to identify m1 as unique. Entity
A has signed a message where itemA has been encrypted
and B is the intended recipient. Entity B believes this
message could not have been used in any other instances
of the protocol of which she was not part. Therefore, the
combined tuple (B, descitemA

), which is part of message
m1, is fresh: B |≡ ](B, descitemA

). Then, the following
formula can be inferred applying the EFVR:

B |≡ ](m1). (2)

Note that if B was buying the same itemA twice, then
entity B would have to verify that the two message com-
ponents: B and enc(k, itemA) were never bound together

in any of the previous instances. Remember that, entity
A is forced to generate a new key k for each new run.

Therefore, in any given case, applying FVR to Equa-
tions (1) and (2) we obtain that:

B |≡A |≡m1,

which ensures freshness of m1.

4.1.2 Freshness of m2

When entity A receives m2, A knows B’s public key and
is able to verify B’s signature on m2. Once A verifies
the signature, A can be sure that the originator of that
message was entity B. In BAN logic notation we would
express:

A |≡B |∼m2. (3)

Moreover, A can see message m1 as part of message
m2. Entity A generated m1 as step one of the protocol so
A believes m2 is fresh as it could not have been generated
in any other previous instances of the protocol. In BAN
logic notation we have:

A |≡ ](m2). (4)

Now, applying FVR to Equations (3) and (4), we ob-
tain a proof of freshness for m2:

A |≡B |≡m2.

4.1.3 Freshness of m3

This part of the formal verification is exactly the same as
for the freshness of message m2. Therefore, mirroring the
previous steps, we can conclude that m3 is also fresh:

B |≡A |≡m3.

5 Conclusions

In this paper, we have demonstrated how Syverson’s
scheme suffers from some weaknesses due to an inappro-
priate design of the cryptographic evidences. Our attacks
show up that the protocol can lead to undesired situations
for any of the two parties involved in the exchange. The
aforementioned vulnerabilities have not been pointed out
before.

We have also suggested how to fix the scheme and we
have given a formal security proof of the enhancement.
The proof is based on guaranteeing freshness of all proto-
col messages, thus ensuring rejection of all forms of replay
attacks.
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