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Abstract

In this paper, we propose a new block cipher called BC2
(Block Cipher 2). We make a cipher using components
that are believed secure. The structure of BC2 is very
simple. We use Feistel network with input-output 128
bits, matrix Maximum Distance Separable (MDS) 8x8
with branch number 9 to give high diffusion, a function
affine equivalent to the inverse function in GF(28) that we
get from Camellia and Hierocrypt S-Box for confusion and
we make FN function, based on FL function of Camellia.
We use a heuristic method to count the minimum num-
ber of active substitution box at Feistel Network. And we
also construct a new key schedule that is fast and secure.

Keywords: BC2, block cipher, FN function, heuristic
method

1 Introduction

In here we give some definition and list of symbols that
we use.

In this paper we use finite field GF (28) that we can rep-
resent as GF (2)[x]/m(x), where m(x) = x8+x4+x3+x2+
1. We can write m(x) as ’11d’ like as Khazad [11]. And we
use subscript x as representation of hexadecimal. In this
paper, multiplication with x is expressed as xT(number).
For example, multiplication 7fx • 2x = xT (7f) = fex,
and fex • 2x = xT (fe) = e1x. This is similar to Rijndael
proposal [7].

Some notations used in this paper are listed as follows:

• ∪ is OR;

• ∩ is AND;

• ≪ is left circular rotation by one bit;

• ≫ is right circular rotation by one bit;

• ⊕ is bitwise XOR;

• || is concatenation of two operators;

• Knl is the left side of 2n-bit key. This key part has
size of n bits;

• Kr is the right side of K. The size is a half of full key.

The rest of this paper is organized as follows. The Sec-
tion 2 describes the new block cipher BC2, its random-
izing part and key schedule, Section 3 explains how to
implement BC2 at various platforms efficiently, Section
4 explains cryptanalysis of BC2, Section 5 explains the
design rationale of BC2 and Section 6 gives conclusion.

2 BC2 (Block Cipher 2)

The BC2 is a 128-bit block cipher using Feistel Network
that supports 128, 192 and 256-bit key lengths. Like many
other ciphers, we use Substitution Boxes to give confu-
sion, linear layer to give diffusion and mixed key to give
dependent on key. The structure of BC2 for 128-bit key
length, is showed in Figure 1. For 128-bit key length, the
number of round is 13. There are two FN functions. One
of them is located after round 4, and the other is after
round 9. The FN function have a very slow diffusion, so
if we place it before first round, then attacker can arrange
the input and output of FN function to easier cryptanal-
ysis. It follows that FN function is unusable.

For 192 and 256-bit key length, the number of round
is 18. There are 3 FN/FN−1 functions that are located
after rounds 4, 9, and 14.

All F functions are same, like Figure 2. The number
in F function only show the number of round.

For decryption, the order of round subkey is reversed.
So, KW3 replace KW1, KW4 replace KW2, KW1 replace
KW3, and KW2 replace KW4. K13 replace K1 and so
forth. And then, KFN1 is replaced by KFN4, KFN2 is
replaced by KFN3 and so forth.
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Figure 1: Encryption and decryption of BC2-128
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Figure 3: FN function and its inversion

2.1 Substitution Box

We use Camellia’s S-Box [8] and Hierocrypt’s S-Box [12]
for BC2. The maximum differential probability of these
S-Boxes is 2−6 and maximum linear probability is 2−4

according to our experiment with PC. The degree of them
is 7.

2.2 Linear Layer L

We use MDS (Maximum Distance Separable) matrix to
realize linear component to give high diffusion. We do not
use XORs component like in Camellia cipher, because it
does not give branch number exactly. We use circular
matrix with low number in order to be able to be imple-
mented efficiently in hardware.

A linear [n, k, d] code C with generator matrix G =
[Ik×k Lk×(n−k)] is MDS if, and only if, every square sub-
matrix formed from rows and columns of L is nonsingular
(cf. [4], Chapter 11, § 4, Theorem 8).

We make MDS code using trial and error method until

Table 1: The constant for key schedule
c1 frac(

√
0.8) 0xe4f92e2dff6ec9ab294a33804a57d359

c2 frac(
√

0.9) 0xf2dce89b636cb24692e711b6e1c3ff31

the matrix satisfies the requirement above.
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where ai is input of MDS and bi is output of MDS. So
b = L a.

2.3 Add Key AK

In this part, we use only XOR component to avoid weak-
ness that we can find in IDEA cipher.

2.4 Key Schedule

We construct a new key schedule with the criteria:

1) simple and fast for many platforms

2) it should be resistant to related key attack

3) it should be hard to find masterkey if attacker can
get (partial) subkey(s).

4) there are no weak keys.

5) every bit of masterkey gives influence to all subkeys.

We use the basic instructions (like XOR, AND, OR, 1-
bit rotation) to achieve Objectives 1, 2, and 3. We also use
the matrix component(like in Rijndael) in key schedule to
achieve Objective 4. This component gives high diffusion
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Figure 4: key schedule of BC2

and confusion. To achieve the last objective, we use high
diffusion that we get from MixColumn function. We can
see key schedule at Figure 4. Masterkey is composed from
K1 and K2, K1 || K2.

If we only need 128 bits, so we set K2=0, and if we need
192 bits, the last half of K2 is set to zero. From Figure 4
we get KA, KB, and KC. We use square matrix (like
as Rijndael) to create subkeys. At first, we perform XOR
operation between K1 and K2 (AK). Then we substitute
them with Camellia and Hierocrypt S-Box (SB). Then
we rotate their bytes ShiftRows (SR)and use MixColumn
(MC) to give high diffusion. The matrix of MixColumn
is similar to matrix at linear component in randomizing
part as follows:









1 2 3 2
2 1 2 3
1 2 1 2
3 1 2 1









Outputs of MCs are XORed with constant (Table 1)
and Masterkey. The outputs of this process are KA, KB,
and KC. From these keys, we compose all subkeys, like as
Tables 2 and 3.

3 Implementation

In this section, we explain how to implement BC2 at
various platform. If input of F function is IF, substi-
tution operation is SB, L is linear operation, AK is Add-
Key, and output of F function is OF, then we can write
OF = AK(L(SB(IF ))).

3.1 64-bit Processors

In this platform, BC2 can be implemented very efficiently.
Like as Khazad or Rijndael cipher, we can write
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where xi is input of SBox-i and x is input of F function.
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Table 2: key schedule for 128 bit key
KW1 KAl ⊕ KBl ⊕ KCl SK8 (SK632l ≪ 1)||(SK632r ≪ 1)
KW2 KAr ⊕ KBr ⊕ KCr SK9 (SK732l ≪ 1)||(SK732r ≪ 1)
SK1 (KW1 ∪ KW2) ⊕ KAl KFN3 KAl ⊕ SK8 ⊕ KBl

SK2 (KW1 ∩ KW2) ⊕ KBl KFN4 (KAr ∩ SK9) ⊕ KBr

SK3 (SK1 ∪ SK2) ⊕ KAr SK10 SK1⊕ SK5 ⊕ KFN3
SK4 (SK1 ∩ SK2) ⊕ KBr SK11 (SK2 ∪ SK6) ⊕ KFN4

KFN1 (KAl ∪ SK3) ⊕ KCl SK12 (SK8 ∩ SK10) ⊕ SK5
KFN2 (KBl ∪ SK4) ⊕ KCr SK13 (SK9 ∪ SK10) ⊕ SK6
SK5 (KAl ∪ KBl) ⊕ KFN2 KW3 SK10 ⊕ SK11 ⊕ SK12
SK6 (KAr ∪ KBr) ⊕ KCr KW4 SK5 ⊕ SK6 ⊕ SK7
SK7 (SK532l ≪ 1)||(SK532r ≪ 1)

Table 3: key schedule for 192 and 256-bit key
KW1 KAl ⊕ KBl ⊕ KCl KFNcentre2 (KAr ∩ SK9) ⊕ KBr

KW2 KAr ⊕ KBr ⊕ KCr SK10 SK1 ⊕ SK5 ⊕ KFNcentre1
SK1 (KW1 ∪ KW2)⊕ KAl SK11 (SK2 ∪ SK6)⊕ KFNcentre2
SK2 (KW1 ∩ KW2) ⊕ KBl SK12 (SK8 ∩ SK10)⊕ SK5
SK3 (SK1 ∪ SK2)⊕ KAr SK13 (SK9 ∪ SK10)⊕ SK6
SK4 (SK1 ∩ SK2)⊕ KBr SK14 (SK1132l ≪ 1)||(SK1132r ≪ 1)

KFN1 (KAl ∪ SK3) ⊕ KCl KFN3 (SK1 ∪ SK5)⊕ KCl)
KFN2 (KBl ∪ SK4)⊕ KCr KFN4 SK2 ⊕ SK6 ⊕ SK11
SK5 (KAl ∪ KBl) ⊕ KFN2 SK15 (SK7 ∩ KCl) ⊕ SK12
SK6 (KAr ∪ KBr) ⊕ KCr SK16 (SK8 ∪ KCr) ⊕ SK13
SK7 (SK532l ≪ 1)||(SK532r ≪ 1) SK17 (SK9 ∪ KW1) ⊕ SK14
SK8 (SK632l ≪ 1)||(SK632r ≪ 1) SK18 (SK10 ∪ KW2)⊕ SK15
SK9 (SK732l ≪ 1)||(SK732r ≪ 1) KW3 SK10 ⊕ SK11⊕ SK12

KFNcentre1 KAl ⊕ SK8 ⊕ KBl KW4 SK5 ⊕ SK6 ⊕ SK7

If we define
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and so forth, then we have:

OF = T0 ⊕ T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ T6 ⊕ T7 ⊕ SK,

where SK is subkey at each round. All T tables require
16 k bytes.

3.2 32-bit Processors

To this platform we can write:
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or OF0−3 = T [0] ⊕ T [1] ⊕ T [2] ⊕ T [3] ⊕ T [4] ⊕ T [5] ⊕
T [6]⊕ T [7]⊕ SK0−3.
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or OF4−7 = T [8]⊕T [9]⊕T [10]⊕T [11]⊕T [12]⊕T [13]⊕
T [14]⊕ T [15]⊕ SK4−7 and ai = SB[xi].

In this method, All T Tables require 24 x 4 x 28 =
214 bytes. If we use one table for T[0] and T[12], one for
T[4] and T[8], and so forth, then we need only 8 k bytes.
The speed comparison of BC2 with other block ciphers at
personal computer can be seen at appendix.

3.3 8-bit Processors

For this platform, the method that we describe above is
unsuitable. So we use other method. We can write linear
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layer as follows:

r0 = a0 ⊕ a2 ⊕ a4 ⊕ a6

r1 = a1 ⊕ a3 ⊕ a5 ⊕ a7

r2 = xT (r0)

r3 = xT (r1)

b0 = r0 ⊕ a5 ⊕ r3 ⊕ xT (a2)

b1 = r1 ⊕ a6 ⊕ r2 ⊕ xT (a3)

b2 = r0 ⊕ a7 ⊕ r3 ⊕ xT (a4)

b3 = r1 ⊕ a0 ⊕ r2 ⊕ xT (a5)

b4 = r0 ⊕ a1 ⊕ r3 ⊕ xT (a6)

b5 = r1 ⊕ a2 ⊕ r2 ⊕ xT (a7)

b6 = r0 ⊕ a3 ⊕ r3 ⊕ xT (a0)

b7 = r1 ⊕ a4 ⊕ r2 ⊕ xT (a1).

In this method we need four registers, 30 exors, 10 xT
operations, and 12 assignments for linear layer implemen-
tation. If we have six registers, then we can reduce the
operation. We write r4=r0 ⊕ r3 and r5 = r1 ⊕ r2. The
operations of SBox and Addkey are performed per byte.

3.4 Key Schedule Implementation

We use the same component in key schedule and random-
izing part to give efficiency in implementation. We also
use the basic instruction (OR, XOR, AND, 1-bit rotation)
in key schedule in order to be able to be implemented ef-
ficiently at various platforms.

4 Cryptanalysis

4.1 Differential and Linear Cryptanalysis

In this section we discuss about how to measure maximum
differential and linear probability (DPmax and LPmax) of
BC2 without FN and FN−1 functions. We use heuristic
method to count the minimal number of active substitu-
tion boxes. For differential attack [2], we use character-
istics a0, a1, a2, a3, a4, a5, a6, a7 for left side plaintext(64
bits). So, the size of ai is 1 byte. And for right side
we use b’,0,0,0,0,0,0,0 (64 bits). Difference b’ is chosen
so that the output of F function at round 1 is same as
a0, a1, a2, a3, a4, a5, a6, a7 so the difference input of round
2 is b’,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, because there is can-
cellation between output of F function with difference of
left side in plaintext. So we get the minimal number of
active S-Box for first two round of BC2 is 1. And differ-
ence at input of round 3 is 0,0,0,0,0,0,0,0, b’,0,0,0,0,0,0,0
(look at Figure 5). So, number active SBox in round 1 is
one, in round 2 is zero, in round 3 is one.

Since the branch number of linear layer is 9, and
the left difference of input at round 3 is zero, then the
difference of input at round 4 become b’,0,0,0,0,0,0,0,
c0, c2, c3, c4, c5, c6, c7. And it follows the number of ac-
tive S-Box in round 4 become 8.

L0 (64 bit) R0(64 bit)

XOR with K1

S S S S S S S S

MDS 8x8

R1' = 0L1'

XOR with K2

S S S S S S S S

MDS 8x8

R2'L2' = 0

Figure 5: Active S-box in BC2

If we continue this method, then after 10 rounds, the
minimum number of active S-Box become 28. So, DPmax

is (2−6)28 = 2−168 and since the behavior of linear attack
[10] looks like differential attack, so LPmax is (2−4)28 =
2−112. For differential attack, we need 2168 chosen plain-
text pairs, and for linear attack, we need 2224 known
plaintext. And since we also consider 3R-attack, so we
need 13 rounds. And since we consider the worst case of
linear/differential attack of BC2, so we hope BC2 stronger
against these attacks than we predict, moreover if we con-
sider FN function.

As comparison, maximum differential/linear character-
istic probabilities of Camellia cipher reduced to 16 round
without FL and FL−1, respectively, are 2−132 and 2−88.
If we use this heuristic method to count active SBox in
Camellia, we get 26 active SBox, at least, in 16 rounds, so
DPmax=(2−6)26 = 2−156 and LPmax = (2−4)26 = 2−104.
This probability can cryptanalysis Camellia with 2R at-
tack.

4.2 Square Attack and Its Variant

Cipher having byte oriented is vulnerable with square at-

tack [6] and its variant [5]. In BC2, the property of
255

⊕p = 0
i=0

where p is byte plaintext, is hold till the input of round
5. So square attack and its variant are very unlikely to
succeed for full round (13 rounds).

4.3 Higher Order Differential Attack

In general, a cipher with a low non-linear order is vulner-
able to this attack. Since BC2 use non-linear component
with degree 7, so after a few rounds, the degree will in-
crease rapidly. Moreover, BC2 has 13 rounds, so this
attack is impossible to be done. Moreover, the FN func-
tion in BC2 increase resistance to this attack, like Misty
cipher that have only low degree in its S-Box.
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4.4 Interpolation Attack

A cipher with S-Box having simple algebraic is vulnerable
to interpolation attack [13]. But, S-Box of BC2 use addi-
tion of affine function, so this attack seems very unlikely
to succeed for this cipher.

4.5 Related-key Attack and Slide Attack

Related-key attack [3] can work if there is slow diffusion
or symmetry in the key schedule. Since key schedule of
BC2 uses function that has fast diffusion and nonlinear
operation and uses different mixing operation of XOR,
OR, AND and rotation at each round subkey, we hope this
method is very effective in countering all kinds of known
key based attacks. Every bit of masterkey influences KB
and KC. And every round subkey is influenced by KA, KB
and KC directly or indirectly. So we hope the weakness
in the key schedule of SAFER can be hindered. And
since the confusion component is not influenced by subkey
directly (BC2 use XOR to mix subkey) so the weakness
that one find in IDEA, is very unlikely to succeed for BC2.

Slide Attack [1] can work if there is symmetry in the
randomizing part of cipher and in the key schedule. Since
BC2 has FN function, so the symmetry in the randomiz-
ing part decreases. Moreover, the different process in the
each round of key schedule, make this attack very unlikely
to succeed.

5 Design Rationale

5.1 Non-linear Component

We choose S-Box from Camellia and Hierocrypt because
these components have very excellent features. They have
maximum differential probability 2−6, maximum linear
probability 2−4 and degree 7. So these components can be
resistance against differential, linear and higher order dif-
ferential attacks. The affine function in these components
can improve the BC2 strength to interpolation attack and
other algebraic attacks.

5.2 Linear Component

We use MDS (Maximum Distance Separable) to increase
the number of active S-Box, so BC2 can be resistance to
linear/differential attack. MDS gives high diffusion that
is also important to face boomerang attack.

5.3 FN Function

This component is made to face unknown attacks. FN
component also can damage path of linear hull and impos-
sible differential attack. FN is designed more complicated
than Camellia has, in order to give more protection, for
example, against truncated differential attack [9]. This
attack use partial of plaintext to predict partial of ci-
phertext with high probability. A byte-oriented cipher is

vulnerable to this attack, so we add two more rotation to
break this alignment.

6 Conclusions

We proposed a new block cipher algorithm BC2. We de-
sign a new keyschedule that is fast and one-way function.
So, it should hard to find masterkey if attacker can get
subkey. We also use differential and linear attack to at-
tack BC2. Our method to search linear/differential path
can be used to attack other BC2-like ciphers if we know
their branch number.

References

[1] A. Biryukov and D. Wagner, “Slide attacks,” in Pro-
ceedings of Fast Software Encryption, LNCS 1636,
pp. 245-259, Springer-Verlag, 1999.

[2] E. Biham and A. Shamir, “Differential cryptanaly-
sis of the DES-like cryptosystems,” in Advances in
Cryptology (Crypto’90), pp. 2-21, Springer Verlag,
1993.

[3] E. Biham, “New types of cryptanalytic attacks using
related keys,” Journal of Cryptology, vol. 7, no. 4,
pp. 229-246, 1994.

[4] F. J. MacWilliams and N. J. A. Sloane, The The-
ory of Error-Correcting Codes, North-Holland Math-
ematical Library, vol. 16, 1977.

[5] H. Gilbert and M. Minier, “A collision attack on 7
rounds of Rijndael,” in the Proceedings of The Third
AES Candidate Conference, pp. 230-241, 2000.

[6] J. Daemen, L. Knudsen, and V. Rijmen, “The block
cipher SQUARE,” in the Proceedings of Fast Soft-
ware Encryption 1997, LNCS 1267, pp. 149-165,
Springer-Verlag, 1997.

[7] J. Daemen and V. Rijmen, “AES proposal: Rijn-
dael,” AES submission. (http://www.nist.gov/aes)

[8] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Mo-
ria, J. Nakajima, and T. Tokita, “Camellia: A 128-
bit block cipher suitable for multiple platform - De-
sign and analysis,” in Proceedings of Selected Areas
in Cryptography , LNCS 2012, pp. 39-56, Springer-
Verlag, 2001.

[9] L. R. Knudsen, “Truncated and higher order differ-
entials,” in Fast Software Encryption, LNCS 1008,
pp. 196-211, Springer-Verlag, 1995.

[10] M. Matsui, “Linear cryptanalysis method for DES
cipher,” in Advances in Cryptology (Eurocrypt’93),
pp. 386-397, 1993.

[11] P. S. L. M. Barreto and V. Rijmen, “The Khazad
legacy-level block cipher,” in New European Schemes
for Signature, Integrity, and Encryption, pp. 84-87,
2000.

[12] K. Ohkuma, H. Shimizu, F. Sano, and S. Kawamura,
“The block cipher Hierocrypt,” in Proceedings of Se-
lected Areas in Cryptography, LNCS 2012, pp. 72-88,
Springer-Verlag, 2001.



International Journal of Network Security, Vol.8, No.1, PP.16–24, Jan. 2009 23

[13] T. Jakobsen and L.R. Knudsen, “The interpolation
attack on block ciphers,” Fast Software Encryption,
LNCS 1267, pp. 28-40, Springer-Verlag, 1997.

Appendix A: Substitution Boxes

In this section, we can see the substitution box from
Camellia called SB C and one from Hierocrypt called
SB H .

const byte SB C[256] = {
70x, 2cx, b3x, c0x, e4x, 57x, eax, aex, 23x, 6bx, 45x, a5x, edx, 4fx, 1dx, 92x,

86x, afx, 7cx, 1fx, 3ex, dcx, 5ex, 0bx, a6x, 39x, d5x, 5dx, d9x, 5ax, 51x, 6cx,

8bx, 9ax, fbx, b0x, 74x, 2bx, f0x, 84x, dfx, cbx, 34x, 76x, 6dx, a9x, d1x, 04x,

14x, 3ax, dex, 11x, 32x, 9cx, 53x, f2x, fex, cfx, c3x, 7ax, 24x, e8x, 60x, 69x,

aax, a0x, a1x, 62x, 54x, 1ex, e0x, 64x, 10x, 00x, a3x, 75x, 8ax, e6x, 09x, ddx,

87x, 83x, cdx, 90x, 73x, f6x, 9dx, bfx, 52x, d8x, c8x, c6x, 81x, 6fx, 13x, 63x,

e9x, a7x, 9fx, bcx, 29x, f9x, 2fx, b4x, 78x, 06x, e7x, 71x, d4x, abx, 88x, 8dx,

72x, b9x, f8x, acx, 36x, 2ax, 3cx, f1x, 40x, d3x, bbx, 43x, 15x, adx, 77x, 80x,

82x, ecx, 27x, e5x, 85x, 35x, 0cx, 41x, efx, 93x, 19x, 21x, 0ex, 4ex, 65x, bdx,

b8x, 8fx, ebx, cex, 30x, 5fx, c5x, 1ax, e1x, cax, 47x, 3dx, 01x, d6x, 56x, 4dx,

0dx, 66x, ccx, 2dx, 12x, 20x, b1x, 99x, 4cx, c2x, 7ex, 05x, b7x, 31x, 17x, d7x,

58x, 61x, 1bx, 1cx, 0fx, 16x, 18x, 22x, 44x, b2x, b5x, 91x, 08x, a8x, fcx, 50x,

d0x, 7dx, 89x, 97x, 5bx, 95x, ffx, d2x, c4x, 48x, f7x, dbx, 03x, dax, 3fx, 94x,

5cx, 02x, 4ax, 33x, 67x, f3x, 7fx, e2x, 9bx, 26x, 37x, 3bx, 96x, 4bx, bex, 2ex,

79x, 8cx, 6ex, 8ex, f5x, b6x, fdx, 59x, 98x, 6ax, 46x, bax, 25x, 42x, a2x, fax,

07x, 55x, eex, 0ax, 49x, 68x, 38x, a4x, 28x, 7bx, c9x, c1x, e3x, f4x, c7x, 9ex,

};

So, SB C[0] = 70 hex, SB C[8] = 23 hex,
SB C[16] = 86 hex and so forth.

const byte SB H[256] = {
07x, fcx, 55x, 70x, 98x, 8ex, 84x, 4ex, bcx, 75x, cex, 18x, 02x, e9x, 5dx, 80x,

1cx, 60x, 78x, 42x, 9dx, 2ex, f5x, e8x, c6x, 7ax, 2fx, a4x, b2x, 5fx, 19x, 87x,

0bx, 9bx, 9cx, d3x, c3x, 77x, 3dx, 6fx, b9x, 2dx, 4dx, f7x, 8cx, a7x, acx, 17x,

3cx, 5ax, 41x, c9x, 29x, edx, dex, 27x, 69x, 30x, 72x, a8x, 95x, 3ex, f9x, d8x,

21x, 8bx, 44x, d7x, 11x, 0dx, 48x, fdx, 6ax, 01x, 57x, e5x, bdx, 85x, ecx, 1ex,

37x, 9fx, b5x, 9ax, 7cx, 09x, f1x, b1x, 94x, 81x, 82x, 08x, fbx, c0x, 51x, 0fx,

61x, 7fx, 1ax, 56x, 96x, 13x, c1x, 67x, 99x, 03x, 5ex, b6x, cax, fax, 9ex, dfx,

d6x, 83x, ccx, a2x, 12x, 23x, b7x, 65x, d0x, 39x, 7dx, 3bx, d5x, b0x, afx, 1fx,

06x, c8x, 34x, c5x, 1bx, 79x, 4bx, 66x, bfx, 88x, 4ax, c4x, efx, 58x, 3fx, 0ax,

2cx, 73x, d1x, f8x, 6bx, e6x, 20x, b8x, 22x, 43x, b3x, 33x, e7x, f0x, 71x, 7ex,

52x, 89x, 47x, 63x, 0ex, 6dx, e3x, bex, 59x, 64x, eex, f6x, 38x, 5cx, f4x, 5bx,

49x, d4x, e0x, f3x, bbx, 54x, 26x, 2bx, 00x, 86x, 90x, ffx, fex, a6x, 7bx, 05x,

adx, 68x, a1x, 10x, ebx, c7x, e2x, f2x, 46x, 8ax, 6cx, 14x, 6ex, cfx, 35x, 45x,

50x, d2x, 92x, 74x, 93x, e1x, dax, aex, a9x, 53x, e4x, 40x, cdx, bax, 97x, a3x,

91x, 31x, 25x, 76x, 36x, 32x, 28x, 3ax, 24x, 4cx, dbx, d9x, 8dx, dcx, 62x, 2ax,

eax, 15x, ddx, c2x, a5x, 0cx, 04x, 1dx, 8fx, cbx, b4x, 4fx, 16x, abx, aax, a0x,

};

So, SB H [0] = 7 hex, SB H [8] = bc hex, SB H [16] =
1c hex and so forth.

Table 5: The speed comparison
Block ciphers keyschedule

time(µs)

encryption

time per

128-bit

data (µs)

encryption

rate

(Mbit/s)

3DES-168 4.5516 5.7 22.456
BC2-128 0.7926 1.4373 89.0506
BC2-192 0.9693 2.0123 63.6076
BC2-256 0.965 2.0121 63.6223

Camellia-128 1.4811 1.6724 76.53671
Camellia-192 2.0029 2.1681 59.03787
Camellia-256 2.0139 2.1751 58.84687

AES-128 2.3403 1.0405 123.0178
AES-192 2.4405 1.2428 102.9932
AES-256 3.0464 1.3029 98.24238

Serpent-128 12.3297 2.6038 49.1589
Serpent-192 14.2815 2.6047 49.1419
Serpent-256 16.4357 2.5997 49.236

Appendix B: The Characteristic for

Differential/linear Attack

In this section, we give the complete table of minimum
number of active Sbox in BC2. From Table 4 we can
count that the minimum number of active SBox of BC2 10
round is 28, for BC2 13 round is 37 and for BC2 16 round
is 46. So for 3R attack, the DPmax is (2−6)28 = 2−168,
(2−6)37 = 2−222 and (2−6)46 = 2−276, respectively. For
linear attack, LPmax is 2−112, 2−148, and 2−184 respec-
tively.

We also use Table 4 to count minimum number of ac-
tive SBox of other Feistel cipher, if we know their branch
number. For example, the branch number of Camellia is
5 so we can change the number “8” in the table with “4”.
And then, we get the minimum number of active SBox is
11 for Camellia 8 round. And for Camellia 16 round, the
minimum number of active SBox is 26.

Appendix C: The Speed Compari-

son of BC2 with Other Ciphers

In this section, we give speed comparison of BC2 with
other block ciphers at personal computer. We use C ANSI
with Borland C++ v6.0 compiler, 1200 Mhz AMD Duron
processor, 512 MB RAM, and Windows XP sp2 to com-
pare them.

The key schedule of BC2 is one of the fastest of all
other ciphers.
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Table 4: The characteristic for differential/linear attack of BC2
round left right Minimum

number of
active SBox

1 a1, a2, a3, a4, a5, a6, a7, a8 b1, 0, 0, 0, 0, 0, 0, 0 1
2 b1, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0 0
3 0,0,0,0,0,0,0,0 b1, 0, 0, 0, 0, 0, 0, 0 1
4 b1, 0, 0, 0, 0, 0, 0, 0 c1, c2, c3, c4, c5, c6, c7, c8 8
5 c1, c2, c3, c4, c5, c6, c7, c8 0, 0, 0, 0, 0, 0, 0, 0 0
6 0,0,0,0,0,0,0,0 c1, c2, c3, c4, c5, c6, c7, c8 8
7 c1, c2, c3, c4, c5, c6, c7, c8 e1, 0, 0, 0, 0, 0, 0, 0 1
8 e1, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0 0
9 0,0,0,0,0,0,0,0 e1, 0, 0, 0, 0, 0, 0, 0 1
10 e1, 0, 0, 0, 0, 0, 0, 0 d1, d2, d3, d4, d5, d6, d7, d8 8
11 d1, d2, d3, d4, d5, d6, d7, d8 0, 0, 0, 0, 0, 0, 0, 0 0
12 0,0,0,0,0,0,0,0 d1, d2, d3, d4, d5, d6, d7, d8 8
13 d1, d2, d3, d4, d5, d6, d7, d8 f1, 0, 0, 0, 0, 0, 0, 0 1
14 f1, 0, 0, 0, 0, 0, 0, 0 0,0,0,0,0,0,0,0 0
15 0,0,0,0,0,0,0,0 f1, 0, 0, 0, 0, 0, 0, 0 1
16 f1, 0, 0, 0, 0, 0, 0, 0 g1, g2, g3, g4, g5, g6, g7, g8 8

block cipher and cryptology.
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