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Abstract—Visual attention is a process that enables biological
and machine vision systems to select the most relevant regions
from a scene. Relevance is determined by two components:
1) top-down factors driven by task and 2) bottom-up factors
that highlight image regions that are different from their sur-
roundings. The latter are often referred to as “visual saliency”.
Modeling bottom-up visual saliency has been the subject of
numerous research efforts during the past 20 years, with many
successful applications in computer vision and robotics. Available
models have been tested with different datasets (e.g., synthetic
psychological search arrays, natural images or videos) using
different evaluation scores (e.g., search slopes, comparison to
human eye tracking) and parameter settings. This has made
direct comparison of models difficult. Here we perform an
exhaustive comparison of 35 state-of-the-art saliency models over
54 challenging synthetic patterns, 3 natural image datasets, and
2 video datasets, using 3 evaluation scores. We find that although
model rankings vary, some models consistently perform better.
Analysis of datasets reveals that existing datasets are highly
center-biased, which influences some of the evaluation scores.
Computational complexity analysis shows that some models are
very fast, yet yield competitive eye movement prediction accu-
racy. Different models often have common easy/difficult stimuli.
Furthermore, several concerns in visual saliency modeling, eye
movement datasets, and evaluation scores are discussed and
insights for future work are provided. Our study allows one to
assess the state-of-the-art, helps organizing this rapidly growing
field, and sets a unified comparison framework for gauging future
efforts, similar to the PASCAL VOC challenge in the object
recognition and detection domains.

Index Terms—Visual attention, Visual saliency, Bottom-up
attention, Eye movement prediction, Model comparison.

I. INTRODUCTION

V ISUAL attention is a low-cost preprocessing step by

which artificial and biological visual systems select the

most relevant information from a scene, and relay it to higher-

level cognitive areas that perform complex processes such as

scene understanding, action selection, and decision making. In

addition to being an interesting scientific challenge, modeling

visual attention has many engineering applications, including

in: computer vision (e.g., object recognition [24][8][83], ob-

ject detection [21][4], target tracking [9], image compression

[10], and video summarization [7]); computer graphics (e.g.,

image rendering [17], image thumb-nailing [18], automatic

collage creation [14], and dynamic lighting [16]); robotics

(e.g., active gaze control [19], robot localization and naviga-

tion [13], and human-robot interaction [20]); and others (e.g.,

advertising [11] and retinal prostheses [12]).
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Modeling visual saliency has attracted much interest re-

cently and there are now several frameworks and computa-

tional approaches available. Some are inspired by cognitive

findings, some are purely computational, and others are in

between. However, since models have used different evalua-

tion scores and datasets while applying various parameters,

model evaluation against the state-of-the-art is becoming an

increasingly complex challenge. In this paper, inspired by the

PASCAL VOC object detection/recognition challenge [69], we

aim to compare visual attention models in a unified framework

over several scoring methods and datasets. Such a comparison

helps better understand modeling parameters and provides

insights towards further developing more effective models.

It also helps better focus and calibrate the research effort

by avoiding repetitive work and discarding less promising

directions. It will also benefit experimentalists to choose the

right tool/model for their applications. Since our main purpose

is to compare models, rather than discuss attention concepts

and models in detail, we refer the interested reader to general

reviews for more information (e.g., Itti and Koch [3], Heinke

and Humphreys [2], Frintrop et al. [1], and Borji and Itti [27]).

There is often a confusion between saliency and attention.

Visual attention is a broad concept covering many topics (e.g.,

bottom-up/top-down, overt/covert, spatial/spatio-temporal, and

space-based/object-based attention). Visual saliency, on the

other hand, has been mainly referring to bottom-up processes

that render certain image regions more conspicuous: For

instance, image regions with different features from their

surroundings (e.g., a single red dot among several blue dots).

Bottom-up saliency has been studied in search tasks such as

finding an odd item among distractors in pop-out and conjunc-

tion search arrays, as well as in eye movement prediction on

free-viewing of images or videos. In contrast to bottom-up,

top-down attention deals with high-level cognitive factors that

make image regions relevant, such as task demands, emotions,

and expectations. It has been studied in natural behaviors

such as sandwich making [80], driving [79], and interactive

game playing [70]. In the real-world, bottom-up and top-

down mechanisms are combined to direct visual attention.

Correspondingly, models of visual attention often focus either

on bottom-up (known as saliency models) or on top-down

factors of visual attention. Due to the relative simplicity of

bottom-up processing (compared to top-down), the majority

of existing models has focused on bottom-up attention. For a

review on attention in natural behavior, please refer to [23].

In addition to the dissociation between bottom-up and top-

down, visual attention studies (and likewise models) can be

categorized based on several other factors. Some studies have
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addressed explaining fixations/saccades in free viewing of

static images while others have approached dynamic stimuli,

such as observing movies or playing video games [22][23].

This distinction has divided models into spatial (still images)

or spatio-temporal models (over video stimuli). The majority

of spatio-temporal models are also applicable to saliency

estimation over static images. Although static models are also

applicable to videos by processing each single frame, they

have not been fundamentally built to account for such stimuli.

Models can be categorized as being space-based or object-

based. Object-based models try to segment or detect objects

to predict salient regions. This is supported by the finding

that objects predict fixations better than early saliency [88]. In

contrast, in space-based models, all operations happen at the

image level (pixels or image patches), or in the image spectral

phase domain. For these space-based models, the goal is to

create saliency maps that may predict which locations have

higher probability of attracting human attention (as measured,

e.g., by subjective rankings of interesting and salient locations,

reaction times in visual search, or eye movements). Salient

region detection in object-based models adds a segmentation

problem where the goal is to not only locate but also segment

the most salient objects within a scene from the background.

Perhaps because object segmentation remains a difficult ma-

chine vision problem, there are not as many object-based

models as space-based models.

Another distinction is between overt and covert attention.

Overt attention is the process of directing the the eyes towards

a stimulus, while covert attention is that of mentally focusing

onto one of several possible sensory stimuli (without necessar-

ily moving the eyes). Many bottom-up saliency models have

blurred the distinction between overt and covert attention and

have focused onto detecting salient image regions, which in

turn could attract one or both types of attention. Indeed, as

detailed below, few models offer explicit mechanisms for the

control of head/body/gaze movements.

Considering the above definitions, here we compare those

visual saliency models that belong to the majority class of

models, namely, those models that are: 1) bottom-up, 2)

spatial or spatio-temporal, 3) space-based, 4) able to generate

a topographic saliency map for an arbitrary digital image or

a video, 5) addressing free-viewing of images or videos (not

solely visual search or salient object segmentation).

II. COMPARISON PLAN

First, we briefly explain experimental settings in Sec. II-A.

Then, datasets including widely-used synthetic patterns and

eye movement datasets over static scenes (natural, abstract,

and cartoon images) and videos are described in Sec. II-B.

Next, in Sec. II-C, three popular evaluation scores are ex-

plained. We then discuss some challenges in model com-

parison and our way to tackle them (Sec. II-D). Finally,

experimental results of thorough model evaluation are shown

in Sec. III followed by learned lessons in Sec. IV.

A. Settings

The first step in this study was to collect saliency models.

Some models were already shared online. For others, we

TABLE I
COMPARED VISUAL SALIENCY MODELS. ABBREVIATIONS ARE: S:
STIMULI {I: IMAGE, V: VIDEO, B: BOTH IMAGE AND VIDEO}. P:

PROGRAMMING LANGUAGE {M: MATLAB, C: C/C++, E: EXECUTABLES,
X: SENT SALIENCY MAPS}. W: IMAGE WIDTH, H: IMAGE HEIGHT.

No. Acronym: Model Year S P Resolution

1 Gauss: Gaussian-Blob - I M 51 × 51

2 IO: Human Inter-observer - I M W × H
3 Variance: [5] - I C 1

16
W ×

1

16
H

4 Entropy: [72] - I C 1

16
W ×

1

16
H

5 Itti-CIO2: Itti et al. [5][25] 1998 I C 1

16
W ×

1

16
H

6 Itti-Int: Itti et al. [5][25] 1998 I C 1

16
W ×

1

16
H

7 Itti-CIO: Itti et al. [87][25] 2000 I C 1

16
W ×

1

16
H

8 Itti-M: Itti et al. [55] 2003 V C 1

16
W ×

1

16
H

9 Itti-CIOFM: Itti et al. [55] 2003 B C 1

16
W ×

1

16
H

10 Torralba: [57] 2003 I M W × H
11 VOCUS: Frintrop et al. [21] 2005 B C 1

4
W ×

1

4
H

12 Surprise-CIO: [39] 2005 I C 1

16
W ×

1

16
H

13 Surprise-CIOFM: [39] 2005 B C 1

16
W ×

1

16
H

14 AIM: Bruce and Tsotsos [38] 2005 I M 1

2
W ×

1

2
H

15 STB: Saliency Toolbox [24] 2006 I M 1

16
W ×

1

16
H

16 Le Meur: Le Meur et al. [58], [34] 2006 B X W × H
17 GBVS: Harel et al. [26] 2006 I M W × H
18 HouCVPR: Hou et al. [40] 2007 I M 64 × 64

19 Rarity-L: Local Rarity [42] 2007 I M W × H
20 Rarity-G: Global Rarity [42] 2007 I M W × H
21 HouNIPS: Hou et al. [41] 2008 I M W × H
22 Kootstra: Kootstra & Shomacker [32] 2008 I E W × H
23 SUN: Zhang et al. [36] 2008 I M 246 × 331

24 Marat: Marat et al. [59] 2009 B X W × H
25 PQFT: Guo et al. [45] 2009 I M 400 × 400

26 Yin Li: Yin Li et al. [51] 2009 I M W × H
27 SDSR: Seo and Milanfar [60] 2009 B M W × H
28 Judd: Judd et al. [50] 2009 I M W × H
29 Bian: Bian et al. [47] 2009 I M 1

16
W ×

1

16
H

30 E-Saliency: Avraham et al.[43] 2010 I X W × H
31 Yan: Yan et al. [52] 2010 I M W × H
32 AWS: Diaz et al. [48] 2010 I E 1

2
W ×

1

2
H

33 Jia Li: Jia Li et al. [54] 2010 I E 1

16
W ×

1

16
H

34 Tavakoli: Tavakoli et al. [94] 2011 I M W/16 × H/16
35 Murray: Murray et al. [93] 2011 I M W × H

contacted their creators for software; the authors then either

sent source code for us to compile or sent executables. Some

authors, however, preferred to run their models on our stimuli

and to send back saliency maps. In the end, we were able to

evaluate the 35 models listed in Table I, sorted by publication

year. This table also shows stimulus types that models are

applicable to and their implementation language. In addition

to developed models by the authors, we also implemented

two other simple yet powerful models, to serve as baseline:

The Gaussian Blob (Gauss) and Human Inter-Observer (IO)

models. The Gaussian blob model is simply a 2D Gaussian

shape drawn at the center of the image; it is expected to

predict human gaze well if such gaze is strongly clustered

around the image center. The human inter-observer model

outputs, for a given stimulus, a map built by integrating eye

fixations from other subjects than the one under test, while

they watched that stimulus. The map is then smoothed by

convolving with a Gaussian filter. This inter-observer “model”

is expected to provide an upper bound on prediction accuracy

of computational models, to the extent that different humans

may be the best predictors of each other. Since maps made

by models have different resolutions, we resized them (using

nearest neighbor interpolation) to the size of the original

images onto which eye movements have been recorded. Map

resolutions as well as model acronyms used in the rest of the
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Fig. 1. Synthetic patterns. Stimuli are numbered in blue/yellow from 1 to 54 in row-first order. Numbers are positioned close to the target locations and are
for illustration purposes only. Stimuli are sorted according to their average easiness of oddity detection for saliency models (Please See Fig. 5).

paper are listed in Table I. Please note that, besides models

compared here, some other models may exist that might

perform well, but are not publicly available or easily accessible

(e.g., [76]). We leave such models for future investigations.

B. Stimuli

Attention models have first been validated by predicting

accuracy and reaction times of human subjects in target

detection in visual search arrays. In addition, many models

have commonly been validated against eye movement data.

Synthetic Stimuli. Early attention studies and models used

simple synthetic patterns such as searching for a target or

detecting an odd item among distractor items to find out

important feature channels in directing attention and how

they are combined [56]. For instance, it has been shown that

reaction time for a simple pop-out search task remains constant

as a function of set size (number of all items on the screen),

while in conjunction search tasks (searching for a target that is

different in two features) reaction time increases linearly with

set size [56]. In [66][3], authors enumerate and discuss features

that influence attention. For a computational perspective on

implementation of these features in saliency models, please

refer to [3][9][27].

Fig. 1, shows a collection of 54 diverse synthetic patterns

where one item (a target) differs from all other (distractor)

items (pop-out, search asymmetry, texture, semantics, size,

grouping, curvature, etc.). Such stimuli have been widely used

for qualitative evaluation of saliency and attention models in

the past. Patterns are sorted from easy to hard for models

(Fig. 5) from left to right and top to bottom. They can be

categorized into: orientation pop-out (3, 9, 21, 25, 38, 43, 51,

54), texture pop-out (6, 12, 14, 24, 36, 39, 47), curvature pop-

out (35, 48), size pop-out (8, 10, 17, 30, 52), grouping (2, 13,

26, 28, 34), color pop-out (1, 4, 16, 19, 20, 27, 29, 31, 32,

33, 41, 44, 50, 53), intensity pop-out (11, 18, 37, 42), search

asymmetry (5;15, 22;46, 40;49), and other complex search

arrays (7, 23). In some patterns, targets are embedded in noise

(e.g., speckle noise: 11, 20, 31 and orientation noise: 19, 41).

We aimed to assess the pure target detection performance of

models. This is why we included harder displays, even though

humans may perform poorly on them (hence a great model of

human attention should also perform poorly, but some models

might transcend human abilities with such images).

Natural Scenes. Space-based models have often been tested

for eye fixation prediction over still image datasets and spatio-

temporal models have been evaluated against video data.

1) Image datasets. Since statistics of different datasets

vary, we employed three popular image datasets often used

for saliency evaluation: 1) Bruce & Tsotsos [38] (one of the

earliest and most widely used datasets). It contains 120 images

mainly indoor and in-city scenes. Due to the small size of this

dataset and the small number of subjects, its sole usage is less

encouraged, 2) Kootstra & Shomacker [32] (which contains

a wide variety of images), and 3) Judd et al. [50] (which is

the largest dataset available to date containing 1003 images).

It contains many images with human faces and has a high

degree of photographer bias and a smaller number of subjects.

Le Meur [58] dataset has only 27 images with the highest

number of eye-tracking subjects (40). We avoided to use this

dataset as its images are highly center-biased (See Sec. II-D).

Because of the specialty of datasets (different optimal

weights for features over different datasets [90]), a fair evalu-

ation is to compare models over several datasets (Sec. III).

2) Video datasets. Unfortunately, there are not many pub-

licly available video datasets with associated eye-tracking data.

This calls for collecting more eye movement data over videos.

Here, we run models over two datasets: 1) A large popular

benchmark dataset for comparison of spatio-temporal saliency,

called CRCNS-ORIG [99], which is freely accessible. Fig. 2

shows a sample frame from each video of CRCNS-ORIG

dataset embedded with eye fixations. 2) A recent project called

DIEM (Dynamic Images and Eye Movements) has investigated

where people look during dynamic scene viewing such as
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Fig. 2. One sample frame (frame no. 100) from 50 videos of CRCNS-ORIG eye movement dataset. Eye movements are embedded on images in yellow. For
some videos, eye fixations are shown in blue for better illustration. Video names in order (from left to right, top to bottom) are: 1) beverly01, 2) beverly03, 3)
beverly05, 4) beverly06, 5) beverly07, 6) beverly08, 7) gamecube02, 8) gamecube04, 9) gamecube05, 10) gamecube06, 11) gamecube13, 12) gamecube6, 13)

gamecube7, 14) gamecube18, 15) gamecube23, 16) monica03, 17) monica04, 18) monica05, 19) monica06, 20) saccadetest, 21) standard01, 22) standard02,
23) standard03, 24) standard04, 25) standard05, 26) standard06, 27) standard07, 28) tv-action01, 29) tv-ads01, 30) tv-ads02, 31) tv-ads03, 32) tv-ads04, 33)

tv-announce01, 34) tv-music01, 35) tv-news01, 36) tv-news02, 37) tv-news03, 38) tv-news04, 39) tv-news05, 40) tv-news06, 41) tv-news09, 42) tv-sports01,
43) tv-sports02, 44) tv-sports03, 45) tv-sports04, 46) tv-sports05, 47) tv-talk01, 48) tv-talk03, 49) tv-talk04, and 50) tv-talk05. Note that different number of
subjects observed videos. For results of model comparisons on these videos, please see Fig. 8.

BBC−life−in−cold−blood

−1278x710

advert−bbc4−library−1024x576

BBC−wildlife−serpent−1280x704

advert−iphone−1272x720

DIY−SOS−1280x712

ami−ib4010−closeup−720x576
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ami−ib4010−left−720x576

harry−potter−6−trailer−1280x544
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university−forum−construction−ionic

−1280x720

Fig. 3. Sample frames from 20 videos of DIEM [92] dataset. Yellow dots show right eye positions of all human subjects. Please see Fig. 8 for results.

during film trailers, music videos, or advertisements [92]1.

Fig. 3 shows sample frames of DIEM with fixations overlaid.

Please refer to [27] for more details on available datasets.

Our choice of datasets emphasizes popularity, thoroughness,

and variety in the stimuli.

We applied spatial and spatio-temporal models over static

(still images) and dynamic (video) stimuli to compare accuracy

of both types of models over both types of stimuli. This

way we can analyze the usefulness of temporal information

by comparing accuracy of models built from simple features

plus the motion channel (e.g., the Itti-CIOFM model) with

other high-performing models without temporal information.

Another approach will be extending all spatial models to

the temporal domain before comparison. This, however goes

beyond our scope in this paper and should be addressed by

the model creators.

1DIEM has so far collected data from over 250 participants watching
85 different videos. All of this data is freely available. We selected 20
videos and about 1,000 frames from each to make a benchmark for model
comparison. Selected videos cover different concepts/topics. We only used
right-eye positions of subjects to make model evaluation tractable. Frames of
this dataset were scaled down to 640× 480 while maintaining aspect ratio.

C. Evaluation Scores

Here, three evaluation scores for comparison of models are

explained. The motivation for analyzing models with more

than one metric is to ensure that the main qualitative conclu-

sions are independent of the choice of metric. In the following,

G denotes a ground-truth saliency map which is a map built

by inserting 1’s at fixation locations and convolving the result

with a Gaussian for smoothing. An estimated saliency map

which is computed by a saliency model is denoted by S.

Linear Correlation Coefficient (CC). The linear correla-

tion coefficient measures the strength of a linear relationship

between two variables: CC(G,S) = cov(G,S)
σGσS

where σG and

σS are the standard deviations of the G and S maps, respec-

tively [44][46]. When CC is close to +1/− 1 there is almost

a perfectly linear relationship between the two variables.

Normalized Scanpath Saliency (NSS). NSS [30][31] is the

average of the response values at human eye positions (xi
h, y

i
h)

in a model’s saliency map (S) that has been normalized

to have zero mean and unit standard deviation. NSS = 1
indicates that the subjects’ eye positions fall in a region whose

predicted saliency is one standard deviation above average.

Thus, when NSS ≥ 1 the saliency map exhibits significantly

higher saliency values at human fixated locations compared to
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other locations. Meanwhile NSS ≤ 0 indicates that the model

performs no better than picking a random position, and hence

is at chance in predicting human gaze.

Area Under Curve (AUC). AUC is the area under the

Receiver Operating Characteristics (ROC) curve [62]. Using

this score, human fixations are considered as the positive set

and some points from the image are sampled, either uniformly

or non-uniformly [36] (for discounting center-bias), to form

the negative set. The saliency map S is then treated as a

binary classifier to separate the positive samples from the

negatives. By thresholding over the saliency map and plotting

true positive rate vs. false positive rate an ROC curve is

achieved for each image. Then ROC curves are averaged over

all images and the area underneath the final ROC curve is

calculated [38][91]. Perfect prediction corresponds to a score

of 1 while a score of 0.5 indicates chance level.

For more details on evaluation scores please refer to [27]2.

D. Challenges and Open Problems

Here we discuss challenges that have emerged as more

saliency models have been proposed. These are open issues

that must be considered, not only for research but also for

performing a fair comparison of all models.

Center Bias (CB). Perhaps the biggest challenge in model

comparison is the issue of center-bias. Center-bias means that

a majority of fixations happen to be near the image center.

Several reasons for this have previously been proposed. For

instance, it could be due to a tendency of photographers to put

interesting (and hence salient [67]) objects at the image center;

or it could be because of a viewing strategy by which subjects

first inspect the image center, maybe to rapidly gather a global

view of the scene [29][86]. Some models have implicitly

(e.g., GBVS [26]) or explicitly (e.g., Judd [50]) used center-

preference (location prior) to better account for eye move-

ments. This, however, makes fair comparison challenging.

Three remedies are possible: 1) Every model adds a Gaussian

of a certain size to its output. This approach has the drawback

that it is hard to impose to the large community of researchers.

2) Collecting a dataset with no center-bias. This is difficult

because even if we have an approach to uniformly distribute

image content, viewing strategy still exists. 3) Designing

suitable evaluation metrics, which is what we consider as the

most reasonable approach, and which we use here.

To eliminate center-bias effects, Zhang et al. [36] used the

shuffled AUC metric instead of the uniform AUC metric.

They defined shuffled AUC as: For an image and a human

subject, the positive sample set is composed of the fixations

of that subject on that image, while the negative set, instead

of uniformly random points, is composed of the union of all

fixations of all subjects across all other images, except for

the positive set. This score allows for a stronger assessment

2In addition to above scores, Kullback-Leibler (KL) (the divergence be-
tween the saliency distributions at human fixations and at randomly shuffled
fixations; used in [39][90][36]), and the string-edit distance (difference be-
tween the sequence of fixations generated by a saliency model versus human
fixations) [100][72]) have also been used for model evaluation. Note that all
of these scores (except the Shuffled AUC) are influenced by the center-bias.
We draw conclusions based on the average model behavior on these scores.

of the non-trivial off-center fixations, which are the ones

that are more challenging and more interesting to predict.

Alternatively, Qi and Koch [90], defined an unbiased AUC

score as the ratio of normal AUC to the AUC score of the

inter-observer model.

Here, along with using the shuffled AUC score, we apply

models to images with low center-bias. This second-order

study provides another way of differentiating models behavior

over (difficult) fixations which deviate from center. Please note

that this does not necessarily mean that center-bias is not a

fact of human attention behavior. To this end, we propose a

new measure called Center-Bias Ratio (CBR) to quantify the

amount of center-bias in an image or a set of images. First,

for an image, a heat map is generated by pooling fixations

from all subjects without Gaussian smoothing. Then, the ratio

of fixations inside each central circle to the overall number of

fixations in the image is calculated. By varying the radius, a

vector of ratios is derived. If there are more fixations at the

center, the first values of this vector should be very high. By

applying a fixed threshold, one can make a decision whether

an image is center-biased or not.

Fig. 4 shows distribution of fixations for three datasets and

their center-bias ratio. The five most and five least center-

biased images from datasets are also shown. Judd et al., and

Bruce & Tsotsos datasets are highly center-biased (at 40%

circle, from center to image corner, they explain more than

80% of fixations) and Kootstra & Shomacker has the least

center-bias amongst three. This might be because this dataset

has many symmetric objects (e.g., flowers) off the center.

To test how many images pass a CB criterion, at the radius

level of 40%, we selected an image from a dataset if its

CBR was less than 0.7. This way, 10, 58, and 120 images

from Bruce & Tsotsos, Kootstra & Schomaker, and Judd et

al. datasets passed the selection criteria, respectively (Overall

15% of 1250 images)3.

Border Effect. Another challenge is the treatment of image

borders. Zhang et al. [36] showed that KL and ROC scores are

corrupted by edge effects. When an image filter lies partially

off the edge of an image, the filter response is not well defined.

They varied the size of a black border added around a dummy

white saliency map (of size 120 × 160 pixels) and showed

that as the border size increases, ROC and KL scores increase

as well. Since human eye fixations are rarely near the edges

of test images, edge effects primarily change the distribution

of saliency of the random samples. For the dummy saliency

map, a baseline map (uniform white) gives a ROC value of 0.5,

adding a four-pixel black border yields 0.62, and an eight-pixel

black border yields 0.73. The same 3 border sizes would yield

KL scores of 0, 0.12, and 0.25. Note that a black border effect

due to variations in handling invalid filter responses at the

image borders is similar to the center-bias issue and could be

handled the same way. But the first is a problem with datasets

while the second one regards a problem in modeling.

Scores. Some issues concern scores. For instance, as a

limitation of ROC, Qi and Koch [90], compared two saliency

3We also used another dataset from Le Meur et al. [58] but none of the
images passed the threshold. Link: http://www.irisa.fr/temics/staff/lemeur/
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Fig. 4. Results of center-bias analysis over three datasets. The first row shows the heatmap of all fixations over all images for each dataset. White rings
show 10% increase in radius from the image center and the bar chart at the right of a heatmap shows percentage of fixations that happen in each ring. The
red horizontal bar shows the 80% density level. Five most and least center-biased images from each dataset along with eye fixations are shown at the bottom.

maps with different degrees of false alarm rates. Interestingly,

while one map had a clear dense activation at fixations (with

almost no background activation), its standard AUC (=0.975)

was not dramatically better compared to the other map (with

activations at both fixations and background) with much higher

false alarm rate (AUC=0.973). Because of the normalization

to the entire map, this problem did not affect NSS score.

Model Parameters. Another problem regarding fair model

comparison is adjusting parameters in models. For instance,

it has been shown that smoothing the final saliency map of a

model affects the scores [68]. In models described in Table. I,

some authors mentioned the best set of parameters, and some

manually tunned their model on our stimuli and sent back the

saliency maps.

To tackle center-bias, border effects, and scoring issues,

instead of only using one score, we decided to use three, with

an emphasis on analysis of results using the shuffled AUC

score which is more robust to center-bias and borders. A model

that works well should score high (if not the best) at almost

any score. Regarding model parameters, over some cross-

validation data, we tried to tune models for best performance

by qualitatively checking saliency maps or quantitatively by

calculating scores. However, as further discussed in section IV,

ultimately the model parameter issue will be best handled

through an online challenge where participants can tune their

own models before submitting results.

III. EXPERIMENTAL RESULTS

Having laid out the evaluation framework, we are ready to

compare saliency models in this section.

A. Results over Synthetic Images

Fig. 5 shows ranking of models over synthetic patterns. The

location of each target in each stimulus was tagged manually

(bottom-right panel). Then the accuracy of a saliency model

to capture the target was calculated using the NSS score.

This score is more suitable here because there is only one

target position in each image and if a model could accurately

predict that location it would get a high score. The higher NSS

thus means better target detection. The top-left panel in this

figure shows performance of all models over all stimuli sorted

both ways. The bottom-left panel ranks stimuli in terms of

simplicity of target detection averaged over models (see also

Fig. 1). The top-right panel shows sorted NSS scores (averaged

over stimuli) of models.

On average (over stimuli), all models performed signifi-

cantly above chance. Overall, models based on FIT theory

performed higher on synthetic patterns (e.g., compared to sta-

tistical and information-theoretic models). STB, AWS, GBVS,

VOCUS, Bian, and Itti-CIO models achieved the best NSS

scores. From these models, Itti-CIO and hence its descendants

STB and VOCUS are directly based on the FIT framework.

Similar to these, AWS and GBVS models have used multi-

scale color, intensity and orientation channels. One high-

performing model which is not based on FIT is Bian’s model,

which works in the frequency domain. Inspecting the high-

performing models, we noticed that they all generate maps

with a high peak at the target location and less activation

elsewhere, which results in high NSS values. Models including

AIM and HouNIPS seem impaired by the border effect, which

affects their normalization; indeed, these models perform

poorly on all our search-array stimuli. We expected that some

models might actually surpass human vision in some of these

images, i.e., they might mark as salient some targets which are

hard to be immediately seen by humans. For example, AWS

is doing quite well on hard image 23. Although some stimuli

were easier for many models, no single stimulus was easy for

all models. For example, stimulus 1, a simple red/green color

pop-out was easy for models which include a separate color

channel but remained challenging for several statistical models

which are based on natural scene statistics (AIM, HouNIPS,

Rarity-G). One important conclusion of our study therefore

is that to date no model performs perfectly over all synthetic
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stimuli tested here. Fig. 6 illustrates saliency maps of models

over the best and worst synthetic stimuli (averaged over all

models) as well as some other sample synthetic stimuli.

Although in this section we focused on evaluating the

consistency of saliency models with a number of classic

psychophysical results related to bottom-up attention, there

are several other tests that a model could be verified against,

including: nonlinearity against orientation contrast, efficient

(parallel) and inefficient (serial) search, orientation asym-

metry, presence-absence asymmetry and Weber’s law, and

influence of background on color asymmetries (see [81][84]).

Some models have been partially tested against such stim-

uli [48][38][76][84].

B. Results over Natural Scenes

Fig. 7.A shows ranking of models for fixation prediction

over still images. For statistical significance testing of mean

scores between two models, we used the t-test at the signif-

icance level of p ≤ 0.05. Although the ranking order is not

exactly the same over all three datasets, some general patterns

can be observed. Using the CC score, over all three datasets,

GBVS works the best. The Yan, Kootstra, and Gauss models

are among the best six. High CC scores for the Gauss model

indicate that there is high density of fixations at the image

center over all three datasets. Higher CC for Gauss over the

Judd et al. dataset (no significant difference between Gauss

and GBVS; p=0.1) means higher central eye concentration

over this dataset. Similarly, using NSS, GBVS did the best and

the Yan, Judd, AWS, and Kootstra models were among the six

best. High performance for Gauss with NSS again indicates a

high center-preference over datasets (Gauss ranked third over

the Judd et al. dataset). Scores of models over the Kootstra &

Shomacker dataset are smaller than over other datasets. This

might be partially due to difficulty of stimuli in this dataset.

For instance, many of them are outdoor natural scenes as

opposed to close-up shots of objects or animals. Consistent

with previous research, an important point here is that CC

and NSS scores are sensitive to center-preference (high scores

for Gauss model), therefore their usage is not encouraged for

future work. Using shuffled AUC, the Gauss model is the worst

(not significantly higher than chance) over all three datasets

as we expected. Indeed, the shuffled AUC measure explicitly

discounts center bias by sampling random points from human

fixations. With shuffled AUC, the AWS model is significantly

better than all other models over the three datasets, followed

by HouNIPS model. The AIM and Judd models were the other

two models that did well. One interesting observation is that

AWS is able to predict human fixations over the Kootstra

& Shomacker dataset at the level of human inter-observer

similarity (no significant difference between model’s score and

Human inter-observer score). Rarity-L, Entropy, and STB are

three models that did worst over CC and NSS scores. In terms

of AUC scores, Gauss, STB, and Marat are at the bottom.

Except for the aforementioned case of AWS over the Koot-

stra & Shomacker dataset, the main conclusion of this study

is that a significant gap still exists between the best models

and human inter-observer agreement. The spread of models

scores is also quite narrow, and for NSS over the Kootstra

& Shomacker and Judd et al. datasets the gap between IO

and the best model is greater than that between the best and

worst models. This indicates that even though much progress

has been made in modeling saliency over the past 13 years,

dramatic and qualitatively better new models still remain to

be discovered that will better approach human eye fixations.

To the disappointment of the authors, many recent models

overall perform worse that the Itti-CIO2 model published in

1998 [5], indicating the importance of using a comprehensive

comparison framework for measuring progress. We further

examine these issues in the Discussion section (Sec. IV).

An important note from our comparisons is that most

models that did well overall, performed reasonably well over

every combination of dataset and score. An exception is GBVS

which performed the best over three datasets using the CC

and NSS scores but not as well (though still quite well) with

AUC. The performance drop of the GBVS model could be

because it takes advantage of center-bias. Some of the models

which scored well on the synthetic patterns (Fig. 5) scored

poorly on natural image datasets (e.g., STB and Itti-CIO). To

some extent, we find that this may be due to the fact that

these models are developed based on FIT framework which

has been originally proposed to explain synthetic patterns. The

Itti-CIO model also generates very sparse maps which do not

reflect well the substantial inter-observer variations present in

the human eye movement data.

In addition to using the shuffled AUC score, we conducted

another experiment to compare models over stimuli with less

center-bias. We selected 100 images from the Judd et al.

dataset with least center-bias ratio (using 40% circle) and

calculated scores for those images. Results are shown in

Fig. 7.B. The rationale for focusing on images that yield many

off-center fixations is that such fixations may convey more

information about the processes by which attention is drawn

to salient peripheral stimuli (as opposed to central fixations,

which may be stimulus-driven or part of a viewing strategy;
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difficulty of models (on average) to detect the odd item among distractors in a search array.

see section II-D). Indeed, we verified that the Gauss model

performed poorly on this dataset. Consistent with CC and

NSS scores over three datasets, here GBVS again scored

the best, and the ranking of models is almost the same as

when using all images across these two scores. With shuffled

AUC, the ranking is almost the same as with the original

datasets, with AWS, HouNIPS, and AIM at the top. Similar

to the original datasets, the AUC performance of GBVS is

not among the best. Note how, with shuffled AUC (which is

emerging as the most reliable score), all models are closer

to the IO performance in the least center-biased dataset. This

new approach to dataset design helps us mitigate the above

remark about the need for a qualitative jump in eye movement

prediction: The off-center fixations, which arguably are the

most important and difficult to predict, are captured quite well

by many models.

Our next analysis is ranking models over different classes of

stimuli from the Kootstra & Shomacker dataset. The intuition

behind this experiment is that since different models use

different features, and different classes of images may exhibit

different feature distributions, it is likely that models may

selectively perform higher over different types of images.

Fig. 4, middle column, shows sample images from the Kootstra

& Shomacker dataset. Images of this dataset fall into 5

categories: 1) Animals, 2) Automan (cars and humans), 3)

Buildings, 4) Flowers, and 5) Nature. The shuffled AUC scores

of all models are shown in Table. II for each category. This

table also shows scores of the inter-observer (IO) model as

well as average scores of models (using three scores) across

5 categories. Interestingly, again the AWS model did the best

over all categories (it was only significantly better than other

models in the Flowers category). HouNIPS, Judd, SDSR,

Yan, and AIM were also at the top. Gauss, STB, Marat, and

Entropy ranked at the bottom. The least performance among

categories belongs to Nature stimuli (using all 3 scores),

probably because stimuli in the Nature category are more noisy

and there are less solid objects or dense salient regions. All

models scored below AUC = 0.6 in that category, and humans

are also less consistent over nature stimuli (smaller AUC score

for IO model). The best performance of models is over the

Automan category, which consists of in-city scenes containing

cars and humans, and IO also scored highest in this category.

Model performance differences over categories suggests that

customizing models based on image category might further

improve fixation prediction accuracy. Some models indeed

rely on detecting the “gist” of a scene (e.g., whether it is

indoors or outdoors) to establish a spatial prior on saliency

[57]; these could be further combined with learning techniques

(e.g., [90]) to modulate features contributing to saliency based

on a scene’s gist or category. Such research might benefit from

deeper psychological studies of eye movement patterns over

different categories of scenes.

Fig. 8.A sorts models over the CRCNS-ORIG dataset using

three scores. Rankings are almost the same over CC and NSS
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Fig. 7. A) Ranking visual saliency models over three image datasets. Left column: Bruce & Tsotsos [38], Middle column: Kootstra & Shomacker [32], and
Right column: Judd et al. [50] using three evaluation scores: Correlation Coefficient (CC), Normalized Scanpath Saliency (NSS), and shuffled AUC. Stars
indicate statistical significance using t-test (95%, p ≤ 0.05) between consecutive models. Note that no star between two models that are not immediately
close to each other does not necessarily mean that they are not significantly different. In fact, it is highly probable that a model that is significantly better
than the one in its left, also scores significantly better than all other models on its left. Error bars indicate standard error of the mean (SEM): σ

√

N
, where σ

is the standard deviation and N is the number of images. We do not show CC results for IO model because comparing the map built from fixations of one
subject with the map built from fixations of all other subjects using CC, does not generate a high value (both maps are convolved with a Gaussian). This
is because few fixations of only one subject do not generate a diffused map which is favored by CC score. We also couldn’t calculate IO score over Bruce
& Tsotsos dataset since fixations are not separated for each subject. B) This column sorts models over 100 least center-biased images from the Judd et al.

dataset (see section II-D). The heatmap at the top-most panel shows distribution of fixations over selected images. Judd model uses center feature, gist and
horizon line, and object detectors for cars, faces, and human body. Itti-CIO2 is the approach proposed by Itti et al. [5] that uses the following normalization
scheme: For each feature map, find the global max M and find the average m of all other local maxima. Then just weight the map by (M − m)2. In the
Itti-CIO method [87], normalization is: Convolve each map by a Difference of Gaussian(DoG) filter, cut off negative values, and iterate this process for a few
times. This normalization operation results in sparse saliency maps. In the literature, majority of models have been compared against Itti-CIO.

scores with GBVS, Gauss, Marat, HouNIPS, Judd, and Bian

models at the top. Using the AUC score, AWS, HouNIPS, Bian

and Human inter-observer are the best. The reason why, when

using shuffled AUC, the inter-observer model is slightly lower

than the three mentioned models is likely because the number

of subjects is small and hence a map from other subjects

may not be a good predictor of the remaining test subject.

Why then is the human inter-observer significantly better than

other models when using NSS? This is likely because even

if in few occasions humans look at the same location, this

generates a very large NSS value. The human inter-observer

map in this dataset is a very sparse map and a hit results in a

very large NSS score. Also, note that the inter-observer model

is not significantly better than the three best computational

models using AUC. Interestingly, only the motion channel of

the Itti model (Itti-M) worked better than many models over

video stimuli (specially using CC and NSS scores). Itti-Int

was the worst among all models with STB, Entropy, Itti-CIO,

Variance, VOCUS, and Surprise-CIO: all these models indeed

only use static features. CC values are smaller here compared

with still images because there are fewer fixations (due to

smaller numbers of subjects).
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Fig. 8. A) Ranking visual saliency models over CRCNS-ORIG dataset [99]. B) Ranking models over DIEM dataset [92]. Only these models had motion
channel: Itti-M, Itti-CIOFM, Surprise-CIOFM, Marat, and PQFT.
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TABLE II
MODEL COMPARISON OVER CATEGORIES OF KOOTSTRA & SHOMACKER

DATASET USING SHUFFLED AUC SCORE. SECOND NUMBER IN EACH PAIR

OF VALUES IS SEM. THE THREE BEST MODELS FOR EACH CATEGORY ARE

SHOWN IN BOLD. LAST THREE ROWS SHOW THE AVERAGE PERFORMANCE

OF ALL MODELS USING THREE SCORES.

Buildings Nature Animals Flowers Automan

Size 16 40 12 20 12

IO 0.62 ± 0.03 0.58 ± 0.04 0.65 ± 0.04 0.62 ± 0.04 0.70 ± 0.03

Gauss 0.50 ± 0.04 0.50 ± 0.04 0.50 ± 0.07 0.50 ± 0.07 0.50 ± 0.07

AIM 0.58 ± 0.02 0.55 ± 0.05 0.58 ± 0.05 0.58 ± 0.06 0.63 ± 0.05

AWS 0.60 ± 0.04 0.58 ± 0.06 0.63 ± 0.07 0.62 ± 0.06 0.68 ± 0.05

E-Saliency 0.56 ± 0.04 0.53 ± 0.05 0.57 ± 0.06 0.54 ± 0.07 0.63 ± 0.06

Bian 0.52 ± 0.07 0.55 ± 0.05 0.60 ± 0.08 0.56 ± 0.08 0.61 ± 0.09

Entropy 0.54 ± 0.04 0.52 ± 0.03 0.51 ± 0.05 0.56 ± 0.04 0.57 ± 0.04

GBVS 0.56 ± 0.03 0.55 ± 0.05 0.57 ± 0.04 0.55 ± 0.06 0.60 ± 0.07

Kootstra 0.56 ± 0.03 0.53 ± 0.04 0.54 ± 0.06 0.54 ± 0.07 0.58 ± 0.05

HouCVPR 0.58 ± 0.03 0.54 ± 0.05 0.59 ± 0.05 0.55 ± 0.06 0.62 ± 0.05

HouNIPS 0.58 ± 0.03 0.56 ± 0.05 0.59 ± 0.07 0.59 ± 0.06 0.66 ± 0.07

Itti-CIO 0.52 ± 0.02 0.52 ± 0.03 0.54 ± 0.03 0.51 ± 0.03 0.54 ± 0.02

Itti-CIO2 0.55 ± 0.04 0.55 ± 0.03 0.58 ± 0.05 0.54 ± 0.04 0.64 ± 0.03

Jia Li 0.56 ± 0.04 0.53 ± 0.04 0.57 ± 0.06 0.52 ± 0.08 0.60 ± 0.05

Judd 0.57 ± 0.04 0.56 ± 0.05 0.58 ± 0.06 0.58 ± 0.06 0.63 ± 0.05

Le Meur 0.55 ± 0.05 0.55 ± 0.05 0.55 ± 0.05 0.55 ± 0.05 0.62 ± 0.07

Marat 0.51 ± 0.02 0.50 ± 0.02 0.51 ± 0.02 0.51 ± 0.02 0.51 ± 0.01

PQFT 0.53 ± 0.06 0.53 ± 0.05 0.52 ± 0.06 0.58 ± 0.05 0.58 ± 0.05

Rarity-G 0.53 ± 0.03 0.53 ± 0.03 0.55 ± 0.02 0.56 ± 0.04 0.57 ± 0.04

Rarity-L 0.54 ± 0.02 0.53 ± 0.03 0.54 ± 0.04 0.53 ± 0.04 0.57 ± 0.05

SDSR 0.58 ± 0.04 0.56 ± 0.05 0.62 ± 0.06 0.55 ± 0.06 0.65 ± 0.07

SUN 0.53 ± 0.06 0.53 ± 0.05 0.50 ± 0.06 0.58 ± 0.05 0.59 ± 0.07

Surprise-CIO 0.53 ± 0.03 0.54 ± 0.04 0.55 ± 0.03 0.53 ± 0.05 0.55 ± 0.02

Torralba 0.56 ± 0.03 0.54 ± 0.04 0.55 ± 0.05 0.58 ± 0.06 0.62 ± 0.05

Variance 0.54 ± 0.03 0.53 ± 0.04 0.52 ± 0.05 0.57 ± 0.06 0.59 ± 0.04

VOCUS 0.56 ± 0.03 0.54 ± 0.04 0.58 ± 0.05 0.56 ± 0.06 0.63 ± 0.06

STB 0.51 ± 0.01 0.51 ± 0.01 0.53 ± 0.04 0.51 ± 0.02 0.51 ± 0.01

Yan 0.57 ± 0.03 0.55 ± 0.06 0.60 ± 0.05 0.56 ± 0.06 0.65 ± 0.06

Yin Li 0.55 ± 0.03 0.55 ± 0.05 0.59 ± 0.06 0.57 ± 0.06 0.60 ± 0.07

Average-AUC 0.55 ± 0.02 0.54 ± 0.01 0.56 ± 0.3 0.55 ± 0.02 0.60 ± 0.04

Average-CC 0.17 ± 0.06 0.17 ± 0.07 0.22 ± 0.84 0.19± 0.82 0.24 ± 0.07

Average-NSS 0.33 ± 0.12 0.30 ± 0.13 0.57 ± 0.2 0.46 ± 0.20 0.54 ± 0.18

All models achieved higher scores (all three) over the

saccadetest video clip, which is a circular moving blob on

a static blue background (see Fig. 2). Other stimuli on which

models did well include gamecube05, gamecube17, tv-news04,

gamecube06, and gamecube23, which tend to depict only one

central moving actor of interest. Lowest scores belong to

standard04, tv-announce01, tv-talk05, and standard03, which

are very cluttered scenes with many actors and moving objects.

Inspecting the difficult video clips suggests that eye fixations

in these clips are often driven by complex cognitive processes;

for instance, in tv-talk-05, fixations switch from one speaker

to the other following their subtle lip movements, while the

overall saliency of both their faces remains high throughout the

clip. Much more thus needs to be studied in modeling such

cognitive influences on saliency, as small dynamic changes

pixel-wise (like moving lips) can yield dramatic differences

in human gaze allocation (see, e.g., [23][22]). Eye fixation

distributions of CRCNS-ORIG dataset shows higher density

at the center compared to still image datasets (about 42% at

the inner-most circle (10% radius) and about 83% at 40%

radius). This could also be verified by the high scores of the

Gauss model over CC and NSS scores. Over this dataset,

similar to image datasets, NSS and AUC scores of many

models are much smaller than human inter-observer scores.

Generally, models that performed well over static images also

TABLE III
AVERAGE SALIENCY COMPUTATION TIME (SORTED) FOR MODELS IN

SECONDS FOR A 511× 681 IMAGE. THE TWO FASTEST MODELS ARE

WRITTEN IN C++ CODE. HOUCVPR IS IN MATLAB.
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achieved higher accuracies over the CRCNS-ORIG dataset.

Interestingly, overall, models with a motion channel rank

towards the middle, i.e., they do not seem to work better than

the best models which only use static features, though they

still work better than the lowest-performing static models.

Ranking of models over DIEM video dataset is shown in

Fig. 8.B. The IO, Tavakoli, Gauss, GBVS, HouNIPS, Bian, and

Judd models ranked on top using CC and NSS scores. Using

shuffled AUC, however, AWS, Bian, Murray, Judd, AIM, and

HouNIPS scored best. The sport scramblers 1280x720 video

was the easiest on average for models over three scores be-

cause it has mainly one moving object. Models that performed

poorly over the CRCNS-ORIG dataset are also ranked at the

bottom on DIEM dataset. Several videos clips in this dataset

yield very poor model scores for all models. Here again, those

clips include significant cognitive factors; for example, in the

ping-pong videos, a reactive saliency model often trails behind

human fixations which tend to be more predictive [97]. Adding

stronger predictive abilities to models is a very hard problem as

the predictions occur in the 3D world, thus requiring extensive

machine vision to recover 3D structure from videos.

C. Analysis of Gaussian Blob Size

Another important factor in model comparison is the size

of the Gaussian blob. We changed the sigma (σ) parameter of

the Gauss model and evaluated the scores over three datasets

shown in Fig. 9. Two points should be noticed here: 1)

Using all three scores, maximum performance happens for the

Gaussian σ equal to 6, 7, or 8. In our experiments, Gaussian

σ = 10 was used for model comparison, and 2) Over shuffled

AUC, as it was expected, values do not change for different

Gaussians over three datasets (between 0.5 and 0.512). This

again shows that shuffled AUC is invariant to center-bias.

D. Time Complexity Analysis of Models

In addition to correctly predicting atypical image locations

attracting human attention, a saliency model should be also

very fast. For some species, attention is tightly linked to their

survival (e.g., quick detection and response to a predator).

Some complex processes such as cluttered scene understand-

ing will not be feasible or will be very slow without employing

an effective attentional strategy. Thus, it is important that

attention should kicky orient other complex processes to

important dimensions of stimuli. The average time required

to compute saliency map of an image for models is shown in

Table. III. Average time was calculated over 100 images with

resolution 511×681 from Bruce & Tsotsos dataset. All models

were executed on a computer running Linux Mandriva with
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Fig. 9. Analysis of Gaussian blob size parameter. CC, NSS and shuffled AUC scores over Gaussian blobs at the image center with increasing size from
small to large (bottom-row). Size of each blob is 50× 50 pixels.

4GB RAM and Quad core 2.8 GHz Intel CPU. The Itti-CIO

model is the fastest (∼17 ms/image) followed by VOCUS and

HouCVPR models (less than 300 ms/image). Note that in this

table, what matters is ranking, while absolute durations may

be reduced with more powerful machines. The Judd et al.,

model has high saliency prediction accuracy but is very slow

(about 100 sec/image) since it needs to calculate several fairly

complex channels (person, face, car, gist, horizontal line, etc).

Most of the models need less than 16 sec to calculate saliency.

E. Illustrative Figures

The three best and three worst stimuli (measured by shuffled

AUC score) for each model are shown in Fig. 10. Many models

share their three best and three worst images. For the Gauss

model stimuli that have fixations at the center happen to be the

best and those that have fixations off the center are the worst.

Since no model uses face detection (except for Judd et al.) and

text detection channels, most models have difficulty predicting

fixations over stimuli with these types of features. This means

that an important point in building more successful models is

to look for cognitive factors that drive visual attention (e.g.,

gaze direction of human characters in images, meaning of text

messages [91], etc.).

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we briefly reviewed several state-of-the-art

visual saliency models and quantitatively compared them over

54 synthetic patterns, 3 radically different still image datasets,

and two benchmark video datasets. We also analyzed datasets

in terms of center-bias and models in terms of time complexity.

Here we list the main conclusions of our comparison study:

1) All existing datasets are highly center-biased. Develop-

ing less center-biased datasets in the future can help fair

model comparison4.

2) The majority of existing eye movements datasets are

small with small numbers of subjects. Further attempts

are necessary to collect larger datasets with more ob-

servers (to obtain a better notion of average human

4We share a dataset at: https://sites.google.com/site/saliencyevaluation/

performance) with higher stimulus variability. This need

is more pressing for collecting fixations over videos.

3) The CC and NSS scores suffer from the center-bias

issue and their use in future model comparisons is not

encouraged. On the other hand, the shuffled AUC score

tackles center bias and border effects and is the best

option for model comparison.

4) There is still a gap between current models and human

performance. This gap is smaller for off-center fixations

and for some datasets, but overall exists. As discussed

above, discovering and adding more top-down features

to models will hopefully boost their performance.

5) Saliency models based on FIT theory work better in

locating a target over synthetic patterns.

6) Models that did well over static natural scenes in general

also did well over the video datasets. The majority of

these models are based on statistical techniques.

7) The top performing model in our experiments with static

and dynamic natural scenes is AWS (focusing on the

shuffled AUC score); it also performed second best with

synthetic images.

8) Consistent with [89], we also noticed that models

that generate blurrier maps achieve higher scores (e.g.,

GBVS, AIM, and Itti-CIO2). This should be considered

by authors and future comparisons.

9) Models incorporating motion did not perform better than

the best static models over video datasets. Extension of

the best existing static models to the spatio-temporal

domain may further scale up those models.

10) Some categories are harder for models (e.g., Nature

stimuli) while some others containing less cluttered

scenes and scenes with fewer objects are easier (e.g.,

scenes containing humans and cars).

11) Best and worst stimuli are the same for many models,

which means that models have common difficulty in

prediction of saliency over specific classes of stimuli

(Fig. 10). This suggests some hints for future research.

12) Some models are fast and effective (e.g., HouNIPS,

Bian, HouCVPR, Torralba, and Itti-CIO2) providing a

trade-off between accuracy and speed necessary for

many applications.
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Fig. 10. Three best and three worst stimuli using shuffled AUC score for all models over Judd et al. dataset. Note that some images are best for many
models and at the same time some worst cases repeat across many models. Yellow dots represent human fixations.

One remaining problem in fair model evaluation is the

effect of internal model parameters, such as number of filters,

type of filters, Gabor or DoG filter parameters, choice of the

non-linearities, blurring, and normalization schemes. Proper

tuning of these parameters is important, and doing so may

dramatically affect the performance of a system. Here, we tried

our best to produce highly predictive maps for models.

Despite significant success of the models evaluated here,

there is still significant room to further improve attention

accuracy due to a remaining large gap between models and

human observer agreement, as has also been shown using

smaller datasets and less systematic comparisons in previous

studies (e.g., [50][40][36]). Here we suggest several directions

that could help bridge this gap.

One direction to extend current models is adding top-down

factors. Context [57][83][36], gain modulation of features for

target detection [4][21][28], and use of target detectors tuned

to specific objects [50][91] has been used for modeling top-

down attentional effects. Here we comment more on these

factors. While almost all bottom-up models have employed

simple feature channels believed to be computed by early

visual areas, they do not rule out the existence of top-down

influences in free-viewing tasks where these models have been

applied to. For instance, in free viewing of spatio-temporal

stimuli such as videos, semantic processing of scenes and

extraction of high-level knowledge plays a significant role in

guiding attention and eye movements. Some semantic cues

involve social interactions in images, living beings, faces (and

eyes, nose, and mouth within faces), text, etc. Also it appears

that attentional-bias is independent of illumination, orientation

as well as scale of the salient object/concept [98]. A large

dataset containing many example images with such factors

(758 images viewed by on average 25.3 viewers) has recently

been collected by Ramanathan et al. [82]. They also observed

that unpleasant concepts, such as reptiles or blood and injury,

considerably influence visual attention whenever present. The

fact that recognized concepts drive visual attention adds sup-

port to the theory that visual attention and object recognition

are concurrent processes, and this is an interesting topic of re-

search in the cognitive science community. Therefore, adding

top-down factors to bottom-up models can be an important

topic for future research in saliency modeling. Indeed the list

of top-down factors is not limited to the above factors and

several others including task demands (e.g., real-world tasks),

memories, experiences, expectations, and internal states play

important roles in directing overt attention and gaze.

We suggest taking inspiration from early visual cortex for

developing more biologically inspired models of attention.

For instance, the AWS model takes advantage of a basic

idea, decorrelation of neural responses in representing a visual

stimuli [78][95]. In this regard, shown by our results, having

many features (similar to Judd [50]) might not be as efficient as

discovering the basic principles/features of attention guidance

(employed by models such as Itti-CIO, AWS, HouNIPS, and
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GBVS). An idea in this direction is validating models of

saliency against eye movements of humans over distorted

images (e.g., rotated, mirrored or inversed images) or by

considering detailed low-level neural findings revealed by

neurophysiological studies (e.g., [71]).

Another future direction will be combining several different

saliency models to achieve higher performances. Since each

of these models is based on different mechanisms, it is likely

that combining them may result in higher fixation prediction.

This trend has been followed previously in biometrics (e.g.,

face identifications) as well as character recognition [73]. Such

direction may not extend our understanding of visual attention,

but if successful it may have several practical applications.

There are several other open questions for future investiga-

tions. As already mentioned, text is an important feature that

is proven to attract attention[91]. But since text detection in

natural scenes is an open problem and few approaches exist for

that, it has not been added to current models. Basically using

more features leads to better fixation prediction performance

with the cost of lowering speed. One solution is parallel im-

plementation of models (e.g., feature extraction on GPU (e.g.,

[74][75]). Most models have focused on predicting locations

that human observers look at, while few (e.g., [55]) have

investigated other aspects of eye fixations, such as saccade

dynamics, sequencing (Wang et al. [15]), retinal sampling,

inhibition of return, the role of context, etc [96]. More work

needs to be done in this direction. A less explored application

of saliency modeling is using it for understanding cluttered

scenes by sequentially processing important regions or ob-

jects. Another promising direction is in developing models

that can predict locations that humans find interesting, for

instance by clicking and see how such models differ from

traditional saliency models for fixation prediction [85]. Also,

more attempts are still needed to determine important features

attracting eye fixations. Extending models to include some

understanding of 3D scene structure is a challenging yet

pressing problem, as solving it may allow the creation of

new models with significantly better predictive abilities (e.g.,

the expected landing point of a ball might be more salient

than the ball itself). It would be also interesting to customize

a saliency model for each person. For instance, by learning

habits, preferences, etc. of each human subject. This way, it

is theoretically possible to surpass the human inter-observer

model. Interaction between attention and object recognition

and their mutual benefit has been overstated, but still there

are not many works in this area.
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