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We discuss some seemingly unrelated observations on integers, whose close or far-
ther away neighbors show a complex of combinatorial, ordering, arithmetical or
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The unusual short title ‘DOI2’ requires an explanation. It is a recursive acronym of the

parity adjectives odd and even (the sound of pronunciation) or just the uppercase writing of

doi, the Romanian word for two. In our manuscript, 2 is the main character, or the red string

of the 1st of March celebrating symbol named in Romanian ‘mărţişor ’ (little March), which

is embraced by the white string embodying the parity of ‘noted divisors’. Their double bow

twinkles with the hanging tassel spread around the 2ˆ 2 themes we chose to present here.

1. FROM AN ELEMENTARY OLYMPIAD PROBLEM TO A
WARING PROBLEM QUESTION

As sometimes happens in a matter intended to avoid any involvement
of chance, at one of the many local math competitions, which is of major
importance for the young beginners and their supporters, at the first stage
of The National Mathematical Olympiad, Prahova county Romania, February
24, 2019, the written problem looked different from what the author probably
wanted to ask the participants.

Problem 2b (G. Achim, ONM Prahova 2019). Find the non-negative
distinct integers m,n, p, q knowing that

(1) m3 ` n3 ` p3 ` q3 “ 102021.
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Leaving aside the necessity on the solutions to have distinct components,
condition that does not oversimplify any approach to the problem, the straight
meaning of the requirement is to find all solutions of (1). This is a classic
Waring problem for cubes, with a particularly large constant term N “ 102021.

Originally, in 1770, Edward Waring, in his Meditationes Arithmeticae
(see [1] for a recent cover), summarized his experiments, and adventured to
state that any natural number can be written as a sum of at most gpkq positive
integers that are k-th powers. Thus, any natural number can be expressed as a
sum of 4 squares, or 9 cubes, or 19 fourth powers, and so on, he wrote. A text
in a nutshell that developed into a lot of dreams and endeavors for centuries.
A major step towards understanding the problems raised by Waring was made
by Hilbert, who proved in 1909 the existence of gpkq for all k. Precisely, he
showed that for any k ě 2, there is a positive integer g “ gpkq such that
any integer n ě 0 can be represented as n “ ak1 ` ¨ ¨ ¨ ` akg , for some natural
numbers a1, . . . , ag. As an aside, we mention that one might find it interesting
to know more about the peaking events of that time in the mathematical life of
Göttingen, as described in the fascinating biography written by Reid [43, XIV
Space, Time and Number], including the touching fate of Minkowski, in whose
memory Hilbert dedicated his work on Waring’s problem. Furthermore, the
interested reader might start consulting the survey of Vaughan and Wooley [48]
and the articles of Deshouillers et al. [19], Pollack [40] and Siksek [47] for a
summary of the results and methods developed over the years. Two examples
from the latest results that are valid for all n except just a few particular
cases are the following. Siksek [47, Theorem 1] showed that any n ě 455
can be written as a sum of seven cubes, making effective the same statement
proved by Linnik [28] to hold true for n sufficiently large, and Deshouillers
et al. [19, Conjecture 1,2] who concluded their findings by conjecturing that
there are exactly 113 936 676 positive integers that cannot be written as a sum
of four nonnegative integral cubes and the largest of them is the title of their
article.

Turning back to Problem 2b and knowing the limited time the children
have had available during the competition, while looking at how big N is, one is
driven to pinpoint two catches. First, there should be a concise way to write any
solution and second, it should not be too difficult to enumerate all the solutions.
But instead, only an epsilon part of this is possible, unless one accepts as
an answer to the Gordian Knot problem a Gödelian-type presentation of all
solutions in less than 100 words, without even a single one being able to be
extracted explicitly.

Finding a solution is not too difficult using the hint in Problem 2a of the
mentioned olympiad, which implied immediately that 13 ` 23 ` 33 ` 43 “ 102.
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Then, observing that 2021 ´ 2 “ 2019 is divisible by 3, one finds that the
equality

103¨673
`

13 ` 23 ` 33 ` 43
˘

“ 102019 ¨ 102

is equivalent to
`

10673
˘3
`
`

2 ¨ 10673
˘3
`
`

3 ¨ 10673
˘3
`
`

4 ¨ 10673
˘3
“ 102021 ,(2)

that is, S “
`

10673, 2 ¨ 10673, 3 ¨ 10673, 4 ¨ 10673
˘

is a solution of equation (1).
But next, finding other solutions or proving that S is unique is not an easy
task at all. Actually the facts are as follows.

Let νpnq denote the number of representations of n P N as a sum of four
cubes. The problem raised later, after Waring, asked to show that νpnq ą 0
for n ą n0. For the upper bound of νpnq, using the large sieve and bounds of
exponential sums in several variables, Hooley [24] showed that

νpnq “ O
´

n11{18`ε
¯

,

while the expectation is that the true order of magnitude is around O
`

n1{3
˘

.
Further, for the lower margin, Hooley [23] has showed that νpnq is not of order

o
`

n1{3
`

log logn
˘4˘

. Moreover, common experiments in Waring problems prove
that νpnq is within the above margins even if n is relatively small. Therefore,
no question of uniqueness of the solution of (1), but the number of solutions is
huge, around 10673. Therefore, how could someone face the endeavor to write
so many solutions during the allocated time of 2 hours (reduced from 3 hours,
as it was in the old days), by comparing with some worldwide margins:

˝ The number of atoms in the observable universe is « 1081;

˝ The number of atoms in a A4-paper is ! 1023;

˝ (Assume all atoms are grouped in A4-papers.) The number of A4-papers
in universe ! 1058.

Therefore, one needs to write about 10673{1058 “ 10615 solutions on each A4-
paper, which is quite a number compared with the number of characters of the
King James authorized Bible, which is 3116480 ă 107 .

In spite of these big numbers, let us see that the idea of deducing solu-
tion (2) can be exploited to find a tower of solutions of (1). Let a, b ě 0 with
a` b “ 673 be integers and let pma, na, pa, qaq P N4 be a solution of

ÿ

m3
a “ 102`3a.(3)

Then
ř

m3
a¨103b “ 102`3a`3b “ 102021, so that,

`

ma103b, na103b, pa103b, qa103b
˘

is a solution of
ř

m3 “ 102021. This means that finding tuples pma, na, pa, qaq
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that are root solutions of (3), equations in which the constant term is smaller,
allows to find solutions of equation (1), where the constant term is large. The
smallest root solutions whose components are ordered lexicographically are the
following:

For a “ 0, b “ 673, 13 ` 23 ` 33 ` 43 “ 102.

For a “ 1, b “ 672, there are three root solutions, for which:

63 ` 243 ` 343 ` 363 “105,

103 ` 203 ` 303 ` 403 “105,

123 ` 163 ` 343 ` 383 “105 .

For a “ 2, b “ 671 there are 43 ordered root solutions listed in Table 1.

(0,196,312,396) (44,64,250,438) (92,136,240,436) (155,309,322,322)
(4,122,295,417) (44,100,160,456) (92,244,256,408) (156,176,244,424)
(4,302,304,354) (54,151,288,417) (100,200,300,400) (193,267,299,361)

(14,58,106,462) (58,134,256,432) (100,256,272,396) (200,210,295,385)
(18,107,220,445) (58,159,337,386) (107,184,213,436) (204,256,292,368)
(18,200,232,430) (58,188,319,393) (114,147,277,420) (216,260,298,358)
(22,263,316,369) (60,240,340,360) (114,170,274,418) (225,295,300,330)

(28,44,358,378) (64,65,255,436) (120,160,340,380) (230,288,295,337)
(32,124,148,456) (67,92,352,381) (128,172,292,408) (240,244,256,380)
(37,65,75,463) (70,183,198,441) (145,170,340,375) (260,265,274,351)
(41,57,79,463) (72,195,277,414) (151,282,288,369)

Table 1 – The solutions of the equation x3 ` y3 ` z3 ` v3 “ 108 ordered
lexicographically.

Let us remark that the root solutions, whose components are ordered lexico-
graphically, generate 1ˆ 4! “ 24 solutions (with no restrictions on the order of
the non-negative integer components) of equation (3) with a “ 0 and 3ˆ4! “ 72
solutions of equation (3) with a “ 1. If a “ 2, excluding the 12 permutations
that would have been counted twice, since p155, 309, 322, 322q has tow equal
components, we have 43ˆ 4!´ 12 “ 1020 solutions of equation (3) with a “ 2.
Also, compare with the expected order of magnitude in the last case, which is
« 108{3 “ 464.15 . . .

Much harder is to find by brute force the next root solutions. For a “ 3,
b “ 670, the first ordered solutions are:

03 ` 19603 ` 31203 ` 39603 “1011,

33 ` 6493 ` 17753 ` 45493 “1011 .
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Notice in the lists the towers of solutions being formed: p1,2,3,4q;p10, 20, 30, 40q;
p100, 200, 300, 400q and p6, 24, 34, 36q; p60, 240, 340, 360q and p0, 196, 312, 396q;
p0, 1960, 3120, 3960q.

As the power of the constant terms increases, it is more and more difficult
to find corresponding new root solutions, despite their number increases fast.
These solutions produce solutions of the original equation (1) with fewer and
fewer ending zeros. Thus, the unwished but inspiring formulation of Problem
2b raises the question of finding particular solutions of equation (1), since
there are so many solutions, around 10673, but the probability to find one is
very small, about 10673{102021 “ 10´1348.

Problem 1. Find a solution of equation m3 ` n3 ` p3 ` q3 “ 102021

whose components do not end with no zeros. More generally, find solutions of
general Waring problems whose components are not tower-wise related to their
constant term.

2. A COVERING PROBLEM AND A QUESTION: IS IT TRUE
THAT PRIME NUMBERS ARE SUPERABUNDANT?

In this section we discuss a generalization of a problem of Pillai [38]
regarding finite sequences of consecutive integers with no member relatively
prime to all the others. The problem appears in a question about the repre-
sentation of a product of consecutive integers as a perfect power. Pillai treats
the problem in a series of papers [38], [39] and Brauer [5] is the first to prove
completely the main conjecture of Pillai. Later, Eggeleton [21] revisits Pillai’s
problem introducing a new language in terms of graphs and gives new proofs
to the results of Pillai and Brauer. More recently, Ghorpade and Ram [46]
generalize the results for arithmetical progressions in integral domains. The
theme was also met in several other contexts, whose links can be found by
starting with the references within the cited papers.

Let us consider the Eratosthenes sieve as a reverse process. Most of the
discussion here can take place in a broader context, with numbers being not
necessarily prime, but for brevity and simplicity we stick to the primes case.
Thus, let us say we have a large basket P containing all prime numbers and
an endless sequence of equal boxes situated on a straight line L, the analogue
of the set of all integers. Further, let us think of any prime number as a
sequence of pearls arranged on a wire at distances equal to its size. The boxes
of L are supposed to be tall enough to fit any tower of pearls resulting from
successive placement of primes on L. During a placement of a prime p, when
the left-right positioning of a prime is considered to be the suitable, the wire
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is dematerialized and the pearls of p are attracted by gravity to the bottom.
In Figure 1 one can see two such ongoing arrangements.
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Figure 1 – Two ways to fill the boxes of L by pearls of primes. On the left, all
primes are placed with a pearl in the zero box, exactly as in the sequence of

integers, where the box one always remains unoccupied, while on the covering
on the right side, primes 2 and 5 are also placed in the zero box, 3 is shifted to
the right and three more boxes are ready to fit effectively the remaining primes

7, 11, 13 to generate the perfect minimal complete covering of the segment of
length 17.

We call segment any finite sequence of consecutive boxes of L. The length
of a segment S, which we denote by lpSq, is equal to the number of boxes of S.

Our interest will be to place effectively a finite number of primes on
L so that all boxes on a certain segment S are filled. The requirement of
effectiveness demands that the pearls of any prime that is used in such an
arrangement occupy simultaneously at least two boxes of S. This means that
either p is short enough, roughly less than half of lpSq, or p is placed sufficiently
close to the end points of S, so that two boxes of S are filled by the pearls of
p.

We say that an arrangement of a set of primes M Ă P covers a segment
S Ă L if in each box of S there is a pearl of a prime in M. More precisely, in
arithmetic language, identifying a segment of boxes filled by pearls of primes
with a finite sequence of consecutive integers, we say that the segment is covered
completely if no element of the sequence is relatively prime with the product
of all the others.

The description above is a natural solitary PL-game in which the player
places prime pearls in straightly aligned boxes. The objective of the player is
to fill effectively with pearls of primes as many boxes as possible of a certain
segment. The player wins if he succeeds to cover completely any segment of
his choice, and his performance is the better the longer is the length of the
covered segment.

A natural question to ask is whether there actually exist and how long
are such segments that can be covered completely. The short answer is that
there are no segments of length ď 16 that can be completely covered and any
segment of length ě 17 can be completely covered (see [39], [5]).
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Let us remark that the arrangements of primes that generate the sequence
of all integers (call it the Z-arrangement) is close, but always fails to cover
completely a segment with and endpoint at 0 and, more generally, relatively
close to 0. In the Z-arrangement all primes are placed calibrated with a pearl
in the zero box, forming an infinitely high tower. Although, the neighbor boxes
˘1 remained forever unfilled. At the other endpoint, if one wishes to extend
any such almost completely covered segment, even the scantiest possible boxes
always contain a marble of a prime with another marble in the zero box.

A successful arrangement of primes on a completely covered segment of
length 17 is described by a sequence of 17 consecutive integers a, a ` 1, a `
2, . . . a` 16, where a is a solution of the following system of congruences:

(4)

$

’

’

’

&

’

’

’

%

a ” 0 pmod 2, 5, 11q

a ” ´1 pmod 3q

a ” ´2 pmod 7q

a ” ´3 pmod 13q.

By the Chinese Remainder Theorem, the system 4 has infinitely many solutions
a “ 27830 ` 30030k, k P Z. Similarly, any arrangement of a segment S is
reproduced infinitively many times on Z, at places equally spaced in an endless
arithmetic progression.

An exhaustive analysis of all possibilities shows that the shortest complete
covering is a segment of length 17, and the arrangement is unique, except for
its mirror, whose primes are placed in reversed order. The reversed covering
actually has an initial positive solution of the system of congruences analogue
to (4) that is closer to zero. This solution gives the completely covered segment
with boxes labeled: 2184, 2185, . . . , 2200, and the periodicity of the solutions
of the reversed covering is the same: 30030 “ 2 ¨ 3 ¨ 5 ¨ 7 ¨ 11 ¨ 13.

The fact that the complete covering 4 of a segment of length 17 can be
extended naturally to longer segments, both to the left and to the right. This
can be easily seen immediately in the list of the prime factorizations of the
integers in the initial solution. In Figure 2 one sees the barriers at boxes b “ 0
and b “ 17, which are occupied by large non-effective primes. But, we have
the prime 17 available, which can be placed in any of the two boxes to obtain
a complete covering of length 18. Furthermore, if for example, we place 17 in
box labeled b “ 17, we are offered for free complete coverings of segments of
length 18, 19, 20, 21. Then, the new barrier can be overcome by placing p “ 19,
which appears perfectly fit at our disposal. And the process can be continued
finding sufficiently many available primes.

For example, continuing this first come first served arrangement process,
one fills box b “ 999 by prime p “ 647 and has 50 available primes remaining,
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and at a farther place one arrives to fill box b “ 9191 by prime p “ 6043 and
remains with 351 spare ones.

b = -3 n = 27827 = 27827 b = 10 n = 27840 = 2^6 * 3 * 5 * 29

b = -2 n = 27828 = 2^2 * 3^2 * 773 b = 11 n = 27841 = 11 * 2531

b = -1 n = 27829 = 17 * 1637 b = 12 n = 27842 = 2 * 13921

------------------------------------- b = 13 n = 27843 = 3 * 9281

b = 0 n = 27830 = 2 * 5 * 11^2 * 23 b = 14 n = 27844 = 2^2 * 6961

b = 1 n = 27831 = 3 * 9277 b = 15 n = 27845 = 5 * 5569

b = 2 n = 27832 = 2^3 * 7^2 * 71 b = 16 n = 27846 = 2 * 3^2 * 7 * 13 * 17

b = 3 n = 27833 = 13 * 2141 -----------------------------------------

b = 4 n = 27834 = 2 * 3 * 4639 b = 17 n = 27847 = 27847

b = 5 n = 27835 = 5 * 19 * 293 b = 18 n = 27848 = 2^3 * 59^2

b = 6 n = 27836 = 2^2 * 6959 b = 19 n = 27849 = 3 * 9283

b = 7 n = 27837 = 3^3 * 1031 b = 20 n = 27850 = 2 * 5^2 * 557

b = 8 n = 27838 = 2 * 31 * 449 b = 21 n = 27851 = 27851

b = 9 n = 27839 = 7 * 41 * 97 b = 22 n = 27852 = 2^2 * 3 * 11 * 211

Figure 2 – The arrangement of prime pearls in the 17 long completely covered
segment. The factorization of the integers in the boxes b situated inside and

near the minimal solution of the covering.

The question is: for how long this extension can be continued to the right
by the first come first served rule of placing the smallest available prime in the
new empty barrier box?

Conjecture 1. Starting with the minimal covering of length 17 and
applying the ’first come first served rule’, in which the first free box is filled
by the smallest available prime, the extension extension of completely covered
segments can be done indefinitely. Also, a similar fact should occur if one
follows other more or less regular rules and by starting with different completely
or almost completely covered segments.

The ’first come first served rule’ can be applied in different ways: always
to the right of the segment to be extended, or always to its left. Also, other
choices of the first empty box to fill, such as selecting alternatively from the
right and from the left. Some other more complex rules of selection of the
first box to fill seem, experimentally, to be even more efficient. We remark
that in the process, the longer the segment, one may find several distinct
complete coverings for it. Almost always, these coverings may be taken as
the starting point of Conjecture 1, with still the same endless extension effect.
This phenomenon is similar to the generation of the Euclid-Mullin sequences
(see Mullin [36] and [14]), but it offers easier more tangible results.

Furthermore, when the segment becomes long enough, we find seemingly
that we can even skip some of the available odd primes by keeping them out
for good of the arrangement process and without being too much disturbed in
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it. We don’t know to prove that an infinite extension is possible by the “first
come first served’ rule for any starting complete covering, but we can show that
there is a pattern of germ-coverings that produce completely covered segments
of any size. Moreover, these patterns create complete coverings of segments
even when keeping out of the processes any finite set of odd primes. The
lengths of completely covered segments are all integers greater than a certain
size depending only on the set of primes left aside.

Theorem 1 ( [7]). Let k ě 1 and let M “ tq1, . . . , qku be a finite set of
odd primes. Then there exists nM P N such that for any N ě nM there exists a
sequence of N consecutive integers such that no one of them is relatively prime
to the product of all the others. Moreover, the greatest common divisor of any
number in the sequence and the product of all the others is divisible by a prime
that is different to any q PM.

Theorem 1 is effective, meaning that the bound nM can be calculated
explicitly, and it contains the conjecture of Pillai as a particular case.

Corollary 1 (Brauer [5]). For any N ě 17, there exists a sequence
of N consecutive integers such that no one of them is relatively prime to the
product of all the others.

As an example of a choice of M in Theorem 1, if the the first odd prime,
q “ 3, is excluded from the operation of filling the boxes, all segments of lengths
greater than some integer smaller than 1300 can be completely filled.

Corollary 2. For any N ě 1300, there exists a sequence of N consec-
utive integers such that no one of them is relatively prime to the product of all
the others, and moreover, the greatest common divisor of any integer in the
sequence and the product of all the others divided by the largest power of 3 in
its decomposition is ě 1.

Using a different initial arrangement and taking account of the larger
number of boxes that might not be filled by the pearls of the even prime q “ 2,
one can still show that Theorem 1 holds true even with the restriction imposing
the primes to be odd is removed.

Theorem 2 ( [7]). Let k ě 1 and let M “ tq1, . . . , qku be a set of prime
numbers. Then there exists nM P N such that for any N ě nM there exists a
sequence of N consecutive integers such that none of them is relatively prime
to the product of all the others. Moreover, the greatest common divisor of any
number in the sequence and the product of all the others is divisible by a prime
that is different to any q PM.
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From Theorem 2 it follows that the chances of a player to win remain
intact, no matter his initial choices for a finite number of steps. The only
possible inconvenience might be just the extension of the length of the segment
that would ensure his win.

Corollary 3. A player of the solitary PL-game has a strategy to win
no matter what choices he followed for a finite number of moves.

3. CONSTANT DIGIT NUMBERS IN THE SEQUENCE OF
SELF-POWERS

Usually, according to the law of large numbers, one expects that two
sparse sequences of integers have few points of intersections. This happens
even when there is some regularity in the definition of the two sequences, but
their nature is different. Is it possible that the number of points of incidence is
infinite? In the following the two sequences we will consider are the sequence
of self-powers and the sequence of integers whose representation in base b (we
restrict to the case b “ 10) has all digits equal.

For any non-negative integer n, let lpnq denote the number of digits of n.
We say that n P N is a constant word number if lpnq has all digits equal. Our
startling example was noticed two years ago [6], [16] with the following match:

(5) l
`

20172017
˘

“ 6666,

so 20172017 is a constant word number in base 10. Remark that one needs
some space to write the digits of 20172017, since a dense A4 sheet may hardly
contain 6000 characters.

All small numbers are constant word numbers, since lpnq “ 1 for all
n ď 999 999 999. The next constant word number is 1010, which is the first
member of a group that ends with 1011 ´ 1. They all have 11 digits. Con-
stant word numbers appear in groups that are longer and longer but farther
and farther apart, like in a sort of generalized geometric progression. These
groups are composed of numbers that have 1, 11, 22, . . . , 99, 111, 222, . . . , 999,
1111, 2222, . . . digits, respectively.

In view of example (5), one might wonder if there are other special years,
for which their self-power is a constant word number. And the answer is that
there are. The previous one occurred 300 years before, since 17171717 has 5555
digits. The next close misses are 2312 and 2602, since l

`

23122312
˘

“ 7778 and
l
`

26022602
˘

“ 8887. For the next real special years, we have to wait till 2889
and 3173, for which l

`

28892889
˘

“ 9999 and l
`

31733173
˘

“ 11111.
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The list of the constant word numbers starts with 1, 2, . . . , 9, 10, 35, 46, 51,
194, 234, 273, 349, 423 (see Table 2 for the number of digits of their self powers).

n 1-9 10 35 46 51 194 234 273 349 386 423 1411 1717 2017 2889
l pnnq 1 11 55 77 88 444 555 666 888 999 1111 4444 5555 6666 9999

Table 2 – The first 23 self powers constant word numbers.

And there are more such self power constant word numbers, for example
n “ 631 296 394, for which l pnnq has 5 555 555 555 digits.

Question 1. Given the following two sequences: S1 of the constant word
numbers, and S2 of the number of digits of self powers, that is,

S1 : 1, 2, . . . , 9, 11, 22, 33, . . . , 99, 111, 222, . . . , 999, 1111, 2222, . . .

S2 : l pnnq , for n ě 1,

how many common points do they have?

Checking the gaps, we find that two type of gaps that increase exponen-
tially combine to separate the elements of S1, while the average gap between
the elements of S2 is asymptotically equal to e ¨ nn`1, for n ě 1.

We can also consider pairs of constant word self powers. We say that m
and n are amicable constant word self powers if l pmnq and l pnmq are constant
word numbers. For example, such amicable pairs are: p4, 368q since 4368 has
222 digits and 3684 has 11 digits; p39, 698q since 39698 has 1111 digits and 69839

has 111 digits; and p48, 66q since 4866 has 111 digits and 6648 has 88 digits.

More generally, we look at any size analogue of amicable pairs. Thus,
for any k ě 1, we say that a tuple of positive integers pm1, . . . ,mkq is a tu-
ple of amicable constant word of self powers if each of the numbers l pmm2

1 q,
l pmm3

2 q,. . . , l
`

mmk
k´1

˘

, and l
`

mm1
k

˘

are written with only one digit. If k “ 1
the amicable k-tuples coincide with self powers constant word numbers. Here
are some examples of amicable tuples:

˝ p26, 62, 49q: 2662 ø 88 digits; 6249 ø 88 digits; 4926 ø 44 digits

˝ p49, 39, 62q: 4939 ø 66 digits; 3962 ø 99 digits; 6249 ø 88 digits.

˝ p26, 31, 22, 49q: 2631 ø 44 digits; 3122 ø 33 digits; 2249 ø 66 digits;
4926 ø 44 digits

˝ p66, 54, 25, 47q: 6654 ø 99 digits; 5425 ø 44 digits; 2547 ø 66 digits;
4766 ø 111 digits.
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Counting k amicable tuples with components less than a given fixed mar-
gin, we found that the chances to find an amicable k tuple decrease with k,
although the total number of k amicable tuples increases significantly with k.
Then, again, the basic question is whether there are really an infinite number
of such amicable tuples.

Question 2. How many amicable tuples of constant word self powers ex-
ist?

4. CONTRASTING SHAPES OF STURMIAN WORDS

A common preconception at that initial shallow contact with a problem
of a probabilistic nature regarding the parity of the involved objects is the
expectation of a fifty-fifty occurrence of odds and evens. We present a case in
which there is a clear bias between odds and evens, in fact the reflection of
a plainly wide spread phenomenon regarding the parity of the divisors of the
terms of sequences belonging to some quite different classes [17].

Our object here are the ’simplest’ non-finally periodic binary sequences.
These are known as Sturmian words and the simplicity condition for a binary
word w is the requirement that pwpnq “ n ` 1 for all n ě 1. Here pwpnq
is the complexity function of w, which by definition counts the number of
distinct sub-words of length n. There is a gap from Sturmian words to the
class of ultimately periodic sequence, whose characteristic is the fact that their
complexity function is bounded.

Since their introduction by Hedlund and Morse [35], Sturmian words
were intensely studied by different authors within a broad area of interests
(see [2–4,27,29–33,37,44]).

Following the ideas presented in [16] and [18], we wish to show the two
contrasting faces of Sturmian words, the more regular fractal-type face and the
the random looking one. The asymptotic bias slope of the parity of the divisors
function [16] and [18] is a type of phenomenon seen also in other contexts, such
as those discussed in the following works: [8–13,15,26,45].

4.1. Fractal face of Sturmian words

A classic example of Sturmian words is the Fibonacci word, generalized
by Dumaine [20], and Ramı́rez et al. [41], [42]. They are generated using the
concatenation operation in their defining recursive formula.

A general convenient way to define Sturmian words is using the ro-
tation function with two parameters modulo one. Denote Rθpϕq “ ϕ ` θ
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pmod 1q, where ϕ P r0, 1q and suppose θ is irrational. Then define the word

w “ w1w2 ¨ ¨ ¨ , with letters wn “ a if R
pnq
θ pϕq P r0, θq and wn “ b, else. For

example:

R?7{7p0.2q generates w “ abbababbabbababbababbabbababbabbab . . .

Rπ{8p0.2q generates w “ abbababbababbababbababbababbabbaba . . .
(6)

Notice that both words in (6) contain exactly three distinct sub-words of length
2 and aa is not a sub-word, verifying the particular case of the complexity
condition pwp2q “ 3.

A standard drawing rule named the odd-even drawing rule, was used
originally to draw Fibonacci fractals [20], [22]. Starting at the origin and
looking up, the curve associated to the Sturmian word w “ w1w2w3 . . . are
constructed as follows:

˝ wn “ a: walk one step forward;

˝ wn “ b and n even: walk one step forward and turn left 90˝;

˝ wn “ b and n odd: walk one step forward and turn right 90˝.

Applying the odd-even drawing rule to arbitrary Sturmian words we found
a great variety of fractal-type shapes. Two examples are shown in Figures 3
and 4. Let us mention that in various experiments we have noticed that there
are many unexpected contrasting situations related to the complexity of the
curves and that of the generators. For example, it is not rare to find simpler
curves if the rotation parameter θ is transcendent than in the case where θ is
algebraic.

4.2. Random walks of the divisor parity slope on Sturmian
trajectories

Fix the alphabet A “ ta, bu and let w “ w1w2 ¨ ¨ ¨ be a word, with letters
wj P A. We define the following counters of the parity of the divisors ranks:

owpnq :“ |tj P N : j divides n,wj “ b and n{j is odd u|,

ewpnq :“ |tj P N : j divides n,wj “ b and n{j is even u| .

To illustrate the meaning of the above parity function, let n ě 1, suppose
n “ r ¨ s and make the association of the rank to the pair of the divisors:
n ù pr, sq. Then, the r–flag checks the letter wr (is it a or b?) and, if the flag
is right, the parity of s increments correspondingly either owpnq or ewpnq. The
calculation of owpnq and ewpnq ends after all the pairs of the divisors of n are
evaluated.
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Figure 3 – Fractal type curves generated by the odd-even drawing rule applied
to the Sturmian word defined by the rotation R?7{7p0.2q. The image on the
left represents the trajectory after 1000 steps and the one on the right after

20000 steps (so the image on the left side can be found embedded in image on
the right side).

Examples: Let w “ abbaabbbaaba . . . . Then, we have:

n “ 8 ù p1, 8q w1 “ a ­X
n “ 8 ù p2, 4q w2 “ b X, 4 even
n “ 8 ù p4, 2q w4 “ a ­X
n “ 8 ù p8, 1q w8 “ b X, 1 odd

n “ 9 ù p1, 9q w1 “ a ­X
n “ 9 ù p3, 3q w3 “ b X, 3 odd
n “ 9 ù p9, 1q w9 “ a ­X

Therefore:

owp8q “ 1, ewp8q “ 1 and owp9q “ 1, ewp9q “ 0.

The parity functions ewpnq and owpnq are quite irregular and we calculate
their difference:

Dwpnq “ owpnq ´ ewpnq .
The difference of the divisors parity functions preserves the degree of irregu-
larity of ewpnq and owpnq, taking negative, zero and positive values. For each
Sturmian word, Dwpnq generates a path drawn by a rule similar to the odd-even
drawing rule used to draw the face-type fractal of w. Here, instead, we replace
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Figure 4 – Fractal curves generated by the odd-even drawing rule applied to
the Sturmian word defined by the rotation Rπ{8p0.2q. The image on the left
side represents the trajectory after 200 steps and the one on the right side is

the continuation for a total of 20000 steps.

the odd-even conditions by the negative-positive sign of Dwpnq, respectively,
and just draw a red dot at the point reached on the path if Dwpnq “ 0. The
aspect of the path is always of a random walk. Two representative examples
are shown in Figure 5.

In order to draw information on such a irregular function, the authors
of [16] and [18] estimated the mollified average of Dwpnq, which is defined by

Mwpxq :“
ÿ

nďx

´

1´
x

n

¯

Dwpnq .

In the following we present a sketch of the estimation of Mwpxq, which
shows the asymptotic prevalence of the odd divisors over the even ones on any
Sturmian word (see [16] and [18] for complete details of the proof). It turns out
that Mwpxq has an asymptotic behavior whose limit depends on the density:

βw :“ lim
nÑ8

|t1 ď j ď n : wpjq “ bu|

n
,

which does exists for any Sturmian words. As an example, the density of the

Fibonacci word [20] is βw “
3´
?
5

2 “ 0.3819660 . . . .
The estimation of Mwpxq is made by first translating the word w into an

analytic language as the coefficients of the Dirichlet series

F pH,w, sq :“
8
ÿ

n“1

Hpwpnqq

ns
,
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Figure 5 – The first 2000 steps of two random walks generated by the parity
divisors slope of Sturmian words defined by rotations Rθpϕq, with ϕ “ 0.2 and

θ “
?

7{7 (left side) and θ “ π{8 (right side). The red dots are drawn to
indicate the zero-length steps (places where the odd and even divisor parity

functions are equal).

where Hpaq “ 0 and Hpbq “ 1. The series F pH,w, sq is absolutely convergent
in the half-plane Repsq ą 1 and its coefficients are related to βw through the
limit

βw “ lim
nÑ8

1

n

ÿ

1ďjďn

Hpwpjqq .

Then, by applying the Perron 2nd formula [25], Mwpxq can be expressed as a
complex integral:

Mwpxq “
1

2πi

ż c`i8

c´i8

`

1´ 1
2s´1

˘

ζpsqF pH,w, sqxs

sps` 1q
ds, x ě 1, c ą 1 .

The integral is estimated by moving the path of integration to the left of the
pole at s “ 1 and applying the residue theorem [49].
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Theorem 3. For any Sturmian word w and any δ ą 0, we have

(7) Mwpxq “
βw log 2

2
x`Oδ

´

x
1
3
`δ
¯

.

In conclusion, since the main term in the estimate (7) becomes positive
for x large enough, it follows that there is a significant quantifiable bias towards
the odd divisors of any Sturmian word.
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[10] C. Cobeli, M. Vâjâitu, and A. Zaharescu, The distribution of rationals in residue classes
Math. Rep. (Bucur.) 14 (64) (2012), 1, 1–19.

[11] C. Cobeli and A. Zaharescu, Generalization of a problem of Lehmer. Manuscripta Math.
104 (2001), 3, 301–307.

[12] C. Cobeli and A. Zaharescu, The order of inverses mod q. Mathematika 47 (2002), 1-2,
87–108.



668 C. Cobeli 18

[13] C. Cobeli and A. Zaharescu, On the Farey fractions with denominators in arithmetic
progression. J. Integer Seq. 9 (2006), 3, Article 06.3.4.

[14] C. Cobeli and A. Zaharescu, Promenade around Pascal Triangle – Number Motives.
Bull. Math. Soc. Sci. Math. Roumanie 56 (104) (2013), 1, 73–98.

[15] C. Cobeli and A. Zaharescu, A growth model based on the arithmetic Z-game. Chaos
Solitons & Fractals 91 (2016), 136–147.

[16] C. Cobeli, Order and disorder in integer sequences. Commemorative session dedicated
to mentor Nicolae Popescu, Bucharest, June 29, 2017.

[17] C. Cobeli and A. Zaharescu, A bias parity question for Sturmian words. Preprint. arXiv:
1811.06509 (1918).

[18] C. Cobeli and A. Zaharescu, Random walks on the divisors parity bias slope of Sturmian
trajectories. Manuscript in preparation, 2019.

[19] J. M. Deshouillers, F. Hennecart, and B. Landreau, 7 373 170 279 850. Math. Comp. 69
(2000), 229, 421–439.

[20] Alexis Monnerot-Dumaine, The Fibonacci word fractal. Preprint, https://hal.archives-
ouvertes.fr/hal-00367972, 2009.

[21] R. B. Eggleton, Common factors of integers: a graphic view. Discrete Math. 65 (1987),
2, 141–147.

[22] Tyler Hoffman and Benjamin Steinhurst, Hausdorff dimension of generalized Fibonacci
word fractals. Fractals 26 (2018), 01, 1850012.

[23] C. Hooley, On the representations of a number as the sum of four cubes: II. J. London
Math. Soc. (2) 16 (1977), 424–428.

[24] C. Hooley, On the representations of a number as the sum of four cubes: I. Proc. London
Math. Soc. (3) 36 (1978), 117–140.

[25] A. E. Ingham, The distribution of prime numbers. Cambridge Tracts 30, Cambridge
University Press, 1932.
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