
The Seven Virtues of Simple Type Theory∗

William M. Farmer†

McMaster University

20 December 2007

(Minor revisions: 5 December 2019)

Abstract

Simple type theory, also known as higher-order logic, is a natural
extension of first-order logic which is simple, elegant, highly expressive,
and practical. This paper surveys the virtues of simple type theory and
attempts to show that simple type theory is an attractive alternative
to first-order logic for practical-minded scientists, engineers, and math-
ematicians. It recommends that simple type theory be incorporated
into introductory logic courses offered by mathematics departments
and into the undergraduate curricula for computer science and soft-
ware engineering students.

1 Introduction

Mathematicians are committed to rigorous reasoning, but they usually shy
away from formal logic. However, when mathematicians really need a for-
mal logic—e.g., to teach their students the rules of quantification, to pin
down exactly what a “property” is, or to formalize set theory—they almost
invariably choose some form of first-order logic. Taking the lead of mathe-
maticians, scientists and engineers usually choose first-order logic whenever
they need a formal logic to express mathematical models precisely or to
study the logical consequences of theories and specifications carefully. In

∗This paper is published in: Journal of Applied Logic, 6:267–286, 2008, available at
https://doi.org/doi:10.1016/j.jal.2007.11.001. This research was supported by
NSERC.
†Address: Department of Computing and Software, McMaster University, 1280 Main

Street West, Hamilton, Ontario L8S 4K1, Canada. E-mail: wmfarmer@mcmaster.ca.

1

science and engineering as well as in mathematics, first-order logic reigns
supreme!

A formal logic can be a theoretical tool for studying rigorous reasoning
and a practical tool for performing rigorous reasoning. Today mathemati-
cians sometimes use formal logics as theoretical tools, but they very rarely
use them as practical tools. Scientists and engineers do sometimes use formal
logics as practical tools—but not often. Tomorrow things will be different.
In the future, mathematicians, scientists, and engineers will routinely em-
ploy computer systems—the successors of today’s computer algebra systems
and computer theorem proving systems—that mechanize various aspects of
mathematical reasoning. In order to be trustworthy, these systems will in-
evitably be based on formal logics. Also, both theoreticians and practitioners
will utilize huge digital libraries of mathematics. The mathematical knowl-
edge in these libraries will be formalized, organized, certified, searched, and
retrieved with the help of formal logics.

First-order logic is certainly an effective logic for theory, but it is an
awkward logic for practice. There is little built-in support for reasoning
about higher-order objects such as sets and functions in first-order logic. As
a result, many basic mathematical concepts, such as the transitive closure
of a relation and the completeness principle for the real numbers, cannot
be expressed in first-order logic directly. The overhead of formalizing basic
mathematics like abstract algebra and calculus in first-order logic is quite
high: one has to start with a sophisticated theory of sets or functions. More-
over, mathematical statements that are succinct in informal practice often
become verbose and unwieldy when expressed in first-order logic because
first-order logic lacks an abstraction mechanism for building predicates and
functions and a definite description mechanism for specifying values. Math-
ematicians almost never use first-order logic to actually do mathematics; the
benefits fall well short of justifying the pain and tedium that is involved in
developing mathematical ideas in first-order logic.

Are there any logics that are more effective for practice? A good candi-
date is an old relative of first-order logic called simple type theory.

Simple type theory, also known as higher-order logic, is a natural ex-
tension of first-order logic. It is based on the same principles as first-order
logic but differs from first-order logic in two principal ways. First, terms
can be higher-order, i.e., they can denote higher-order values such as sets,
relations, and functions. Predicates and functions can be applied to higher-
order terms, and quantification can be applied to higher-order variables in
formulas. Second, syntactic objects called types, which denote nonempty
sets of values, are used to organize terms. They restrict the scope of vari-

2

ables, control the formation of terms, and provide a means to classify terms
by their values.

Simple type theory is a logic with outstanding virtues. It is simple,
elegant, highly expressive, and practical. Although it is familiar to many
computer scientists, most mathematicians, engineers, and other scientists
have never heard of it. This is due in large part to the fact that simple type
theory is rarely taught in mathematics departments at either the undergrad-
uate or graduate level. However, an understanding of simple type theory
would be beneficial to anyone who needs to work with or apply mathematical
logic. This is particularly true for:

• Engineers who need to write (and read) precise specifications.

• Computer scientists who employ functional programming languages
such as Lisp, ML, and Haskell.

• Software engineers who use higher-order theorem proving systems to
model and analyze software systems.

• Mathematics students who are studying the foundations of mathemat-
ics or model theory.

In this paper, we will present a pure form of simple type theory that we
call stt and then use it to illustrate seven virtues of simple type theory. Our
ultimate objective is to show that simple type theory is an attractive alter-
native to first-order logic for practical-minded scientists, engineers, and even
mathematicians. The paper ends with a recommendation that simple type
theory be incorporated into introductory logic courses offered by mathemat-
ics departments and into the undergraduate curricula for computer science
and software engineering students.

We assume that the reader is familiar with the syntax, semantics, and
proof theory of first-order logic as it is usually presented in an introductory
undergraduate logic course.

2 History

B. Russell proposed in 1908 [52] a logic now known as the ramified theory
of types. Russell wanted a logic that would be free from the set-theoretic
paradoxes such as Russell’s paradox about the class of all classes that are not
members of themselves as well as the semantic paradoxes such as Richard’s
paradox concerning the cardinality of the set of definable real numbers [26].

3

As a result, the ramified theory of types was formulated with the safety
principle (the so-called vicious-circle principle) that the class C = {x : ϕ(x)}
can be defined only if C itself is not in the range of any variable in ϕ. This
safety principle is enforced with a hierarchy of levels of types. Russell and
A. Whitehead used the ramified theory of types as the logical basis for their
monumental, three-volume Principia Mathematica [56], the first attempt to
formalize a significant portion of mathematics starting from first principles.
The great achievement of Principia Mathematica, unfortunately, is marred
by the fact that, in order to formalize standard proofs of induction, Russell
introduced the Axiom of Reducibility which in effect nullifies the safety
principle [21].

In the 1920s, L. Chwistek [8] and F. Ramsey [49] noticed that, if one is
willing to give up Russell’s safety principle, the hierarchy of levels of types in
the ramified theory of types can be collapsed. The resulting simplified logic
is called the simple theory of types or, more briefly, simple type theory. It
is equivalent to the ramified theory of types plus the Axiom of Reducibility.
Detailed formulations of simple type theory were published in the late 1920s
and early 1930s by R. Carnap, K. Gödel, W. V. O. Quine, and A. Tarski
(see [22]).

In 1940 [7] A. Church presented an elegant formulation of simple type
theory, known as Church’s type theory, that is based on functions instead of
relations and that incorporates special machinery to build and apply func-
tions (lambda-notation and lambda-conversion). Church’s paper has had a
profound influence on computer science, especially in the areas of program-
ming languages, computer theorem proving, formal methods, computational
logic, and formalized mathematics.1 Today the field of type theory in com-
puter science is largely the study of Church-style (classical and constructive)
logics that are based on functions and equipped with lambda-notation and
lambda-conversion.

Church’s type theory has been extensively studied by two of Church’s
students, L. Henkin and P. Andrews. Henkin proved in [28] that there is a
sense in which Church’s type theory is complete (see section 7). Henkin also
showed in [29] that Church’s type theory could be reformulated using only
four primitive notions: function application, function abstraction, equality,
and definite description (see section 4). Andrews devised in [3] a simple and
elegant proof system for Henkin’s reformulation of Church’s type theory (see

1In the September 2006 list of the most cited articles in Computer Science on the
CiteSeer Web site (http://citeseer.ist.psu.edu/), Church’s paper [7] is ranked 358
with 406 citations and is the oldest paper with more than 300 citations.

4

section 6). Andrews formulated a version of Church’s type theory called Q0

that employs the ideas developed by Church, Henkin, and himself. Andrews
meticulously describes and analyzes Q0 in his textbook [4], and he and his
students have implemented a computer theorem prover based on Q0 called
tps [5].

Like first-order logic, Church’s type theory is classical in the sense that
it admits nonconstructive reasoning principles such as the law of excluded
middle and double negation elimination. P. Martin-Löf introduced in 1972 a
constructive form of type theory now known as Martin-Löf type theory [42].
Most constructive type theories, including Martin-Löf type theory, embody
the Curry-Howard isomorphism [33] that elegantly connects proving theo-
rems in type theory to writing programs in lambda calculus. Constructive
type theories also have a close connection to category theory and have been
extensively used to formalize constructive mathematics and ideas from the-
oretical computer science [12, 39].

Since the 1980s, type theory has been a popular choice for the logical
basis of computer theorem proving systems. hol [24], imps [20], Isabelle [46],
ProofPower [40], pvs [45], and tps are examples of systems based on versions
of Church’s type theory, and Agda [11], Automath [44], Coq [10], lego [48],
and Nuprl [9] are examples of systems based on constructive type theories.

3 The Definition of STT

There are many variants of simple type theory. stt is a version of Church’s
type theory [7]. stt is simple type theory boiled down to its essence. It is
convenient for study, but it is not highly practical for use. In section 8, we
will consider a number of ways that stt can be extended to a more practical
form of simple type theory.

We will begin our exploration of simple type theory by defining the
syntax and semantics of stt.

3.1 Syntax

stt has two kinds of syntactic objects. “Expressions” denote values includ-
ing the truth values t (true) and f (false); they do what both terms and
formulas do in first-order logic. “Types” denote nonempty sets of values;
they are used to restrict the scope of variables, control the formation of
expressions, and classify expressions by their values.

A type of stt is a string of symbols defined inductively by the following
formation rules:

5

1. Type of individuals: ι is a type.

2. Type of truth values: ∗ is a type.

3. Function type: If α and β are types, then (α→ β) is a type.

Let T denote the set of types of stt. The definition of a type shows that T
is composed of two base types, ι and ∗, and an infinite hierarchy of function
types built from the base types. If a type γ denotes a domain Dγ of values,
then a function type (α → β) denotes the domain of total functions from
Dα to Dβ.

The logical symbols of stt are:

1. Function application: @.

2. Function abstraction: λ.

3. Equality : =.

4. Definite description: I (capital iota).

5. Type binding : : (colon).

6. An infinite set V of symbols used to construct variables (see below).

Function abstraction defines a function x 7→ E from an expression E usu-
ally involving x. Definite description builds an expression that denotes the
unique value that satisfies a property P . Type binding constructs a variable
by assigning a type to a member of V.

A language of stt is a pair L = (C, τ) where is C is a set of symbols
called constants and τ : C → T is a total function. That is, a language is a
set of symbols with assigned types (what computer scientists usually call a
“signature”). The constants are the nonlogical primitive symbols that are
used to construct the expressions of the language.

An expression E of type α of an stt language L = (C, τ) is a string of
symbols defined inductively by the following formation rules:

1. Variable: If x ∈ V and α ∈ T , then (x : α) is an expression of type α.

2. Constant : If c ∈ C, then c is an expression of type τ(c).

3. Function application: If A is an expression of type α and F is an
expression of type (α→ β), then (F @ A) is an expression of type β.

6

Variable (x : α)
Constant c
Function application (F @ A)
Function abstraction (λx : α . B)
Equality (E1 = E2)
Definite description (Ix : α . A)

Table 1: The Six Kinds of stt Expressions

4. Function abstraction: If x ∈ V, α ∈ T , and B is an expression of type
β, then (λx : α . B) is an expression of type (α→ β).

5. Equality : If E1 and E2 are expressions of type α, then (E1 = E2) is
an expression of type ∗.

6. Definite description: If x ∈ V, α ∈ T , and A is an expression of type ∗,
then (Ix : α . A) is an expression of type α.2

A string of symbols is considered an expression only if it can be assigned a
type according to the rules given above. Notice that the type assigned to
an expression is always unique. “Free variable”, “closed expression”, and
similar notions are defined in the obvious way.

We will see shortly that the value of a definite description (Ix : α . A)
is the unique value x of type α satisfying A if it exists and is a canonical
“error” value of type α otherwise. For example, if f is a constant with type
(α→ α), then

(Ix : α . ((f @ (x : α)) = (x : α)))

denotes the unique fixed point of f if it exists and denotes an error value
otherwise.

Notice that different kinds of expressions are distinguished by type in-
stead of by form, as shown by the following examples. An individual constant
of L is a constant c ∈ C such that τ(c) = ι. A formula of L is an expression
of L of type ∗. A predicate of L is an expression of L of type (α → ∗) for
any α ∈ T .

Let Aα, Bα, Cα, . . . denote expressions of type α. We will often use the
following abbreviation rules to write expressions in a more compact form:

2The definite description operator is often called the iota operator and is represented
by a lower case iota (ι). Russell represented it by an inverted lower case iota (ι). We
represent it by a capital iota (I) or an inverted capital iota (I), whatever one prefers.

7

1. A variable (x : α) occurring in the body B of (2x : α . B), where 2

is λ or I, may be written as x if there is no resulting ambiguity.

2. A matching pair of parentheses in a type or an expression may be
dropped if there is no resulting ambiguity.

3. A function application (F @ A) may be written in the standard form
F (A).

Virtue 1 stt has a simple and highly uniform syntax.

The syntax of stt with types in addition to expressions is a bit more
complex than the syntax of first-order logic. However, the syntax is also
more uniform than the syntax of first-order logic since expressions serve as
both terms and formulas and constants include individual constants, func-
tion symbols, and predicate symbols as well as constants of many other
types. There are no propositional connectives or quantifiers in stt, but we
will see later that these can be easily defined in stt using function applica-
tion, function abstraction, and equality.

3.2 Semantics

The semantics of stt is based on “standard models”. Later in the paper we
will introduce another semantics based on “general models”.

Fix two values t and f with t 6= f to represent true and false. A standard
model for a language L = (C, τ) of stt is a triple M = (D, I, e) where:

1. D = {Dα : α ∈ T } is a set of nonempty domains (sets).

2. D∗ = {t, f}, the domain of truth values.

3. For α, β ∈ T , Dα→β is the set of all total functions from Dα to Dβ.

4. I maps each c ∈ C to a member of Dτ(c).

5. e maps each α ∈ T to a member of Dα.

For each α ∈ T , e(α) is intended to be a canonical “error” value of type α.
Dι, the domain of individuals, is the core domain of a standard model.

It corresponds to the domain of values of a first-order model. Since D∗, the
domain of truth values, is always the set {t, f} of the standard truth values,

8

�� ��Dι

�� ��D∗�� ��Dι→ι
�� ��Dι→∗

�� ��D∗→ι
�� ��D∗→∗�� ��Dι→(ι→ι)

�� ��Dι→(ι→∗) · · ·
...

Table 2: The Domains of a Standard Model of stt

the function domains of a standard model are determined by the choice of
Dι alone. We say that M is infinite if Dι is infinite.

Fix a standard model M = (D, I, e) for a language L = (C, τ) of stt. A
variable assignment into M is a function that maps each variable (x : α) to
a member of Dα. Given a variable assignment ϕ into M , a variable (x : α),
and d ∈ Dα, let ϕ[(x : α) 7→ d] be the variable assignment ϕ′ into M such
that ϕ′((x : α)) = d and ϕ′(X) = ϕ(X) for all X 6= (x : α).

The valuation function for M is the binary function VM that takes as
arguments an expression of L and a variable assignment into M and that
satisfies the six conditions below. (We write VM

ϕ (E) instead of VM (E,ϕ).)

1. Let E be a variable (i.e., E is of the form (x : α)). Then VM
ϕ (E) =

ϕ(E).

2. Let E be a constant of L (i.e., E ∈ C). Then VM
ϕ (E) = I(E).

3. Let E be of the form (F @ A). Then VM
ϕ (E) = VM

ϕ (F)(VM
ϕ (A)), the

result of applying the function VM
ϕ (F) to the argument VM

ϕ (A).

4. Let E be of the form (λx : α . B) where B is of type β. Then
VM
ϕ (E) is the function f : Dα → Dβ such that, for each d ∈ Dα,

f(d) = VM
ϕ[(x:α)7→d](B).3

3Notice that the semantics for function abstraction and definite description is defined
using the same trick (due to Tarski) that is used to define the semantics for universal and
existential quantification in first-order logic.

9

5. Let E be of the form (E1 = E2). If VM
ϕ (E1) = VM

ϕ (E2), then

VM
ϕ (E) = t; otherwise VM

ϕ (E) = f.

6. Let E be of the form (Ix : α . A). If there is a unique d ∈ Dα such
that VM

ϕ[(x:α)7→d](A) = t, then VM
ϕ (E) = d; otherwise VM

ϕ (E) = e(α).3

Let E be an expression of type α of L and A be a formula of L. VM
ϕ (E)

is called the value of E in M with respect to ϕ. VM
ϕ (E) ∈ Dα, and if E is

closed, VM
ϕ (E) does not depend on ϕ. A value d ∈ Dα is nameable if there is

some closed expression E of L such that d is the value of E in M . A is valid
in M , written M |= A, if VM

ϕ (A) = t for all variable assignments ϕ into M .
A sentence of L is a closed formula of L. A is a semantic consequence of a
set Σ of sentences of L, written Σ |= A, if M |= A for every standard model
M for L such that M |= B for all B ∈ Σ.

A theory of stt is a pair T = (L,Γ) where L is a language of stt and Γ
is a set of sentences of L called the axioms of T . A formula A is a semantic
consequence of T , written T |= A, if Γ |= A. A standard model of T is a
standard model M for L such that M |= B for all B ∈ Γ.

Virtue 2 The semantics of stt is based on a small collection
of well-established ideas.

The two semantics of first-order logic and stt are based on essentially the
same ideas: domains of individuals, truth values, and functions; models for
languages; variable assignments; and valuation functions defined recursively
on the syntax of expressions.

We will conclude this section with an examination of isomorphic standard
models.

LetM = (D, I, e) andM ′ = (D′, I ′, e′) be standard models for a language
L = (C, τ) of stt where D = {Dα : α ∈ T } and D′ = {D′α : α ∈ T }. An
isomorphism from M to M ′ is a set {Φα : α ∈ T } of mappings such that:

1. Φα is a bijection from Dα to D′α for all α ∈ T .

2. Φ∗(t) = t and Φ∗(f) = f.

3. Φβ(f(a)) = Φα→β(f)(Φα(a)) for all α, β ∈ T , f ∈ Dα→β, and a ∈ Dα.

4. Φα(I(c)) = I ′(c) for all α ∈ T and c ∈ C with τ(c) = α.

10

Notice that there is no requirement that Φα(e(α)) = e′(α) for all α ∈ T . M
and M ′ are isomorphic if there is an isomorphism from M to M ′.

An expression is definite description free if it does not contain any subex-
pressions of the form (Ix : α . A).

Theorem 1 Let {Φα : α ∈ T } be an isomorphism from M to M ′, ϕ be a
variable assignment into M , ϕ′ be the variable assignment into M ′ that maps
each variable (x : α) to Φα(ϕ((x : α))), and Eα be an expression of L that
is definite description free. Then Φα(VM

ϕ (Eα)) = VM ′
ϕ′ (Eα).

Proof By induction on the structure of expressions. 2

In other words, two isomorphic standard models for the same language
have exactly the same structure except for the choice of error values.

4 Expressivity

On the surface, the expressivity of stt appears to be rather modest. The
formulas of stt are limited to variables, constants, and definite descriptions
of type ∗, equations between expressions of the same type, and applications
of predicates; there are no propositional connectives nor quantifiers. How-
ever, stt can be used to reason about an infinite hierarchy of higher-order
functions constructed over a domain of individuals and a domain of truth
values. Since sets can be represented by predicates, the hierarchy includes a
subhierarchy of higher-order sets constructed from individuals and truth val-
ues. Hidden within this hierarchy is the full power of higher-order predicate
logic.

As Henkin shows in [29], the usual propositional connectives and quan-
tifiers can be defined in a logic like stt using just function application,
function abstraction, and equality. Here are their definitions in stt:

T means (λx : ∗ . x) = (λx : ∗ . x).
F means (λx : ∗ . T) = (λx : ∗ . x).
¬A∗ means A∗ = F.
(Aα 6= Bα) means ¬(Aα = Bα).
(A∗ ∧B∗) means (λ f : (∗ → (∗ → ∗)) . f(T)(T)) =

(λ f : (∗ → (∗ → ∗)) . f(A∗)(B∗)).
(A∗ ∨B∗) means ¬(¬A∗ ∧ ¬B∗).
(A∗ ⇒ B∗) means ¬A∗ ∨B∗.
(A∗ ⇔ B∗) means A∗ = B∗.

11

(∀x : α . A∗) means (λx : α . A∗) = (λx : α . T).
(∃x : α . A∗) means ¬(∀x : α . ¬A∗).
⊥α means Ix : α . x 6= x.
if(A∗, Bα, Cα) means Ix : α . (A∗ ⇒ x = Bα) ∧ (¬A∗ ⇒ x = Cα)

where (x : α) does not occur in A∗, Bα, or
Cα.

Notice that we are using the abbreviation rules given in section 3.1. For
example, the meaning of T is officially the expression

((λx : ∗ . (x : ∗)) = (λx : ∗ . (x : ∗))).

In addition to the definitions of the usual propositional connectives and
quantifiers, we also included above two definitions that employ definite de-
scription. ⊥α is a canonical error expression of type α. if is an if-then-else
expression constructor (i.e., if(A∗, Bα, Cα) denotes the value of Bα if A∗
holds and denotes the value of Cα if A∗ does not hold).

If we fix the type of a variable x, say to α, then an expression of the form
(2x : α . E) may be written simply as (2x . E), where 2 is λ, I, ∀, or ∃.
If desired, all types can be removed from an expression by fixing the types
of the variables occurring in the expression. We will write a formula of the
form (2x1 : α . · · · 2xn : α . A) simply as (2x1, . . . , xn : α . A, where 2 is
∀ or ∃. Similarly, we will write a formula of the form (2x1 . · · · 2xn . A)
(where the types of x1, . . . , xn have been fixed) simply as (2x1, . . . , xn . A),
where 2 is ∀ or ∃.

The definitions above show that, although stt is formulated as a “func-
tion theory”, stt is actually a form of higher-order predicate logic. More-
over, first-order logic, second-order logic, third-order logic, etc. can be “em-
bedded” in stt. The precise statement of this result is:

Theorem 2 Let T be any theory of nth-order logic for any n ≥ 1. Then
there is a theory T ′ of stt such that there is a faithful interpretation of T
in T ′ (i.e., there is a translation Φ from the sentences of T to the sentences
of T ′ such that, for all sentences A of T , T |= A iff T ′ |= Φ(A)).

Because stt is equipped with full higher-order quantification and defi-
nite description, most mathematical notions can be directly and naturally
expressed in stt, especially if types are suppressed. We will give five simple
examples, three in this section and two in the next section, that illustrate
how “higher-order” concepts can be expressed in stt. None of these exam-
ples can be directly expressed in first-order logic.

For the first example, let equiv-rel be the expression

12

λ p : (ι→ (ι→ ∗)) .
∀x : ι . p(x)(x) ∧
∀x, y : ι . p(x)(y)⇒ p(y)(x) ∧
∀x, y, z : ι . (p(x)(y) ∧ p(y)(z))⇒ p(x)(z).

Then equiv-rel(r) asserts that a binary relation r represented (in curryed
form4) as a function of type (ι→ (ι→ ∗)) is an equivalence relation.

For the second example, let compose be the expression

λ f : (ι→ ι) . λ g : (ι→ ι) . λ x : ι . f(g(x)).

If f, g are expressions of type (ι → ι), then compose(f)(g) is an expression
that denotes the composition of f and g as functions.

For the third example, let inv-image be the expression

λ f : (ι→ ι) . λ s : (ι→ ∗) . I s′ : (ι→ ∗) . ∀x : ι . s′(x)⇔ s(f(x)).

If f is an expression of type (ι → ι) representing a function and s is an
expression of type (ι → ∗) representing a set, then inv-image(f)(s) is an
expression of type (ι→ ∗) that represents the inverse image of s under f .

Virtue 3 stt is a highly expressive logic.

In fact, nearly all theorems of mathematics can be straightforwardly
expressed in stt.

Set theory can be formalized as a theory of first-order logic, e.g., as
Zermelo-Fraenkel set theory (zf) or as von-Neumann-Bernays-Gödel set the-
ory (nbg). These first-order theories are extremely expressive but possess
a very complex semantics. One might be tempted to argue that these the-
ories show that first-order logic itself is extremely expressive. They show
something different—that zf and nbg are highly expressive foundations for
mathematics. First-order logic, unlike simple type theory, is not a highly
expressive foundation for mathematics. Simple type theory is not nearly as
expressive as set theory, but its much simpler semantics makes it a far more
suitable general-purpose logic than set theory.

Some readers might be wondering whether definite description is actually
a necessary part of stt. Before we discuss this issue we will need to take a

4The curryed form of a function f : A×B → C is the function f ′ : A→ (B → C) such
that, for all x ∈ A and y ∈ B, f(x, y) = f ′(x)(y). The process of “currying” a function is
named after the logician H. Curry, the founder of combinatory logic.

13

closer look at the nature of expressivity. The expressivity of a logic has two
levels. The theoretical expressivity of a logic is the measure of what ideas can
be expressed in the logic without regard to how the ideas are expressed. The
practical expressivity of a logic is the measure of how readily ideas can be
expressed in the logic. For example, first-order logic with predicate symbols
but no function symbols has the same theoretical expressivity as standard
first-order logic (with both predicate and function symbols) but has much
lower practical expressivity than standard first-order logic.

The use of definite description in expressions of stt can be eliminated ac-
cording to the scheme Russell presented in his famous and highly influential
paper “On Denoting” [51]. Thus definite description is not a necessary the-
oretical component of stt: for every formula employing definite description
there is an equivalent definite-description-free formula. This latter formula
will often be much more verbose than the former. If definite description
were not part of stt, the semantics of stt could be simplified because error
elements would no longer be needed. However, without definite description
it would not be possible to directly express the many mathematical concepts
that are defined in informal mathematics using the form “the x that satisfies
property P” such as the notion of the limit of a function (which is illustrated
in the next section). In summary, removing definite description from stt
would not affect the theoretical expressivity of stt but would significantly
diminish stt’s practical expressivity.

5 Categoricity

Theories are used to specify structures. Some theories (e.g., a theory of
groups) specify collections of structures (e.g., the collection of all groups).
Other theories (e.g., the theory of a complete ordered field) specify a single
structure (e.g., the ordered field of the real numbers). In other words, a
theory specifies the collection of models that belong to the theory. A theory
is categorical if it has exactly one model up to isomorphism. Categorical
theories are very desirable in applications in which a theory is used as a
“model” of a specific complex system.

In his 1889 booklet [47], G. Peano presented a theory of natural num-
ber arithmetic, commonly called Peano Arithmetic. The theory consists of
Peano’s famous five axioms for the natural numbers plus four axioms for
equality. Independently of Peano, R. Dedekind developed in [14] a theory
of natural number arithmetic very similar to Peano Arithmetic. He proved,
in effect, that all structures satisfying Peano’s axioms are isomorphic to the

14

standard structure (N, 0, s) of the natural numbers, i.e., that Peano Arith-
metic is categorical.

Let PA = (L,Γ) be the theory of stt where L = ({0, s}, τ), Γ =
{A1, A2, A3},

1. τ(0) = ι,

2. τ(s) = ι→ ι,

3. A1 is ∀x : ι . s(x) 6= 0,

4. A2 is ∀x, y : ι . s(x) = s(y)⇒ x = y, and

5. A3 is ∀ p : (ι→ ∗) . (p(0)∧ (∀x : ι . p(x)⇒ p(s(x))))⇒ ∀x : ι . p(x).

PA is a very direct formalization of Peano Arithmetic. The type ι denotes
the set N = {0, 1, 2, . . .} of the natural numbers, 0 denotes the first natural
number, and s denotes the successor function. The five clauses of the defi-
nition of PA correspond to Peano’s five axioms for the natural numbers. (A1

says 0 is not a successor, A2 says s is injective, and A3 expresses the induc-
tion principle.) The other basic operations of natural number arithmetic,
such as +, ·, and <, can be defined in PA.

Like Peano Arithmetic itself, PA is categorical. Its unique standard
model (up to isomorphism) is (D, I, e) where Dι = {0, 1, 2, . . .}, I(0) = 0,
I(s) = the successor function on Dι, and e is any function that maps each
type α to a value in Dα.

Peano Arithmetic cannot be directly formalized in first-order logic be-
cause the induction principle involves quantification over predicates, which
is not directly expressible in first-order logic. There is, however, a standard
first-order formalization PA′ = (L′,Γ′) of Peano Arithmetic where L′ is the
first-order language containing an individual constant 0, a unary function
symbol s, and two binary function symbols + and · and where Γ is the
following set of sentences of L′:

1. ∀x . s(x) 6= 0.

2. ∀x, y . s(x) = s(y)⇒ x = y.

3. ∀x . x+ 0 = x.

4. ∀x, y . x+ s(y) = s(x+ y).

5. ∀x . x · 0 = 0.

15

6. ∀x, y . x · s(y) = (x · y) + x.

7. Each sentence A that is a universal closure of a formula of the form

(B[0] ∧ (∀x . B[x]⇒ B[s(x)]))⇒ ∀x . B[x]

where B[x] is a formula of L′.

Clause 7 is an infinite collection of formulas called the induction schema.
It is only an approximation of the induction principle. In fact, the induc-
tion schema includes just a countably infinite number of instances of the
induction principle (one for each equivalence class of formulas related by
logical equivalence), while the induction principle has a continuum number
of instances (one for each property of the natural numbers).

PA′ is not categorical. Since PA′ does not contain all instances of the
induction principle, Dedekind’s proof of the categoricity of Peano Arithmetic
fails. Moreover, PA′ has “nonstandard” models containing infinite natural
numbers by the compactness theorem of first-order logic.

The failure to achieve categoricity for a theory of natural number arith-
metic in first-order logic is not an aberration. Rather it is an instance of
a fundamental weakness of first-order logic that is a simple consequence of
the compactness theorem of first-order logic:

Theorem 3 Any first-order theory that has an infinite model has infinitely
many (infinite) nonisomorphic models.

Thus, a first-order theory that is intended to specify a single infinite struc-
ture cannot be categorical.

Let us consider a second example. It is well known that there is ex-
actly one complete ordered field up to isomorphism, namely, the standard
structure

(R,+, 0,−, ·, 1,−1, pos)

of the real numbers where pos denotes the set of positive real numbers.5

Let COF = (L,Γ) be the theory of stt such that:

• L = ({+, 0,−, ·, 1,−1, pos, <,≤, ub, lub}, τ) where τ is defined by:

5The first categorical axiomatization of the real numbers is generally considered to be
the theory of a maximal ordered Archimedean field presented by D. Hilbert in 1900 [32].

16

Constant c Type τ(c)

0, 1 ι

−, −1 ι→ ι

pos ι→ ∗
+, · ι→ (ι→ ι)

<, ≤ ι→ (ι→ ∗)
ub, lub ι→ ((ι→ ∗)→ ∗)

• Γ is the set of the 18 sentences given below. We assume that the
variables x, y, z are of type ι and the variable s is of type (ι→ ∗).

1. ∀x, y, z . (x+ y) + z = x+ (y + z).

2. ∀x, y . x+ y = y + x.

3. ∀x . x+ 0 = x.

4. ∀x . x+ (−x) = 0.

5. ∀x, y, z . (x · y) · z = x · (y · z).
6. ∀x, y . x · y = y · x.

7. ∀x . x · 1 = x.

8. ∀x . x 6= 0⇒ x · x−1 = 1.

9. 0 6= 1.

10. ∀x, y, z . x · (y + z) = (x · y) + (x · z).
11. ∀x . (x = 0 ∧ ¬pos(x) ∧ ¬pos(−x)) ∨

(x 6= 0 ∧ pos(x) ∧ ¬pos(−x)) ∨
(x 6= 0 ∧ ¬pos(x) ∧ pos(−x)).

12. ∀x, y . (pos(x) ∧ pos(y))⇒ pos(x+ y).

13. ∀x, y . (pos(x) ∧ pos(y))⇒ pos(x · y).

14. ∀x, y . x < y ⇔ pos(y − x).

15. ∀x, y . x ≤ y ⇔ (x < y ∨ x = y).

16. ∀x, s . x ub s⇔ (∀ y . s(y)⇒ y ≤ x).

17. ∀x, s . x lub s⇔ (x ub s ∧ (∀ y . y ub s⇒ x ≤ y)).

18. ∀ s . ((∃x . s(x)) ∧ (∃x . x ub s))⇒ ∃x . x lub s.

Notes:

1. As a result of fixing the types for the variables x, y, z, s, the axioms of
COF are free of types and thus look just like the axioms one might see
in any mathematics textbook.

17

2. We write the additive and multiplicative inverses of x as −x and x−1

instead of as −(x) and −1(x), respectively.

3. + and ∗ are formalized by constants of type (ι→ (ι→ ι)) representing
curryed functions. However, we write the application of + and ∗ using
infix notation, e.g., we write x + y instead of +(x)(y). < and ≤ are
handled in a similar way. We also write x− y instead of x+ (−y).

4. pos is a predicate that represents the set of positive real numbers.

5. ub(x)(s) and lub(x)(s) say that x is an upper bound of s and x is the
least upper bound of s, respectively. We write ub(x)(s) and lub(x)(s)
as x ub s and x lub s, respectively, using infix notation.

6. Sentence 18 expresses the completeness principle of the real numbers,
i.e., that every set of real numbers that is nonempty and has an upper
bound has a least upper bound.

COF is a direct formalization of the theory of a complete ordered field.
COF is categorical; its unique standard model (up to isomorphism) is (D, I, e)
where Dι = R, the set of real numbers, I assigns +, 0, −, ·, 1, −1, pos, <,
≤, ub, lub their usual meanings, and e is any function that maps each type
α to a value in Dα.

Like Peano Arithmetic, the theory of a complete ordered field is a theory
of a single fundamental infinite structure that cannot be directly formalized
in first-order logic as a categorical theory since the completeness principle
involves quantification over predicates.

Virtue 4 stt admits categorical theories of infinite structures.

It is worthwhile to note that PA and COF are both formalized using only
a small portion of the machinery of stt. In fact, both Peano Arithmetic
and the theory of a complete ordered field can be formalized in second-order
logic as categorical theories.

We will conclude this section by giving the fourth and fifth examples
that illustrate the expressivity of stt.

For the fourth example, let abs be the expression

λ r : ι . if(0 ≤ r, r,−r)

in COF. abs denotes the absolute value function on the real numbers.

18

For the fifth example, let lim be the expression

λ f : (ι→ ι) . λ a : ι .
(I l : ι . (∀ ε : ι . 0 < ε⇒

(∃ δ : ι . 0 < δ ∧
(∀x : ι . (abs(x− a) < δ ∧ x 6= a)⇒ abs(f(x)− l) < ε))))

in COF. Suppose f is an expression of type of (ι→ ι) and a is an expression
of type ι in COF. Then lim(f)(a) denotes the limit of f at a if f approaches
a limit at a; otherwise lim(f)(a) denotes the canonical error value of type
ι. Notice that the use of definite description in this example enables the
standard definition of a limit of a function to be directly formalized.

6 Provability

Up to this point we have said nothing about formal proof. In this section
we investigate provability in stt. We begin by giving some definitions.

A (Hilbert-style) proof system for stt consists of a finite set of axiom
schemas and rules of inference. Let P be a proof system for stt and T =
(L,Γ) be a theory of stt. A finite sequence of formulas of L is a proof of
a formula A from T in P if A is the last member of the sequence and every
member of the sequence is an instance of one of the axiom schemas of P, a
member of Γ, or is inferred from previous members by a rule of inference of
P.

Let T `P A mean there is a proof of A from T in P. P is sound if, for
every theory T = (L,Γ) and formula A of L,

T `P A implies T |= A.

P is complete if, for every theory T = (L,Γ) and formula A of L,

T |= A implies T `P A.

It is well known that there is no sound and complete proof system for
second-order logic, and hence, it is not surprising that there is no sound and
complete proof system for stt. On the surface, this may appear to be a
weakness of stt, but indeed it is a sign of its strength. The incompleteness
of stt is an immediate consequence of Gödel’s Incompleteness Theorem.

Theorem 4 (Incompleteness) There is no sound and complete proof sys-
tem for stt.

19

Proof Suppose P is a sound and complete proof system for stt. By the
soundness of P and Gödel’s Incompleteness Theorem, there is a sentence A
such that (1) M |= A, where M is the unique standard model for PA (up
to isomorphism), and (2) PA 6`P A. By the completeness of P, (2) implies
PA 6|= A and hence M 6|= A since M is the only standard model of PA, which
contradicts (1). 2

We will now present a very simple and elegant proof system for L called
A which is adapted for stt from a proof system devised by Andrews [3].
Define Bβ[(x : α) 7→ Aα] to be the result of simultaneously replacing each
free occurrence of (x : α) in Bβ by an occurrence of Aα. Let (∃ !x : α . A)
mean

∃x : α . (A ∧ (∀ y : α . A[(x : α) 7→ (y : α)]⇒ y = x))

where (y : α) does not occur in A. This formula asserts there exists a unique
value x of type α that satisfies A.

A consists of the following six axiom schemas and single rule of inference:

A1 (Truth Values)

∀ f : (∗ → ∗) . (f(T) ∧ f(F))⇔ (∀x : ∗ . f(x)).

A2 (Leibniz’ Law6)

∀x, y : α . (x = y)⇒ (∀ p : (α→ ∗) . p(x)⇔ p(y)).

A3 (Extensionality)

∀ f, g : (α→ β) . (f = g)⇔ (∀x : α . f(x) = g(x)).

A4 (Beta-Reduction)

(λx : α . Bβ)(Aα) = Bβ[(x : α) 7→ Aα]

provided Aα is free for (x : α) in Bβ.7

6Leibniz’ Law says that if two things are equal they satisfy exactly the same properties.
7Aα is free for (x : α) in Bβ if no free occurrence of (x : α) in Bβ is within a subex-

pression of Bβ of the form (λ y : γ . C) or (I y : γ . C) where (y : γ) is free in Aα. That
is, Aα is free for (x : α) in Bβ if none of the free variables of Aα are “captured” by λ or I
when the free occurrences of (x : α) in Bβ are replaced by Aα.

20

A5 (Proper Definite Description)

(∃ !x : α . A∗)⇒ A∗[(x : α) 7→ (Ix : α . A∗)]

provided (Ix : α . A∗) is free for (x : α) in A∗.
7

A6 (Improper Definite Description)

¬(∃ !x : α . A∗)⇒ (Ix : α . A∗) = ⊥α.

R (Equality Substitution) From Aα = Bα and C∗ infer the result of
replacing one occurrence of Aα in C∗ by an occurrence of Bα, provided
that the occurrence of Aα in C∗ is not a variable (x : α) immediately
preceded by λ or I.

Notice that A does not include a comprehension axiom schema for defin-
ing functions from expressions. It is unnecessary because a function can be
defined directly from an expression via function abstraction. Moreover, the
comprehensive axiom schema is provable in A (see the proof of Theorem
5243 in [4] for details).

Theorem 5 A is sound.

Proof Each instance of the axiom schemas A1-A6 is valid in every standard
model, and rule R preserves validity in every standard model. For details,
see the proof of Theorem 5402 in [4]. 2

Theorem 6 A is not complete.

Proof Corollary of Theorem 4. 2

Since A is incomplete, it is not obvious whether the basic theorems of
simple type theory can be proven in A. Does A have sufficient provability
power to be useful? The answer is yes indeed—A has enough provability
power to serve as a foundation for mathematics.

Let A+I be A plus an additional axiom that says that the domain of
individuals is infinite.

Theorem 7 The consistency of A+I implies the consistency of bounded
Zermelo set theory and conversely.

21

Bounded Zermelo set theory is Zermelo set theory (i.e., Zermelo-Fraenkel
set theory without the replacement axiom) with a version of the separation
axiom in which the quantifiers are bounded by sets. S. Mac Lane advocated
bounded Zermelo set theory as an adequate foundation for mathematics [41],
and as a result, bounded Zermelo set theory is commonly known as Mac Lane
set theory.

A standard measure for provability power is consistency strength. Theo-
rem 7 says that A+I and bounded Zermelo set theory have the same consis-
tency strength and thus the same provability power. Therefore, if bounded
Zermelo set theory is an adequate foundation for mathematics, so is A plus
an axiom of infinity.

A variant of Theorem 7 was first proved by R. Jensen [35]; a more detailed
proof is found in A. Mathias’s paper [43].

Virtue 5 There is a proof system for stt that is simple, ele-
gant, and powerful.

In the next section, we will show that there is a sense in which A is
actually complete—which should expel any queasiness that one has about
how well A captures the semantics of stt.

7 General Models

When Henkin was a graduate student at Princeton, he investigated the
structure of nameable values (see section 3.2) in standard models of Church’s
type theory [30]. His investigation led to two extraordinary discoveries.

First, he discovered that the proof system for Church’s type theory is
actually sound and complete if the semantics is generalized by substituting
the notion of a “general model” for the notion of a standard model [28].
Recall that the incompleteness of Church’s type theory with respect to the
ordinary semantics based on standard models follows from Gödel’s incom-
pleteness theorem (see Theorem 4).

Second, he found that the method employed in his proof of the general-
ized completeness of Church’s type theory could be used to get a new proof
of the completeness of first-order logic (which was first proved by Gödel) [27].
This proof is now one of the hallmarks of first-order model theory.

A general structure for a language L = (C, τ) of stt is a triple M =
(D, I, e) where:

22

1. D = {Dα : α ∈ T } is a set of nonempty domains (sets).

2. D∗ = {t, f}.

3. For α, β ∈ T , Dα→β is some nonempty set of total functions from Dα

to Dβ.

4. I maps each c ∈ C to a member of Dτ(c).

5. e maps each α ∈ T to a member of Dα.

M is a general model for L if there is a binary function VM that satisfies the
same conditions as the valuation function for a standard model. A general
model is thus the same as a standard model except that the function domains
of the model may not be “fully inhabited”. Hence every standard model for
L is also a general model for L. Let us say that M is a nonstandard model
for L if it is a general model, but not a standard model, for L.

Let T = (L,Γ) be a theory of stt and A be a formula of L. A is
a semantic consequence of a set Σ of sentences of L in the general sense,
written Σ |=g A, if M |= A for every general model M for L such that
M |= B for all B ∈ Σ. A is a semantic consequence of T in the general
sense, written T |=g A, if Γ |=g A. A general model of T is a general model
M for L such that M |= B for all B ∈ Γ.

Let P be a proof system for stt. P is sound in the general sense if, for
every theory T = (L,Γ) and formula A of L,

T `P A implies T |=g A.

P is complete in the general sense if, for every theory T = (L,Γ) and formula
A of L,

T |=g A implies T `P A.

Theorem 8 A is sound in the general sense.

Proof This is a generalization of Theorem 5; see the proof of Theorem 5402
in [4]. 2

A theory T is consistent if there is no proof of F from T in A. For a
language L = (C, τ), the cardinality of L, written |L|, is |C|+ ℵ0. A general
model ({Dα : α ∈ T }, I, e) for L is frugal if |Dα| ≤ |L| for all α ∈ T .

Theorem 9 (Henkin’s Theorem) Every consistent theory of stt has a
frugal general model.

23

Proof See the proof of Theorem 5501 in [4]. 2

Corollary 10 There is a general model of COF = (L,Γ) such that |Dι| = ℵ0
(provided COF is consistent).

Thus by Henkin’s Theorem, there exist nonstandard models of COF, the
theory of the real numbers, in which Dι contains only a countable number
of real numbers. Such models result because Dι→∗ does not contain every
predicate, and as a result, the completeness principle says that only the
nonempty, bounded subsets of Dι corresponding to members of Dι→∗ have
least upper bounds. Note that, since COF has a nonstandard model, COF is
not categorical with respect to general models.

Theorem 11 (Henkin’s Completeness Theorem) A is complete in the
general sense.

Proof Follows from Henkin’s Theorem by an easy argument; see [4]. 2

Analogs of the basic theorems of first-order model theory—such as the
compactness theorem and the Löwenheim-Skolem theorem—can be derived
from Theorems 9 and 11. By the compactness theorem for general mod-
els, PA has nonstandard models and thus is not categorical with respect to
general models.

A theory T of stt can be encoded as a theory T ′ in many-sorted first-
order logic as follows. Each type α of stt is represented by a sort sα of
T ′. Each variable and constant of type α of T is represented by a variable
and constant, respectively, of sort sα of T ′. For each function type (α →
β) of stt there is a function symbol of T ′ that represents the application
of functions of type (α → β) to arguments of type α. For each function
abstraction f of T there is a function symbol that represents f . T ′ includes a
set of extensionality and comprehension axioms. As a result of this encoding,
each general model of T is represented by a model of T ′. The ideas behind
this encoding are found in [31, 36]. For a similar encoding of second-order
logic in many-sorted first-order logic, see either [15] or [53].

Since any theory of many-sorted first-order logic can be encoded in or-
dinary (unisorted) first-order logic in a standard way, the encoding of T in
many-sorted first-order logic gives an immediate proof of Henkin’s Theorem
as well as the stt analogs of the compactness theorem and the Löwenheim-
Skolem theorem. The encoding also shows that a theory of stt with the
general models semantics is just a first-order theory presented in a more
natural and convenient form.

24

Nonstandard models in stt have the same importance to the model
theory of stt as nonstandard first-order models have to first-order model
theory. Each nonstandard model of a theory exhibits a way of interpreting
what the theory means. Some nonstandard models (like the countable model
of COF mentioned above) expose semantic defects (of the theory or model).
Others (like a model of COF which contains infinitesimals) provide founda-
tions for different ways of analyzing the standard model(s) of the theory (as
is done in nonstandard analysis).

In stt, the distinction between standard and nonstandard models is ab-
solutely clear: in a standard model every function domain is fully inhabited,
while in a nonstandard model some function domain is only partially inhab-
ited. However, in first-order logic, there is no formal distinction between the
standard and nonstandard models of a theory. In fact, for the first-order
theories of the natural numbers and the real numbers, this distinction is
meaningless without a “higher-order” perspective.

For example, consider a general model M of PA that includes nonstan-
dard (infinite) natural numbers. We know such models exist by the gener-
alized compactness theorem of stt. Is M standard or nonstandard? Since
M is a general model of PA, the induction principle A, which has the form
(∀ p : (ι→ ∗) . B), is valid in M . If d is the predicate that is true for all
the standard (finite) natural numbers but false for all nonstandard natural
numbers, then VM

ϕ[(p:(ι→∗)) 7→d](B) = f for any variable assignment ϕ into M ,
which contradicts the validity of A in M . Therefore, d 6∈ Dι→∗, and thus M
is nonstandard.

Now consider a model of the first-order theory PA′ that includes non-
standard natural numbers. We know such models exist by the compactness
theorem of first-order logic. Is M standard or nonstandard? The theory PA′

alone does not provide us with any way of distinguishing standard models
from nonstandard models. The distinction actually relies on the following
two facts:

1. PA′ is intended to be a first-order approximation of Peano Arith-
metic [38].

2. The usual model of the natural numbers is the only model of Peano
Arithmetic (up to isomorphism).

Therefore, M is a nonstandard model of PA′ since it is not the unique model
of Peano Arithmetic (up to isomorphism). Notice that to distinguish be-
tween standard and nonstandard models of PA′ we had to appeal to Peano
Arithmetic, a “higher-order” theory.

25

These results about general models do not diminish the importance of
the categoricity results mentioned earlier. In stt—but not in first-order
logic—it is possible to formulate a theory T that fully specifies an infinite
structure S like the natural numbers or the real numbers. The theory T is
categorical in the sense that it has one standard model (up to isomorphism)
corresponding to S, but it is also noncategorical in the sense that it has
(infinitely many) nonstandard models. The standard model is the intended
subject of T . The nonstandard models can either be ignored or used to gain
insight into the nature of the relationship between T and S.

Virtue 6 Henkin’s general models semantics enables the tech-
niques of first-order model theory to be applied to stt and illumi-
nates the distinction between standard and nonstandard models.

We have seen that stt has two semantics, which are both useful. With
the standard semantics, stt is a much more expressive logic than first-order
logic which admits categorical theories of structures such as the natural
numbers and the real numbers. With the general semantics, stt is a dis-
guised version of first-order logic which is very convenient for expressing
concepts concerning higher-order functions. With both semantics together,
stt provides an excellent framework for studying the models of a theory,
particularly the relationship between standard and nonstandard models.

8 Practicality

Although mathematical ideas can be formalized much more directly and
succinctly in stt than in first-order logic, formalizing real mathematics in
stt would still be quite burdensome. However, by extending the syntax and
semantics of stt in certain ways, stt can be made into an effective logic for
actual use. These extensions do not change stt in any fundamental way;
they just make stt more convenient to employ.

Many practical ways of extending a simple type theory like stt have
been proposed, beginning with [55]. We will briefly present in this section
the most important examples.

8.1 Many sortedness

In stt, ι, the type of individuals, is the only type for basic values. As a
result, all the basic values of an stt theory must be handled together. For

26

example, in an stt theory of graphs, a variable of type ι would simultane-
ously range over both nodes and edges. It would be much more practical
if stt were “many-sorted” with several types for basic values. Then, for
example, in a theory of graphs, there could be one type for nodes and an-
other for edges. A many-sorted version of stt can be achieved by simply
allowing a language L to include a nonempty set BL of base types, each of
which denotes a domain of individuals. Then a type of L would be defined
inductively by the following formation rules:

1. Base type: If α ∈ BL, then α is a type of L.

2. Type of truth values: ∗ is a type of L.

3. Function type: If α and β are types of L, then (α→ β) is a type of L.

The rest of the definitions for the syntax and semantics of stt would remain
essentially the same.

8.2 Tuples, lists, sets, etc.

Machinery for working with basic mathematical objects like tuples, lists,
and sets can be built into stt by adding new type constructors and new
expression constructors or built-in constants. For example, the machinery
for ordered pairs (and hence tuples) would be (1) a product type constructor
× such that the type α× β denotes the Cartesian product Dα ×Dβ, (2) an
expression constructor pair such that pair(Aα, Bα) is an expression of type
α × β that denotes the ordered pair of Aα and Bα, and (3) the expression
constructors first and second that form expressions that select the first and
second components, respectively, of a member of Dα × Dβ. Tuples could
then be defined as iterated ordered pairs with this machinery. See the logic
bestt [18] for an example of a version of Church’s type theory with tuples,
lists, and sets.

8.3 Indefinite description

In comparison to definite description that builds an expression which de-
notes the value that satisfies a property P , indefinite description builds an
expression that denotes some value that satisfies a property P . Indefinite
description complements definite description and is useful for specifying ob-
jects with underspecified components. To add indefinite description to stt
we need to (1) include the formation rule

27

Indefinite description: If x ∈ V, α ∈ T , and A is an expression of
type ∗, then (ε x : α . A) is an expression of type α.8

in the definition of an expression, (2) modify the definition of the valuation
function for a standard model to handle indefinite descriptions (see [24] for
details), and (3) add the two axiom schemas

A7 (Proper Indefinite Description)

(∃x : α . A∗)⇒ A∗[(x : α) 7→ (ε x : α . A∗)]

provided (ε x : α . A∗) is free for (x : α) in A∗.

A8 (Improper Indefinite Description)

¬(∃x : α . A∗)⇒ (ε x : α . A∗) = ⊥α.

to the proof system A.
Indefinite description cannot be defined in terms of definite description.

In fact, stt plus indefinite description is strictly stronger than stt alone.
This is because the presence of indefinite description implies the existence
of a choice function for each predicate type. For example,

λ s : (α→ ∗) . ε x : α . s(x)

is a choice function for the type (α→ ∗). Using this choice function and the
A7 axiom schema, the axiom of choice for the type (α→ ∗) can be proved in
A. (The axiom of choice is not provable in A without indefinite description.)
Thus, in contrast to definite description, adding indefinite description to
simple type theory increases both its theoretical and practical expressivity.

8.4 Undefinedness

A severe weakness of stt—as well as of first-order logic—is that expressions
are assumed to be defined (i.e., to denote some value) and functions are
assumed to be total (i.e., to be defined on all arguments). However, unde-
fined expressions—resulting from undefined function applications (like 17/0)
and improper definite descriptions (like limx→0 sin 1

x)—are commonplace in
mathematical practice. With little difficulty, the semantics of stt can be

8The indefinite description operator is very often called the Hilbert epsilon operator
because it is the chief operator in Hilbert’s epsilon calculus [2], where it is denoted by
epsilon (ε) and used to define universal and existential quantification.

28

modified to admit undefined expressions and partial functions. As a result,
improper definite and indefinite descriptions would be undefined and error
values would no longer be necessary. This extension of the semantics can
be achieved by either preserving the classical two-valued nature of simple
type theory [16, 19] or by extending simple type theory to a three-valued
logic [37].

Mathematics can be formalized more concisely and handled more nat-
urally in a logic in which undefined expressions and partial functions can
be directly represented than in a standard logic in which all expressions are
assumed to be denoting and all functions are assumed to be total. For sup-
port of this statement, see the examples from calculus in [19] and the many
examples from analysis in the theory library of the imps theorem proving
system [20].

8.5 Polymorphism

An operator is polymorphic if it can be applied to expressions of more than
one type. For instance, the equality operator (=) in stt is polymorphic
because it can be applied to any two expressions of the same type. One of the
greatest shortcomings of stt is that it has no mechanism for introducing new
polymorphic operators. For example, recall the constant compose defined in
section 4 for expressing the composition of two functions of type (ι → ι).
Let us rename compose to composeι→ι,ι→ι to show what kind of expressions it
can be applied to. If we wanted to compose two functions of other types we
would need to define in exactly the same way other composition constants
of the form composeβ→γ,α→β. Since there are an infinite number of function
types in stt, there is potentially an infinite number of distinct composition
constants that might be needed. It would be far more efficient if we could
define a single polymorphic composition operator.

There are several approaches that can be used to introduce polymorphic
operators in simple type theory. First, an operator name (e.g., compose)
can be overloaded so that it potentially denotes many different, but related,
constants (e.g., composeβ→γ,α→β for all α, β, γ ∈ T). When it (compose)
is applied in a particular context, the context is used to determine which
constant (composeβ→γ,α→β) it actually denotes.

Second, a polymorphic operator can be defined as a macro (e.g., compose)
that can be applied to expressions of different types. An application of the
macro (e.g., compose(Fβ→γ)(Gα→β)) expands to an ordinary, nonpolymor-
phic expression (e.g.,

(λ f : (β → γ) . λ g : (α→ β) . λ x : α . f(g(x)))(Fβ→γ)(Gα→β)).

29

The imps theorem proving system uses polymorphic operators of this kind
called quasi-constructors [20].

The third approach is to expand the type system to include type variables
which can be instantiated with other types [25]. A polymorphic operator is
simply an expression of a type that contains type variables. For example, a
constant compose that gives the composition of two functions of appropriate
type could have the type

(ν → ξ)→ ((µ→ ν)→ (µ→ ξ))

where µ, ν, ξ are type variables. If F is an expression of type (β → γ) and
G is an expression of type (α → β) where α, β, γ are variable-free types,
then compose(F)(G) would be an expression of type (α → γ) that denotes
the composition of F and G. See the logic of the hol theorem proving
system [24] for details.

Polymorphism is a major research topic in the design of specification lan-
guages, programming languages, and constructive type theories. For other,
more sophisticated approaches to polymorphism, see [6, 12, 23].

8.6 Subtypes

Suppose that COFms is a theory of a complete ordered field formulated
in many-sorted stt in which the base types N and R denote the natu-
ral numbers and real numbers, respectively. If + is a constant of type
(R → (R → R)) and 2 is an expression of type N, then 2 + 2 (using in-
fix notation for +) is not a well-formed expression due to an obvious type
mismatch between N and R. To avoid the type mismatch, the expression
would have to be written as J(2) + J(2) where J is an expression denot-
ing the standard embedding of the natural numbers in the real numbers.
If subtypes were allowed in many-sorted stt, this inconvenience would go
away. N would be declared a subtype of R, and then an expression of type
N could be used wherever an expression of type R is prescribed.

For two types α and β, α is a subtype of β, written α � β, if the Dα ⊆ Dβ

(i.e., the denotation of α is a subset of the denotation of β). The relation
α � β can be either assumed as an axiom or defined by a predicate of type
(β → ∗). For example, in COFms we can define a subtype CF � (R → R)
of continuous functions by the predicate

λ f : (R→ R) . ∀x : R . lim(f)(x) = f(x).

If type variables are available, type constructors can be defined as para-
metric subtypes. For example, the product type constructor × mentioned

30

above can be defined by the predicate

λ p : (µ→ (ν → ∗)) . ∃ a : µ, b : ν . p = (λx : µ, λ y : ν . x = a ∧ y = b)

where µ and ν are type variables. Thus, if α and β are variable-free types,
Dα×β ⊆ Dα→(β→∗) and each p ∈ Dα×β would be a function

f : Dα → (Dβ → {t, f})

for which there exists a ∈ Dα and b ∈ Dβ such that f(x)(y) = t iff 〈x, y〉 =
〈a, b〉.

Subtypes greatly increase the practical expressivity of simple type the-
ory. There are several ways subtypes can be introduced into stt and other
versions of simple type theory. See the logic of pvs [50] for an example
of subtypes employed in a traditional version of Church’s type theory, and
see the logic of imps [17] for an example of subtypes used in a version of
Church’s type theory with undefinedness and partial functions.

8.7 Dependent types

Suppose M is a base type in COFms that denotes the set of matrices over R
and ⊗ is a constant of type (M→ (M→M)) that denotes the usual matrix
multiplication function. m⊗m′ is defined only if, for some positive integers
a, b, c, m is an a× b matrix and m′ is an b× c matrix. Hence ⊗ is a partial
function. This suggests that ⊗ should be assigned the “parameterized” type
(Ma,b → (Mb,c →Ma,c)) where Mx,y denotes the set of x× y matrices over
R. Then, for all parameters a, b, c that are positive integers, ⊗ would be a
total function of type (Ma,b → (Mb,c →Ma,c)).

A type like Mx,y that depends on values (i.e., the positive integers x
and y) is called a dependent type. As our example shows, dependent types
arise quite naturally in mathematics and are useful. A key component of
Martin-Löf type theory [42], dependent types have been extensively studied
in the context of constructive type theory. Dependent types have received
much less attention in nonconstructive type theory. Two noteworthy results
in this direction are the definition of dependent types in the pvs logic us-
ing predicate subtypes [50], and B. Jacobs and T. Melham’s embedding of
dependent type theory in Church’s type theory [34].

8.8 Implementations

Convenient versions of Church’s type theory have been implemented in the
computer theorem proving systems hol [24], imps [20], Isabelle [46], Proof-

31

Power [40], pvs [45], and tps [5]. Experience has shown that these imple-
mented versions of Church’s type theory are indeed effective for practical
use. Hundreds of theories have been formulated and thousands of theorems
have been proved using these logics in these theorem provers.

Virtue 7 There are practical extensions of stt that can be ef-
fectively implemented.

9 Conclusion

We have surveyed seven virtues of simple type theory. These virtues make
simple type theory a very attractive general-purpose logic. One can argue
that, as a logic for actual use—in science, engineering, and mathematics
education and research—simple type theory is superior to first-order logic.
It is much closer to mathematical practice than first-order logic, and as a
result, mathematics expressed in simple type theory is more natural, more
concise, and easier to work with. The greatest virtue of simple type theory
is that it is a logic that is effective for practice as well as for theory.

We recommend that simple type theory be incorporated into introduc-
tory logic courses offered by mathematics departments by replacing the tra-
ditional two-logic sequence with a three-logic sequence—propositional logic,
first-order logic, simple type theory. This is feasible since nearly all the basic
ideas and principles of simple type theory are already found in first-order
logic (the notion of a type is the most notable exception). After a short-
ened introduction to first-order logic, students could immediately proceed
to simple type theory. Subjects, such as proof systems and model theory,
could be briefly addressed in first-order logic and then explored further in
simple type theory.

Although students would spend less time on directly studying first-order
logic, their study of simple type theory would foster a deeper understanding
of both first-order logic and the logical principles that transcend individ-
ual logics. But the most important benefit would be that the students—
especially those who are going to become computer scientists and software
engineers—would go into the real world with a practical logic in their toolkit.

We also recommend that the curricula for undergraduate computer sci-
ence and software engineering students include instruction on how to apply
the simple type theory they learn in a logic course to practical problems that

32

arise in their other courses. Computer scientists and software engineers in-
creasingly need to understand and actually use practical logics. For example,
software engineers—and sometimes even other kinds of engineers—need to
know how to read and write precise specifications in a formal logic. With
the attributes we have discussed, simple type theory provides an excellent
logical foundation for learning how to use industrial specification languages
like b [1], vdm-sl [13], and z [54].

10 Acknowledgments

Special thanks is given to Peter Andrews for offering the author many useful
suggestions and comments and for writing An Introduction to Mathematical
Logic and Type Theory: To Truth through Proof [4]. Many of the definitions
associated with stt are modifications of definitions given in this excellent
textbook. The author is also grateful to Wolfram Kahl, Jérémie Wajs, and
Jeffery Zucker for reading preliminary drafts of the paper and to the referees
for their suggestions.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[2] W. Ackermann. Begrn̈dung des “tertium non datur” mittels der
Hilbertschen Theorie der Widerspruchsfreiheit. Mathematische An-
nalen, 93:1–36, 1924.

[3] P. B. Andrews. A reduction of the axioms for the theory of propositional
types. Fundamenta Mathematicae, 52:345–350, 1963.

[4] P. B. Andrews. An Introduction to Mathematical Logic and Type The-
ory: To Truth through Proof, Second Edition. Kluwer, 2002.

[5] P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfennig, and H. Xi.
TPS: A theorem proving system for classical type theory. Journal of
Automated Reasoning, 16:321–353, 1996.

[6] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17:471–522, 1985.

[7] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56–68, 1940.

33

[8] L. Chwistek. Antynomje logikiformalnej. Przeglad Filozoficzny, 24:164–
171, 1921.

[9] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathe-
matics with the Nuprl Proof Development System. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1986.

[10] Coq Development Team. The Coq Proof Assistant Reference Manual,
Version 7.4, 2003. Available at http://pauillac.inria.fr/coq/doc/
main.html.

[11] C. Coquand and T. Coquand. Structured type theory. In A. Felty,
editor, LMF’99: Workshop on Logical Frameworks and Meta-languages,
1999. Available at http://www.site.uottawa.ca/~afelty/LFM99/.

[12] T. Coquand and G. Huet. The calculus of constructions. Information
and Computation, 76:95–120, 1988.

[13] J. Dawes. The VDM-SL. Pitman/UCL Press, 1991.

[14] R. Dedekind. Was sind und was sollen die Zahlen? Braunschweig,
1888.

[15] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press,
second edition, 2000.

[16] W. M. Farmer. A partial functions version of Church’s simple theory
of types. Journal of Symbolic Logic, 55:1269–91, 1990.

[17] W. M. Farmer. A simple type theory with partial functions and sub-
types. Annals of Pure and Applied Logic, 64:211–240, 1993.

[18] W. M. Farmer. A Basic Extended Simple Type Theory. SQRL Report
No. 14, McMaster University, 2003. Revised 2004.

[19] W. M. Farmer. Formalizing undefinedness arising in calculus. In
D. Basin and M. Rusinowitch, editors, Automated Reasoning—IJCAR
2004, volume 3097 of Lecture Notes in Computer Science, pages 475–
489. Springer, 2004.

[20] W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An Interactive
Mathematical Proof System. Journal of Automated Reasoning, 11:213–
248, 1993.

34

[21] S. Feferman. Predicativity. In S. Shapiro, editor, Handbook of the Phi-
losophy of Mathematics and Logic, pages 590–624. Oxford University
Press, 2005.

[22] R. O. Gandy. The simple theory of types. In R. Gandy and M. Hyland,
editors, Logic Colloquium 76, pages 173–181. North-Holland, 1977.

[23] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1989.

[24] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University
Press, 1993.

[25] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation, volume 78 of Lecture Notes in
Computer Science. Springer, 1979.

[26] A. P. Hazen. Predicative logics. In D. M. Gabbay and F. Guenth-
ner, editors, Handbook of Philosophical Logic, volume I, pages 331–407.
Reidel, 1983.

[27] L. Henkin. The completeness of the first-order functional calculus. Jour-
nal of Symbolic Logic, 15:159–166, 1949.

[28] L. Henkin. Completeness in the theory of types. Journal of Symbolic
Logic, 15:81–91, 1950.

[29] L. Henkin. A theory of propositional types. Fundamenta Mathematicae,
52:323–344, 1963.

[30] L. Henkin. The discovery of my completeness proofs. Bulletin of Sym-
bolic Logic, 2:127–158, 1996.

[31] L. J. Henschen. N-sorted logic for automatic theorem proving in higher-
order logic. In J. J. Donovan and R. Shields, editors, Proceedings of the
ACM Annual Conference, pages 71–81. ACM Press, 1972.

[32] D. Hilbert. Über den Zahlbegriff. Jahresbericht der Deutschen Mathe-
matikervereinigung, 8:180–184, 1900.

[33] W. A. Howard. The formulae-as-types notion of construction. In To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism, pages 479–490. Academic Press, 1980.

35

[34] B. Jacobs and T. Melham. Translating dependent type theory into
higher order logic. In M. Bezem and J. F. Groote, editors, Typed Lambda
Calculi and Applications, volume 664 of Lecture Notes in Computer
Science, pages 209–229. Springer, 1993.

[35] R. B. Jensen. On the consistency of a slight (?) modification of Quine’s
NF. Synthese, 19:250–263, 1969.

[36] M. Kerber. How to prove higher order theorems in first order logic.
In J. Mylopoulos and R. Reiter, editors, Proceedings of the 12th In-
ternational Joint Conference on Artificial Intelligence, pages 137–142.
Morgan Kaufmann, 1991.

[37] M. Kerber and M. Kohlhase. A mechanization of strong Kleene logic for
partial functions. In A. Bundy, editor, Automated Deduction—CADE-
12, volume 814 of Lecture Notes in Computer Science, pages 371–385.
Springer, 1994.

[38] G. Kreisel. Informal rigour and completeness proofs. In I. Lakatos, edi-
tor, Problems in the Philosophy of Mathematics, pages 138–157. North-
Holland, 1967.

[39] J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical
Logic. Cambridge University Press, 1986.

[40] Lemma 1 Ltd. ProofPower: Description, 2000. Available at
http://www.lemma-one.com/ProofPower/doc/doc.html.

[41] S. Mac Lane. Mathematics: Form and Function. Springer, 1986.

[42] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[43] A. R. D. Mathias. The strength of Mac Lane set theory. Annals of
Pure and Applied Logic, 110:107–234, 2001.

[44] R. P. Nederpelt, J. H. Geuvers, and R. C. De Vrijer, editors. Selected
Papers on Automath, volume 133 of Studies in Logic and The Founda-
tions of Mathematics. North Holland, 1994.

[45] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS:
Combining specification, proof checking, and model checking. In
R. Alur and T. A. Henzinger, editors, Computer Aided Verification:
8th International Conference, CAV ’96, volume 1102 of Lecture Notes
in Computer Science, pages 411–414. Springer, 1996.

36

[46] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer, 1994.

[47] G. Peano. Arithmetices principia nova methodo exposita. Bocca, Turin,
Italy, 1889.

[48] R. Pollack. The Theory of LEGO. PhD thesis, University of Ediburgh,
1994.

[49] F. P. Ramsey. The foundations of mathematics. Proceedings of the
London Mathematical Society, Series 2, 25:338–384, 1926.

[50] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Pred-
icate subtyping in PVS. IEEE Transactions on Software Engineering,
24:709–720, 1998.

[51] B. Russell. On denoting. Mind (New Series), 14:479–493, 1905.

[52] B. Russell. Mathematical logic as based on the theory of types. Amer-
ican Journal of Mathematics, 30:222–262, 1908.

[53] S. Shapiro. Foundations without Foundationalism: A Case for Second-
order Logic. Oxford University Press, 2000.

[54] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall,
second edition, 1992.

[55] A. M. Turing. Practical forms of type theory. Journal of Symbolic
Logic, 13:80–94, 1948.

[56] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge
University Press, 1910–13. Paperback version to section *56 published
in 1964.

37

