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ABSTRACT
Database researchers have striven to improve the capability
of a database in terms of both performance and functional-
ity. We assert that the usability of a database is as important
as its capability. In this paper, we study why database sys-
tems today are so difficult to use. We identify a set of five
pain points and propose a research agenda to address these.
In particular, we introduce a presentation data model and
recommend direct data manipulation with a schema later

approach. We also stress the importance of provenance and
of consistency across presentation models.

Categories and Subject Descriptors
H.2.0 [General]; H.5.0 [General]

General Terms
Design, Human Factors
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1. INTRODUCTION
Database technology has made great strides in the past

decades. Today, we are able to efficiently process ever larger
numbers of ever more complex queries on ever more humon-
gous data sets. As a field, we can be justifiably proud of
what we have accomplished.

However, when we see how information is created, ac-
cessed, and shared today, database technology remains only
a bit player: much of the data in the world today remains
outside database systems. Even worse, in the places where

Supported in part by NSF grant IIS 0438909 and NIH
grants R01 LM008106 and U54 DA021519. We thank Mark
Ackerman, Jignesh Patel and Barbara Mirel for their com-
ments on a draft of this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

database systems are used extensively, we find an army of
database administrators, consultants, and other technical
experts all busily helping users get data into and out of a
database. For almost all organizations, the indirect cost of
maintaining a technical support team far exceeds the di-
rect cost of hardware infrastructure and database product
licenses. Not only are support staff expensive, they also
interpose themselves between the users and the databases.
Users cannot interact with the database directly and are
therefore less likely to try less straightforward operations.
This hidden opportunity cost may be greater than the vis-
ible costs of hardware/software and technical staff. Most
of us remember the day not too long ago when booking a
flight meant calling a travel agent who used magic incanta-
tions at an arcane system to pull up information regarding
flights and to make bookings. Today, most of us book our
own flights on the web through interfaces that are simple
enough for anyone to use. Many enjoy the power of being
able to explore options for themselves that would have been
too much trouble to explain to an agent, such as willingness
to trade off price against convenience of a flight connection.

Search engines have done a remarkable job at directly
connecting users with the web. The simple keyword-based
query mechanism allows web users to issue queries freely; the
almost instantaneous response encourages the user to refine
queries until satisfactory results are found. While search
engines today are still far from perfect, their huge success
suggests that usability is key. An information system pro-
vides value to its users through the ability to get information
into and out of the system easily and efficiently. Unfortu-
nately, databases today are hard to design, hard to modify,
and hard to query.

One obvious question to ask is whether database systems
can simply have a search engine sit on top of them and let
the search engine handle the interaction with the users. The
answer, we argue, is “No.” While the search engine interface
works well for the web, it does not address all the usabil-
ity problems database systems are facing. This is due to
many characteristics that stem from users’ expectations for
interacting with databases, which are fundamentally differ-
ent from expectations for the web.

The first characteristic that users expect is the ability to
query the database in a more sophisticated way. While users
are content with searching the web with keywords, they want
to express more complex query semantics when interact-
ing with databases simply because they know databases are
more than collections of documents and there are structures



inside databases that can be used to answer their queries.
The use of boolean connectives, quote phrases, and colon
prefixes are just the beginning of the complex semantics we
can expect from database users. For example, when query-
ing an airline database for available flights, a user will natu-
rally search on explicit travel dates, departure/arrival cities
or airports, and sometimes even airlines. Such complex se-
mantics cannot be handled by a keyword-based interface
that search engines provide.

The second characteristic is that users expect more pre-
cise and complete answers from database search. One of the
hidden reasons behind the success of search engines is the
fact that web users can tolerate a search that returns many
irrelevant results (i.e., less than perfect precision) and they
typically do not care if there are relevant results missing
(i.e., less than perfect recall), as long as some relevant re-
sults are returned to them. In the database world, however,
these assumptions no longer hold. Users issuing a database
search expect to obtain all and only the relevant results:
anything less than perfect precision and recall will have to
be explained to the user.

The third characteristic is that users have an expectation
of structure in the result. In the case of a web search, a user
expects simply a set of links, with almost no interrelation-
ship between them. In the case of a database search, a user
may expect to see a table, a network, a spatial presentation
on a map, or a set of points in a multidimensional space —
the specific structure depends on the users mental model of
the application.

The fourth characteristic is that users often expect to cre-
ate and update databases. While search engines are all
about searching, database users frequently want to design
new databases to store their own information or to generate
information to put into existing databases. The usability
issues in designing a database structure from scratch and
creating structured information for existing databases are
completely unexplored so far and need to be addressed for
databases to become widely used by ordinary users.

These fundamental characteristics suggest that the data-
base research community needs to think about database us-
ability not just as a query interface, but as a more compre-
hensive and integral component of the database systems.

Structured query models like SQL and XQuery are the
current means provided by database systems to allow users
to express complex query semantics. While powerful, those
models are fundamentally difficult for users to adopt because
they require users to fully comprehend the structure of the
database (i.e., schema) and to express queries in terms of
that particular structure. We argue that while the logical
schema of the database is an appropriate abstraction over
the underlying physical schema for data organization, it is
still at a level too low to serve as the abstraction with which
users should interact directly. Instead, a higher level pre-

sentation data model abstraction is needed to allow users
to structure information in a natural way. We describe this
problem of “painful relations” in Section 4.1. Because differ-
ent users have different views (i.e. presentation data models)
on how information should be organized, one would natu-
rally like those presentation data models to be personalized
for individual users. Our experience with the MiMI [51]
project, however, has told us a different story. When users
are presented with multiple ways to access the information
but do not understand the underlying differences between

the views, they tend to become confused and lose trust in
the system. A good presentation data model can be enor-
mously helpful, but too many such models becomes counter-
productive. We describe this problem of “painful options”
in Section 4.2.

The expectation of perfect precision and recall for database
search introduces yet another usability issue: the need to is-
sue explanations to the user when the database system pro-
duces unexpected results or fails to produce the expected
results. The first case is a failure in precision—some of
the results produced are not relevant in the mind of the
user. The database system will need to be prepared to an-
swer questions like “where does this result come from?” and
provenance tracking [89] is essential in this regard. Second,
some potentially relevant results may not be produced—a
failure in recall. Some of those missing results can be iden-
tified by the system. For example, consider a query asking
for “all flights with booking fee less than $10” and assume
there are flights in the airline database that do not have
a known booking fee. It is reasonable, or even desirable,
not to return those flights to the user. However, the sys-
tem must be able to explain to the user that those flights
are not included in the result because their booking fees are
unknown, and not because their booking fees exceed $10.
Some missing results cannot ever be identified by the sys-
tem. For example, consider a query asking for “a Tuesday
flight from DTW to PEK on any airline” and assume the air-
line database does not carry flights from Northwest Airlines,
which does have a flight between DTW and PEK. While the
system may not be aware of the existence of such a flight
with Northwest Airlines, it still needs to explain to the user
that this omission is due to its incomplete coverage. We
describe this problem of “unexpected pain” in Section 4.3.

Another way in which a user can get unexpected results
from a system is when the user makes an error in specify-
ing the query. Unfortunately, given how difficult it can be
to specify a query correctly, such errors are all too com-
mon. A fundamental difficulty in a traditionally architected
database system is that the user has a labor-intensive query
construction phase followed by a potentially lengthy query
evaluation phase, so that after the results are obtained the
costs to reformulating the query are often high. Worse still,
errors in query construction remain uncaught until the con-
struction phase is completed and the query submitted for
evaluation. This sort of write and debug cycle is something
we computer scientists get used to as part of learning how
to program. Other users need mechanisms so that they can
see what they are doing with the database at all times. This
absence of the ability to manipulate data directly is what we
call “unseen pain” and discussed in Section 4.4.

Finally, the users’ expectation of being able to create a
database from scratch and/or to create structured informa-
tion for an existing database introduces a whole new set of
usability issues that are currently unexplored. Requiring a
user to go through a rigorous schema design process before
any information can be stored, as in the case of many cur-
rent database design practices, puts too much burden on the
user and runs the risk of user forgoing a database approach
altogether. Similarly, requiring a user to study the exist-
ing database schema and restructure their data according
to this schema before she can update the database with her
own data also imposes an unnecessary burden. We describe
this problem of “birthing pain” in Section 4.5.



Paper Outline: The rest of the paper is organized as fol-
lows. We describe the current research activities related to
database usability in Section 2 and describe our ongoing
MiMI project [51] as a case study of database usability in
Section 3. In Section 4, we describe in detail the usabil-
ity challenges facing database systems. Section 5 presents
a research agenda that suggests some directions for future
research in database usability. Finally, we conclude in Sec-
tion 6.

2. CURRENT APPROACHES
There is evidence that human error is the leading cause

for the failure of complex systems [77, 15]. To this effect, the
nature of human usage has received considerable attention in
research, e.g., there is a recent move in the software systems
community to conduct serious user studies [91]. Database
usability started to receive attention more than 25 years
ago [32]. Since then, research in database usability has been
following two main directions: innovative query interface
design (including both visual and keyword-based interfaces)
and database personalization. We describe recent accom-
plishments in those areas, as well as other related areas like
automatic configuration and management of database sys-
tems.

2.1 Visual Interface
Visual query specification interface is perhaps the oldest

and most prominent field related to database usability, in
term of both academic research (e.g., QBE [100]) and in-
dustrial practices (e.g., Microsoft Access and IBM Visual
XQuery Builder). Many visual query interfaces have been
proposed to assist users in building queries incrementally,
including XQBE [13], MIX [71], Xing [37], VISIONARY [9],
Kaleidoquery [73] and QBT [85].

Forms-based query interface design has also been receiv-
ing attention. Early works on such interfaces include [26, 36]
and provide users with visual tools to frame queries and to
perform tasks such as database design and view definition.
The GRIDS system [84] generates forms that allow users
to pose queries in a semi-IR, semi-declarative fashion; the
Acuity project [90] developed form generation techniques
for data-entry operations such as updating tables. More re-
cently in XML database systems, efforts have been made to
shield users from both the details of the XQuery syntax and
the textual representation of XML. FoXQ [1] and EquiX [28]
are systems that helps users build queries incrementally by
navigating through layers of forms. Semi-automatic form
generation tools have been proposed in QURSED [79]. Fur-
thermore, [93] proposes the use of XML rather than HTML
to represent forms, making them more reusable, scalable,
machine-readable and easier to standardize. Another in-
teresting project in UI design is DRIVE [68], a runtime
user interface development environment for object-oriented
databases, which uses the NOODL data model to enable
context-sensitive interface editing.

2.2 Text Interface
Our sister field of information retrieval has had wider

adoption by normal users. This has prompted database in-
terface designers to take the approach of providing database
systems with an IR-style keyword-based search interface.

Many systems such as DBXplorer [2], BANKS [11], DIS-
COVER [47] and an early work of Goldman et al. [40] at-
tempt to extend the simplicity of keyword search to rela-
tional data. This is not merely an integration of full-text
search with relational query capability—such an approach
still requires knowledge of the database schema. Rather, the
core principle is to provide keyword search across tuples.
Most of these systems find tuples that individually match
each keyword and then find a path of primary/foreign key
relationships that relate the tuples. Result ranking is typ-
ically provided based on the path of primary/foreign key
relationships. A common ranking approach is to use some
variation of PageRank [14], where documents and hyperlinks
are replaced with tuples and referential constraints.

A parallel thread of research examines keyword search in
XML databases. The basic problem is the same as in re-
lational databases: given a set of keywords, we must find
data fragments that match the individual keywords. In-
stead of only referential constraints, XML databases mostly
have parent/child relationships between individual elements.
The problem of determining if a data fragment is meaning-
fully related becomes much more important. Approaches to
determine the meaningfulness as well as the relevance of a
data fragment have ranged from simple tree distance used by
XSEarch [29] to XRANK’s adaptation of PageRank [41] to
approaches such as Schema-Free XQuery [62, 63] that look
at either the entire database or the database schema [98] to
determine if a data fragment is meaningful.

A different approach with a long history is the construc-
tion of natural language interfaces to databases [5]. Natural
language understanding is an extremely difficult problem,
and commercial systems such as Microsoft English Query [12]
tend to be unreliable or unable to answer questions outside
a manually predefined narrow domain [83].

Other systems assume the user has some imperfect knowl-
edge of the structure of the data as could occur with het-
erogeneous or evolving schema. This is an intermediate step
in user complexity between pure keyword search and rigid
structural search. Research such as FleXPath [4] and the
work of Kanza and Sagiv [54] has focused on relaxation of
fully specified structural queries; other systems such as Ju-
ruXML [21] support querying and result ranking based on
similarity to a user-specified XML fragment.

A more recent trend in keyword-based search is to analyze
a keyword query and automatically discover the hidden se-
mantic structures that the query carries. This trend has in-
fluenced the design of projects for both traditional database
search [52] as well as web search [65].

2.3 Context and Personalization
Advancements in query interface design, while making it

easier for users to interact with the database, are mostly
generic: they do not take into account the specific user
and her unique problems. The notion of personalization ad-
dresses this problem by attempting to customize database
systems for each individual user [33]. This approach has
received great attention in the context of websites [80, 69],
where the content and structure of the website is tailored
to the needs of each user by analyzing usage patterns. The
notion of user context and personalization has also found
interest in the information retrieval community, where the
ranking of search results is biased using a certain personal-
ized metric [45, 46, 53].



Database research has made advancements in accommo-
dating user and contextual information into query process-
ing. Koutrika and Ioannidis [56] define a user preference
model and describe methods to evaluate the degree of per-
sonal interest in query results. Chen and Li [24] provide
methods to mine query logs and cluster results according to
user characteristics. Ioannidis and Viglas [49] also propose
the idea of conversational querying in which queries are in-
terpreted in the context of the previous queries in a query
session.

2.4 Other Related Work
Commercial database systems come with a suite of auxil-

iary tools. The AutoAdmin project [3, 23] at Microsoft, ini-
tiated by Surajit Chaudhury and his colleagues, makes great
strides with respect to many aspects of database configura-
tion including physical design and index tuning. Similarly,
the Autonomic Computing project [64, 66] at IBM provides
a platform to tune a database system, including query op-
timization. However, none of these projects deal with the
user-level database usability that is the focus of this paper.

Much work has been done by the HCI community in the
area of usability improvement for computer system inter-
faces in general. Some of the earliest works in database
usability includes [87], which analyzed the expressive power
of a declarative query language (SEQUEL) in comparison
to natural language. Usability of information retrieval sys-
tems was studied in [92, 99], which analyzed usability er-
rors and design flaws, and also in [34], which performed a
comparison of usability testing methods. Principles of user-
centered design were introduced in [55, 94], including how
they could complement software engineering techniques to
create interactive systems. Incorporating usability into the
evaluation of computer systems was studied in [16], which
analyzed human behavior with a dependability benchmark.
An extensive user study was performed in [22] to identify
the reasons for user frustration in computing experiences,
while [20] takes a more formal approach to model user be-
havior for usability analysis. However, for database systems
in particular, these only scratch the surface of what needs
to be done to improve usability.

3. A CASE STUDY
Just a few short years ago, we were a traditional database

research group at the University of Michigan, focusing on
data structures, algorithms, and performance. Usability was
not a topic that we paid too much attention to. A signif-
icant project at that time was the development of Timber
[50], a native XML database. As we looked for challeng-
ing applications to run on our database system, we started
collaborating with biologists. When we put their data on
our system and had them try to use it, we became aware of
many unexpected issues. The insights gleaned from watch-
ing very smart but mostly non-technical people use database
systems, both Timber and commercial relational systems,
led to the ideas presented in this paper. In this section, we
present a short history of these efforts as essential context
for what follows.

After the sequencing of the human genome was completed,
biologists began focusing their attention on the proteins ex-
pressed by these genes, their interactions, and their func-
tions. Scientists perform a wide variety of experiments to
determine which proteins interact with one another. These

experiments have varying degrees of reliability. Several pub-
lic databases of protein interactions have arisen, each with
its own focus (e.g., organism, disease, high-throughput tech-
nologies, etc.). Protein entries are sometimes repeated within
and across the repositories. A scientist interested in learning
about a particular protein might have to visit half a dozen
sites and merge information obtained from them, some over-
lapping, some even contradictory. We created MiMI [51], a
deep integration of several of the best-regarded protein in-
teraction databases. Provenance was retained to describe
where the data originated, and the entire dataset and meta-
data were stored in Timber [50].

Given the XML representation of MiMI data, XQuery was
our first choice for accessing the database. Indeed, some
users wanted the power of a declarative query language, even
if they didn’t have the training to write such queries. A
majority of users, however, were complete technophobes and
preferred forms-based interfaces. (Such interfaces do a good
job today for specific applications—quite complex back-end
queries can be run, for instance in an airline reservations
database, while the user is shielded from this complexity by
a simple form-based query interface.) Aside from these were
a few users who wanted to download the entire dataset and
write Perl scripts to slice and dice it. Our challenge in MiMI
was to provide easy-to-use interfaces beyond a few hand-
designed forms for some common queries. In fact, MiMI
allows users to access data through various interfaces, which
are depicted in Figure 1 and discussed in greater detail in
the next section.

3.1 Accomplishments
We started with query interfaces at two opposite ends of

the spectrum: XQuery and a simple forms-based interface.
Almost right away, we decided to add a visual query builder,
MQuery, as an intermediate option between the two oppo-
sites. MQuery enables users to create declarative queries
incrementally by clicking on elements of interest in a graph-
ical schema tree and filling in form fields associated with
each of them. However, we found that only a few people
preferred this interface—it was considered not much simpler
than writing XQuery in many circumstances.

It turned out that users’ difficulties with both XQuery
and MQuery are caused not only by the syntax of the lan-
guage, but more importantly by the mere complexity of the
MiMI schema. Almost all users found it difficult to locate el-
ements of interest to be used in their query specification. To
assist such users we aggressively tackled this problem with
multiple approaches. One approach we developed is that of
schema summarization [97]. The idea is to develop a rep-
resentation of the underlying complex schema at different
levels of detail. A user unfamiliar with the database would
first be shown a high-level schema summary comprising only
a small number of concepts. Progressively greater detail is
revealed on demand as the user zooms in on the portions
of the schema of greatest interest. Based on the schema
summary concept, we have recently developed a new query
model called Meaningful Summary Query [98], which allows
a user to query the database through the schema summary
directly, without the knowledge of the underlying complex
schema and with high result quality and query performance.

Another approach we developed was that of Schema-Free
XQuery [62, 63]. The idea here is to allow users to specify
query entities of interest without specifying how they are
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Figure 1: Methods users can interact with MiMI: (a) XQuery (b) Keyword (c) Natural Language (d) Forms (e)

MQuery.

hierarchically related. The system then automatically de-
termines local structures in the XML database that match
these specifications. The users can specify queries based
on whatever partial knowledge of the schema they have—
knowing the full schema, they can write regular XQuery
statements; not knowing the schema at all, they can just
specify labeled keywords; most importantly, they can spec-
ify queries somewhere in between. The system will respect
whatever specifications are given. More recently, we have ex-
tended this work to Ranked Relatedness Queries [35], which
return a set of matches with associated relevance scores.

For certain types of queries, our users, being accustomed
to web search, preferred keyword-based search. We promptly
added such an interface to MiMI. All textual fields within
the database were used to populate a Lucene index [44]. One
challenge we faced was that there were multiple alternative
spellings of the names of an entity (i.e., a gene or a protein)
and names were quite long. Frequently, a user issued a key-
word query only to find later that the results were incorrect
because the wrong keywords were used. An instantaneous
feedback mechanism was highly desired. This desire led us
to the creation of the word autocompletion interface, which
had since evolved into a phrase autocompletion interface
[75], and more recently, into a query autocompletion facil-
ity. In particular, the query autocompletion facility is being
demonstrated at this conference [74].

Finally, some of our users, being complete technophobes,
preferred to access MiMI in their own language, English.
We developed an interactive Natural Language Interface for
Querying XML, NaLIX [58, 59], which is built on top of
Schema-Free XQuery. NaLIX is a generic natural language
query interface capable of handling queries with not just se-
lection, but also joins, nesting, and aggregation. It uses a

directed iterative refinement method to assist users in re-
stating queries when it is unable to understand the users’
natural language statements [60]. We extended NaLIX to
permit conversational querying so that users can construct
complex queries as modifications of previously issued queries
[61]. We also added a domain learning component to the
generic NaLIX system, leveraging off the iterative restate-
ment of queries. This system, DaNaLIX is being demon-
strated at this conference [57].

In short, we developed a rich panoply of interfaces with
which to access MiMI. Our intention was that each user
could choose to interact with the database using the inter-
face they prefer. Many issues, however, still remain.

3.2 Remaining Issues
Many of our users have strong preferences for some in-

terfaces over others. But users do access MiMI through
multiple interfaces. Somewhat surprisingly, we receive com-
plaints about inconsistencies between different interfaces—
some users found different results by going through different
interfaces, as the following example shows.

Example 1. A user issues a keyword query ‘Wee1’ through

the keyword interface. The query evaluation accesses the

Lucene index, which is constructed on all textual fields, ir-

respective of which field it occurs in. Hundreds of results are

returned, including molecules that bear some relationship to

Wee1 and mention the string ‘Wee1’ somewhere in one of

their fields. Later on, the same user issue a form-based query

through the MQuery interface, by typing ‘Wee1’ into the

‘Molecule Name’ field, and only ten results are returned—

the molecules that contain Wee1 as their name. The user

complains to us for producing inconsistent results.



While we, as computer scientists, can see immediately
where the problem is, our users don’t. And the burden is on
us to explain to our users, in an effective way, the reasons
behind this inconsistency.

Another set of complaints we frequently get are the inabil-
ity to explore and manipulate the data directly, in a graphi-
cal setting. We partially addressed this issue by integrating
a popular graphical tool, Cytoscape [86], into MiMI. While
users cannot issue complex queries over the database be-
cause of the limitations of Cytoscape, they are happy to be
able to graphically manipulate the results, which are viewed
as a graph of interacting protein nodes. One primary bene-
fit of using Cytoscape is the ease of specifying joins to find
related interactions or proteins in the graphical setting. (In
fact, we found joins to be extremely hard for our users to
reason with correctly.) How to allow complex query seman-
tics over a graphical representation of the data is a major
research issue that we are currently pursuing.

Finally, many of our users frequently generate scientific re-
sults from the experiments performed in their labs—results
that they would like to put into MiMI for easy access by
others. However, MiMI’s rigid structure, as exemplified by
a schema that is updated only a few times a year, prevents
users from simply putting their data into MiMI. Instead,
they need to understand the MiMI structure first and con-
vert their data to the MiMI format before the update can be
made. In reality, little data has been uploaded into MiMI
from our users primarily because they are all busy scientists
whose time is simply too precious to be spent understanding
the schema of a database they use as a tool.

As we analyze our accomplishments, and more impor-
tantly, the many remaining issues described above, we have
come to realize that the usability of a database system is
much more than skin deep. Our work on query interfaces
may contribute towards the usability of a system, but they
are far from enough to provide the optimal user experience.
In the next section, we enunciate what we believe are the
major database usability problems.

4. THE PERSISTENCE OF PAIN
When we look at how users struggle with database sys-

tems today, we see several major issues. Whereas we have
certainly been motivated to study issues of usability because
of MiMI and our biological collaborations, we believe that
the usability concepts we present in this paper are applica-
ble universally and not just to scientific data. To stress this
point, and to make this paper accessible to the database re-
searcher who may not know much Biology, we have chosen
an airline database as our running example in this paper
and avoided the use of biological terms.

4.1 Painful Relations
Whereas a single table of data is natural for most peo-

ple, joins between multiple tables are not. Unfortunately,
normalization is at the center of relational design. Indeed
normalization saves space, avoids update anomalies, and is
a desirable property from many perspectives. However, the
use of joins in a relational model does not retain the integrity
of data objects that a user regards as one unit.

Consider an airline database with a basic schema shown
in Figure 2, for tracing planes and flights. The data encap-
sulated is starting location, destination, plane information,
and times—essentially what every passenger thinks of as a

flight. Yet, in our normalized relational representation, this
single concept is recorded across four different tables. Such
“splattering” of data decreases the usability of the database
in terms of schema comprehension, join computation, and
query expression.

First, given the large number of tables in a database, often
with poorly named entities, it is usually not easy to under-
stand how to locate a particular piece of data. Even in a
toy schema such as Figure 2, there is the possibility of trou-
ble. Obviously, the airports table has information about
the starting location and the destination. However, how do
we figure out what is used by a particular flight? The words
fid and tid have no meaning. Instead we must bring up
the schema, press our fingers to the monitors, and create a
greasy smear as we follow the foreign key constraint. Al-
ternatively, we could suffer almost as much pain by reading
the database creation statements for the same information.
The current solution to manage this pain is to hire DBAs
and offer them copious amounts of money not to leave once
they have learned the company’s database schema well.

The next problem users face is computing the joins. We
break apart information during the database design phase
such that everything is normalized—space efficient and up-
datable. However, the users will have to stitch the informa-
tion back together to answer most of the real queries. The
fundamental issue is that joins destroy the connections be-
tween information pertaining to the same real world entities
and are nonintuitive to most normal users. We note that
many commercial database systems carefully denormalize
their schema to reduce the number of joins required, al-
though the purpose there is to speed up query evaluation.

Finally, queries become painful to express across multiple
tables. Because joins innately disrupt data cohesion, such
queries are problematic for many users. For example, con-
sider a query as simple as “Find all flights from Detroit to
Beijing” in our airline database. Even though we are inter-
ested only in information about flights, the city names that
specify the selection predicate are found only in the airports

relation, which must be joined twice with flight info to ex-
press our query.

For queries like this one with only a few simple joins, it
is not so hard to see how one could reconstruct the un-
derlying object that was broken apart to produce the nor-
malized schema. One could even envisage an automated
tool to do so. However, when we start having recursive
self-joins or one-to-many joins with variable cardinality, or
non-equijoins, it is not even clear how to produce a single
tuple for the user to operate on in a tabular fashion. In
fact, even experts may run into trouble, as pointed out by
David Beech [6], the technical guru at Oracle: “Supposing
that the same set of features is widely available in different
implementations, will the standards be well enough under-
stood by users who are not programming wizards? I’m not
implying that application developers will all use SQL di-
rectly. Even if higher-level tools conceal the syntax of the
language, users must clearly understand the data model or
type system of the manipulated information.”

Some practitioners have realized that typical commercial
databases are too heavy duty and too confusing for the aver-
age user. Approaches such as DabbleDB [31] or OpenRecord
[76] present users with “easy” relational systems. However,
even these systems, specifically geared toward taking the
onus of SQL away from the user, are still haunted by the
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Figure 2: The base tables needed to store a “flight”. A

flight contains from location, destination, airplane info

and schedule, yet consists of at least four tables. Note

that an actual schema for such data is likely to involve

many more attributes and tables.

join curse. The normalization/join notion creeps into even
the best interfaces because of its centrality in the relational
mind set.

4.2 Painful Options
Most computer scientists will consider a system that sup-

ports both A and B as being superior to a system that only
supports A, for any functionality A and B. After all, the first
system can emulate the second, while the second cannot em-
ulate the first. Similarly, a system that permits adjustment
of some tuning parameter is logically superior to another
that does not permit this parameter to be adjusted.

Unfortunately, this sort of logic quickly leads us to create
software with too much functionality and too many options.
The problem with irrelevant options is that they compete
with the relevant ones. Exercising options is not costless.
A cost analysis of weighing diverse options was performed
in [88]. Psychologists can also tell us about regret regard-
ing “paths not taken,” a cost that would not be there if the
alternative paths were not there in the first place. [48] stud-
ies the effects of forgone options and models its cost to the
user. Too many choices can also have an adverse effect on
a user’s “need for closure” which is studied in [67]. A great
deal of the mystique of Apple Inc. has to do with their re-
ducing the functionality of their product, and hence making
them better. Witness the success of the iPod: the simplest
set of features that can possibly work is what attracts large
numbers of users—not the latest in whizbang gadgetry [81].

The database metamodel today is all about options. Query
optimization is at the heart of what we do. Determining al-
gebraic equivalences and generating alternative query plans
is at the core of our heart. The same query can be posed
multiple equivalent ways in SQL.

Instead, we should design systems for customized value
and care only about how well users can get their job done.
Unexplored alternatives provide no value, as the nervous in-
terviewee was told during job search, “It is not the number
of offers that counts, but rather the quality of the one offer
that you accept.” It is no surprise that forms-based inter-
faces, for all their limitations, have been the primary means
through which non-experts interact with databases.

Forms limit database access to a specific set of queries felt
to be of most use to their target users. They offer a conve-
nient entry-point to the database that requires no knowledge
of query languages or data organization that other querying
mechanisms like SQL require to obtain the same informa-
tion. But this simplicity comes at a price. While we would
like to limit options, it is not easy to determine which op-
tions to keep and which options to leave out. “What do
users want?” is a difficult question to answer, especially
since users are not all the same. While cutting down on op-
tions can greatly enhance the querying experience for some
users, it might dissatisfy many others. The challenge is to
simplify querying for novice users, while providing the ex-
pert user with the tools she needs to be productive.

4.3 Unexpected Pain
Another place where database systems can frustrate users

is when they produce results that are unexpected with no
explanation. Shielded from the details of the system, a user
can obtain results that do not make sense to her because
her mental model and assumptions of the system conflict
with the actual underpinnings of the system. A counter-
example is a web search engine, which has a complex ranking
procedure for search results and does not reveal the technical
details to most users. Users seem to accept search engines
because: 1) Expectations are set correctly. Search engines
are upfront about performing behind the scenes magic that
the user cannot influence. 2) Usually, the top few results
returned do contain what the user is looking for. 3) If the
result is not there, the user has the option to either trawl
through pages of returned options, or to try a different query
path. 4) The web is huge, and no one knows exactly what
is out there. If a user is not presented with a relevant page,
chances are he would not know he missed it, and would make
do with a different entry.

Unfortunately, the search engine strategy will not work
for database systems mainly because of (4). When a user
queries an airline reservation system, she may know that
there are flights between Detroit and Beijing. When the sys-
tem tells her otherwise, it is unexpected and she will demand
an explanation. This unexpectedness comes in two forms,
unable to query and unexpected results. We have mentioned
the latter previously. We now describe both of them in more
detail.

4.3.1 Unable to Query
When a system hinders users from querying the data in

the way that they want, it frustrates the user. It is especially
frustrating when the user knows that the underlying data
exists, yet she cannot query it:

Example 2. Consider a world traveler who has infinite

flexibility, many destinations to visit but limited money. She

visits her favorite airline reservation site, and chooses “Flex-

ible Dates”. After filling in a bit more information, she at-

tempts to specify multiple stops. Suddenly, she is forced to

enter fixed dates into the system!

The system behaved unexpectedly, which led to the user
not being able to construct her query, but why? Was it
because she cannot have multiple hops with flexible dates?
Or was it some other piece of information she entered? Even
if the user determined that she could not enter flexible dates
with multiple hops, there was still unexpectedness. The data



obviously exists in the database, so has she merely chosen
the wrong interface to access it? If she had started in a
different place, or followed a different path, could she have
fulfilled her request?

This is a fundamental problem with forms-based inter-
faces. Forms, by definition, provide only a limited view of
the underlying data. When users’ mental model of the data
differs from that of the form designer, unexpected pain re-
sults. The user has to focus on how to obtain results rather
than on what results they want. This practically eliminates
the benefit of declarative querying that an RDBMS provides.

The need for application-specific forms-based interfaces
stems from the general database usability problems. If the
average user could successfully query a relational database,
there would be no need for a separate form for each appli-
cation. Ideally, the system could adapt to the user’s view of
what the data represents and allow the user to query it in
whatever way makes sense for her.

Developing methods for querying relational databases that
are agnostic with respect to the true underlying structure
poses many challenges. First, the system must determine
what the user wants to query for. In the cases of simple se-
lection conditions, this determination is not too hard so long
as the user knows what fields are available and the system
knows how to join the tables containing these fields. In the
case of queries requiring aggregation and multiple complex
joins, it is not so clear how to provide the user a straightfor-
ward yet comprehensive way of specifying what they want
to query.

Even if the user successfully specifies what to query, the
system may be unable or unwilling to perform the query.
The reasons for this are manifold: performance or security
concerns, data or program errors at some level of the system,
etc. To avoid unnecessary pain, the system must be able
to report these failures to the user in a meaningful way.
Determining the appropriate level of detail so as to help the
user without overwhelming her is a challenge in and of itself.

4.3.2 Unexpected Results
There is still plenty of opportunity for unexpected pain

even when a user is able to successfully navigate through a
system’s query interface. When the user encounters unex-
pected results and no explanation is provided, the user is
again frustrated. Previous work [70] focuses on explanation
for empty results. However, even non-empty results can still
be unexpected. We present two different ways that users can
encounter problems with the results. The first is with the
base data itself.

Example 3. A user books a trip through the airline reser-

vation system and requests lowest fare and a window seat.

However, the system keeps giving him an aisle seat without

any error message. Where does the aisle seat come from?

Is it from the pool of general seats or is it from the pool of

seats with the lowest fare?

Often the need to know where a result comes from is only
requested when something goes wrong. However, it can be
necessary in its own right. For instance, you may be inter-
ested in the list of prohibited items published by the gov-
ernment agency TSA, but not by the individual airlines. It
matters where a result comes from. However, where alone is
not enough, as the next example will demonstrate.

Example 4. A user, looking for an escape, peruses the

list of cheap flights provided by her favorite airline. She

can get to Los Angeles for $75, Boston for $100 and San

Francisco for $400. Why is San Francisco on this list? It is

not a particularly cheap fare, but it must have satisfied some

criteria to be placed there.

In addition to where a result comes from, why a result is
returned is also essential. The latter describes why a par-
ticular item is included in a set [8, 30]. For instance, in the
above example, if the criteria for inclusion is that the fare
is less than the average flight price for the next month, and
the San Francisco fare satisfies this, it should be included
on the list.

When users encounter unexpected results, it is responsi-
bility of the database system to explain to them the where

and why. The usability of the system can be significantly
affected when no such explanation can be given.

4.4 Unseen Pain
As computer scientists, when we think of database users,

our instinct is that they will think like us. But we are not
typical database users. For example, the vast majority of
us today prefer to use LATEX for document creation. Yet an
overwhelming majority of the rest of the world prefers Mi-
crosoft Word. As a computer scientist, you can explain why
you prefer LATEX to Word—the former is elegant, it permits
global changes more easily, it separates content from format-
ting, it stores everything in small ASCII files, and so on. Yet,
Word has one overwhelming advantage over LATEX—it has
the “What You See is What You Get” (WYSIWYG) prop-
erty. As a LATEX user, you edit the source file and predict

what your modifications will do to the output generated.
If you are an experienced LATEX user, and have your brain
wired like a Computer Scientist, your predictions are cor-
rect most of the time. If your predictions are correct often
enough, your few mistakes are easy to take in stride. For
the lay user, though, this can become a frustrating barrier
to use.

Our situation with database manipulation is similar. Es-
sentially all query languages, including visual query builders,
separate query specification from output. A user issues a
query, and hopes that it will produce the desired output. If
it does not, then she has to revise the query and resubmit.
There has been some discussion in the database community
of query sequences, but the assumption is that a query is be-
ing reformulated because the user is “exploring” the data.
While this may be true in some cases, often the query re-
formulation is because the user did not initially specify the
query correctly.

Querying in its current form requires prediction on the
part of the user. In our airline database example, consider
the specification of a three letter airport code. Some in-
terfaces provide a drop down list of all the cities that the
airline flies into. For an airline of any size, this list can have
hundreds of entries, most of which are not relevant to the
user. The fact that it is alphabetized may not help—there
may be multiple airports for some major cities, the airport
may be named for a neighboring city, and so on. A better
interface allows a user to enter the name of the place they
want to get to, and then looks for close matches. This can-
not be a simple string comparison—we need Inchon airport
to be suggested no matter whether the user entered Inchon

or Seoul or even Soul. This does not seem too hard, and



some airline web sites will do this. But now consider a user
who wants to visit KAIST, and so enters Daejeon as the city
to fly to. No search interface today, to our knowledge, can
suggest flying into Inchon airport even though that is likely
to be the preferred solution for most travelers.

A significant part of database query specification is result
construction. Once the FROM and WHERE clauses of a
SQL query have been executed, we have data in hand that
must be manipulated to produce the desired output. In
the case of report generation from a data warehouse, there
may not even be a selection condition to apply—the entire
query specification is about how to aggregate and present
the results. Indeed, the only examples we are aware of that
provide WYSIWYG capabilities in the database context are
warehouse report generation tools.

What does WYSIWYG mean for databases? After all, the
point of specifying a query is to get at information that the
user does not possess. Even search engines are not WYSI-
WYG. A WYSIWYG interface for selection specification
and data results involves a constant predictive capability on
the part of the system. For example, instantaneous-response
interfaces [74] allow users to gain insights into the schema
and the data during query time, which allows the user to
continuously refine the query as they are typing the initial

query. By the time the user has typed out the entire query,
the query has been correctly formulated and the results have
returned.

Other examples of WYSIWYG in databases can be seen in
a geographical context. Consider the display of a world map.
The user could zoom into the area of interest and select air-
ports geographically from the choices presented. Most travel
sites already provide a facility to specify dates using a pop-
up calendar. It is just a question of taking this WYSIWYG
approach and pushing it farther. Most map databases today
provide excellent direct manipulation capabilities, including
pan, zoom, and so on. Imagine a map database without
these facilities that requires users to specify, through a text
selection of zip code or latitude/longitude, the portion of the
map that is of interest each time. We would find it terribly
frustrating. Unfortunately, most database query interfaces
today are not WYSIWYG and can be compared to this hy-
pothetical frustrating map query interface.

4.5 Birthing Pain
While database systems have fully established themselves

in the corporate market, they have not made a large im-
pact on how users organize their everyday information. It
is not because users do not want to store their informa-
tion inside a database. Rather, there are many everyday
data a user would like to put into her databases [7] such as
shopping lists, expense reports, etc. The main reason for
this “birthing pain” is that creating a database and putting
information into a database are not easy tasks. For exam-
ple, creating a database in current systems requires a care-
ful design of the database schema, for which ordinary users
simply do not have the inclination or expertise. Similarly,
putting information into an existing database may require
the user to re-organize her information according to the spe-
cific structure in this existing database, which involves un-
derstanding this structure and developing a mapping to it
from the data.

Example 5. Consider our user, Jane, who started to keep

track of her shopping lists. The first list she created simply

contained a list of items and quantities of each to be pur-

chased. After the first shopping trip, Jane realized that she

needed to add price information to the list to monitor her ex-

penses and she also started marking items that were not in

stock at the store. A week before Thanksgiving, Jane created

another shopping list. However, this time, the items were

gifts to her friends, and information about the friends there-

fore needed to be added to create this “gift list.” A week after

Christmas, Jane started to create another “gift list” to track

gifts she received from her friends. However, the friends in-

formation were now about friends giving her gifts. In the

end, what started as a simple list of items for Jane had be-

come a repository of items, stores, and more importantly,

friends – an important part of Jane’s life.

The above example, although simple, illustrates how an
everyday database evolves and the many usability challenges
facing a database system. First, users do not have a clear
knowledge of what the final structure of the database will
be and therefore a comprehensive design of the database
is impossible at the beginning. For example, Jane did not
know that she needed to keep track of information about her
friends until the time had come to buy gifts for them. Sec-
ond, the structure of the database grows as more information
become available. For example, the information about price
and out of stock only became available after the shopping
trip. Finally, information structures may be heterogeneous.
For example, the two “gift lists” that Jane created had differ-
ent semantics in their friends information and the database
needs to gracefully handle this heterogeneity.

In summary, for everyday data, the structure grows in-
crementally and a database system must provide interfaces
for users to easily create both unstructured and structured
information and to fluidly manipulate the structure when
necessary.

5. THE PAINLESS FUTURE
When we speak of usability, we mean much more than

just the user interface, which is only a part of the usability
equation. A more fundamental concern is that of the under-
lying architecture. To understand this, consider computer
system security as a parallel example. When we think of
security, many would immediately think of firewalls, and in-
deed firewalls are an important part of establishing a secure
computing environment. Yet, we all appreciate that a fire-
wall in itself is not enough—security is truly obtained only
when it is designed into every aspect of the system.

While they provide visual means to let users manipulate
queries easily, state-of-the-art query builders and graphi-
cal interfaces on top of current database systems still re-
quire abstraction of the query semantics through the user—
something at which she may not be particularly adept. They
also tend to expose the underlying database schema to the
user, adding to her cognitive burden. Furthermore, there
are few friendly ways for a user to create or edit a database.

We need database systems that reflect the user’s model
of the data, rather than forcing the data to fit a particular
model. Even if we have a relational implementation under
the hood, it should be hidden from the user, who should see
the data presented in a form that is “natural.” This means
there is no single standard presentation data model of data.
However, there are at least a few major models that work
well to model significant segments of user applications:



• Geographic: Many data sources of interest have geo-
graphic or spatial distributions. These include not just
traditional geospatial data and map data, but also any
information with a location component. In fact, on the
web, mashups have been tremendously successful in
presenting joins between data sets using a geographic
location as the basis.

• Network: We may have a graph or network represen-
tation of data that is natural in many circumstances.
In the case of MiMI, we found that for many scientists,
protein interaction data is most naturally viewed as a
graph. This is the case even when the scientist is not
directly interested in graph properties: for example,
when viewing the properties of a single interaction be-
tween a pair of proteins, scientists still prefer to view
the interaction as an edge in the graph. We conjecture
that this preference is because the local neighborhood
of the graph establishes “context” for the scientist and
provides her with confidence that she is indeed looking
at the correct interaction. Moreover, it is also much
easier to point and click than to type.

• Multidimensional: The multidimensional data model
is the presentation data model that is perhaps the most
successful commercially. It was explicitly called a data
model, and introduced for decision support queries on
warehoused data almost fifteen years ago [82]. It has
since been adopted widely, and even today it is at
the cutting edge of database user interaction [43, 19].
While data in the warehouse itself may be stored in a
star schema with multiple tables, users of the multi-
dimensional data model think of the data as points in
multi-dimensional space, with aggregates of measure
attributes being computed over specified ranges of di-
mension axes.

• Tabular: While joins across multiple normalized ta-
bles may be difficult, people are certainly used to see-
ing data represented in simple two-dimensional tables.
The popularity of the Excel spreadsheet as a data
model speaks to this. For situations where data can be
represented conveniently as a table, a tabular model is
certainly appropriate.

The concept of a view has been around almost since the be-
ginning of relational data management. Traditionally, this
has been just another relation, defined as the result of eval-
uating a query. Given the need to support various presen-

tation data models, including those just listed, we can
generalize the notion of a view to be not just a table, but
a representation of derived information in the presentation
data model. Manipulating data through the presentation
data model leads to the well-known problem of updating
through views [39]. There are excellent research problems
to be addressed in characterizing presentation data models
and types of updates that can be supported without am-
biguous updates.

Given a data set, it may not always be the case that a sin-
gle presentation data model is best to serve all user needs.
For example, most travel sites will show hotel options in
both a geographical view and a textual list view. Each view
has its strengths, and most users seem to have no trouble
handling this choice of views. However, there is an expecta-
tion of consistency among view options—if a selection

is applied, say on price, in the list view, the user should ex-
pect that selection to be reflected in the geographic view. If
these are implemented as views on the underlying data in
the manner we suggested in the preceding paragraph, then
this type of consistency should be maintained automatically.
Furthermore, it should be noted that while having two op-
tions for views may be appreciated by users, it is probably
the case that eight options would be considered too much.

In addition to consistency, notions of data provenance

must be integrated into the presentation data models. Prove-
nance [10, 18, 96], both why provenance and where prove-
nance, can assist the user in understanding the results pre-
sented to her. Most discussions of provenance today are in
the context of scientific workflows and scientific data man-
agement [38, 78, 95]. However, data provenance is important
for most application domains, including everyday tasks such
as travel planning and weather monitoring. Provenance us-
ability is still in its infancy and presents fertile ground to
explore. To successfully include provenance in any system,
we must find an easy, automated and unobtrusive way to
capture it. Recent work [17, 72] present initial attempts
at this. However, how to succeed in capturing the correct
information, unobtrusively throughout the entire system is
still an open topic. Moreover, once captured, the amount
of provenance can easily outweigh the size of the data itself.
Good provenance storage, compression, and query mecha-
nisms need to be in place. Finally, there must be a way
to make this provenance information understandable to the
user: [25, 27] present provenance viewing strategies, but
understandability is far more than just easily viewing the
provenance entries.

To allow more intuitive user interaction with the database,
the presentation data model should be capable of direct

data manipulation. Users are very good at point-and-
click, drag-and-drop, and, to a lesser extent, filling in textboxes.
But, whatever they do, they should not be surprised by what
they get. In addition, we must develop an algebra of oper-
ations in the presentation data model such that the basic
needs of most users are met by a very small number of op-
erators, thus reducing the barrier to adoption. As users
gain experience with the data model, they can become more
proficient at manipulating it, and can add to the suite of
operators they know how to invoke, thereby increasing the
expressive power of the algebra.

Finally, database systems must accommodate users who
expect to create and update their databases and yet have
no interest or expertise in database design and database in-
tegration. In spirit similar to the Dataspace concept [42,
65], we argue that database systems need to support inter-
faces for casual “schema-later” and “heterogeneous”

database design: a database can be created with data
that is unstructured or (heterogeneously) structured, and
the system needs to take advantage of whatever structure
the data currently has. Furthermore, the system needs to
provide functionality for users to add structure easily when
there is a need and in a manner convenient to them.

6. CONCLUSION
Database systems today, for all their virtues, are extremely

difficult for most people to interact with. This difficulty can-
not be fixed just by improving the query interface. Rather,
we must rethink the architecture of the database system as
a whole. This paper has suggested a framework for this



purpose comprising a presentation data model as a distinct
layer above the usual logical data model. We envision this
presentation data model to allow effective user interaction
with the database through direct data manipulation.
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