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ABSTRACT
We describe a framework for automatically selecting a sum-
mary set of photos from a large collection of geo-referenced
photographs. Such large collections are inherently difficult
to browse, and become excessively so as they grow in size,
making summaries an important tool in rendering these col-
lections accessible. Our summary algorithm is based on spa-
tial patterns in photo sets, as well as textual-topical patterns
and user (photographer) identity cues. The algorithm can
be expanded to support social, temporal, and other factors.
The summary can thus be biased by the content of the query,
the user making the query, and the context in which the
query is made.

A modified version of our summarization algorithm serves
as a basis for a new map-based visualization of large collec-
tions of geo-referenced photos, called Tag Maps. Tag Maps
visualize the data by placing highly representative textual
tags on relevant map locations in the viewed region, effec-
tively providing a sense of the important concepts embodied
in the collection.

An initial evaluation of our implementation on a set of
geo-referenced photos shows that our algorithm and visual-
ization perform well, producing summaries and views that
are highly rated by users.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval—Information Search and Retrieval

General Terms
Algorithms, Human Factors

Keywords
Photo Collections, Geo-Referenced Photos, Summarization,
Clustering, Image Search, Collection Visualization
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1. INTRODUCTION
With the popularization of digital photography, people

are now capturing and storing far more photographs than
ever before. Indeed, we are moving towards Susan Sontag’s
1977 vision of a world where “everything exists to end up
in a photograph” [18]. As a result, billions of images, many
of which are on the Web, constitute a growing record of
our culture and shared experience. Viewing and interact-
ing with such collections has a broad social and practical
importance. However, these collections are inherently diffi-
cult to navigate, due to their size and the inability of com-
puters to understand the content of the photographs. The
prospects of ‘making sense’ of these photo collections has
become largely infeasible.

Some steps forward have been made through geo-referencing
of digital photographs, whereby photos are connected to
metadata describing the geographic location in which they
were taken [12, 19]. Capture devices such as camera-phones
and GPS-enabled cameras can automatically associate geo-
graphic data with images1 and will significantly increase the
number of geo-referenced photos available online. Already,
an increasing number of photographs on the Web are associ-
ated with GPS coordinates. Such geo-referenced photos can
be categorized geographically or displayed on a digital map,
providing a rich spatial context in which to view subsets of a
collection. Yet even here, we run into the problem of being
able to filter, sort and summarize the data. The viewable
space inevitably becomes cluttered after the data set has sur-
passed a certain size, with overlapping photographs making
viewing and finding specific photographs ever more difficult
as the collection grows. Figure 1(a) exemplifies the problem
by showing an unfiltered view of San Francisco photos.

Our goal is thus to facilitate a system which can automat-
ically select representative and relevant photographs from a
particular spatial region. A result of our algorithm is illus-
trated in Figure 1(b), where a limited set of eleven photos
that were selected by our system are marked on the San
Francisco map. Such collection summaries will enable users
to find items more easily and browse more efficiently through
large scale geo-referenced photo collections, in a manner that
improves rather than degrades with the addition of more
photos.

Selecting the most representative photos from a given re-
gion is a difficult task for several reasons. For instance:

1See, for example, the ZoneTag application at
http://zonetag.research.yahoo.com.



• Image analysis alone is poor at understanding the se-
mantic content of an image, making visual relevance in-
sufficient for summarization.

• In multi-user sets, the biases of one user’s data may skew
the selection towards generally insignificant subjects.

• It is difficult for an automated system to learn and assess
the relevance of photos without appropriate models of
human interest, as the notion of relevance is not well
defined, and often subjective.

(a) All San Francisco photos

(b) An automatic summary of San
Francisco photos

Figure 1: All San Francisco photos from our dataset
of 2200 geo-referenced photos, versus an automatic
summary of photos, as generated by our system.
One summary photo is enlarged for illustration.

We have designed and implemented a simple algorithm
that attempts to address the challenges stated above. Our
algorithm utilizes metadata-based heuristics that capital-
ize on patterns in users’ photographic behavior. Foremost
among these heuristics is the premise that photographs taken
at a location ‘vote’ for the presence of something interesting
at that location.

Our algorithm considers a multitude of spatial, social and
temporal metadata (such as where the photo was taken, by
whom, at what time), as well as textual-topical patterns in
the data, such as textual tags associated with the photo.
Furthermore, the algorithm can be tuned to bias the set
of results using various factors such as the social network
distance of the photographers to the user making the query.

The summarization algorithm can be used in a number
of applications. For example, the algorithm could be used
for geographic image search, returning a summary of pho-
tographs from a region in response to a search query (that
can be specified as a text term or a map region). In addi-

tion, the summarization can be used to assist in map-based
browsing of images, for example, by selecting a subset of rep-
resentative photos to show according to the map’s coverage
and zoom level. With or without a map, summarization can
help in browsing one’s photos or a group of individuals’ pho-
tos to get an overview of a location or discover personally
interesting areas for further exploration; automatic travel
guide is a scenario that comes to mind.

Key insights from our algorithm helped us generate a new
way of visualizing large collections of geo-referenced pho-
tographs. We use the techniques we developed to gener-
ate map-based tag clouds, which are described in Section 6.
“Tag Maps”, as we call them, can be used to visualize the
contents of the collection, giving a quick overview of the
textual-topical concepts that appear in the data as well as
their location, importance and recency. The photos them-
selves are not necessarily part of the visualization. Tag Maps
concepts can be applied to many other multimedia (or other)
applications that exhibit patterns in text and locations.

To summarize, the contributions of this paper are:

• A new approach for generating summaries of photo col-
lections based on geographic as well as other contextual
data associated with the photographic media (Section 3).

• An outline of the requirements and the useful features
for these context-based summaries (Section 3).

• An implementation of an algorithm that generates such
summaries using a public set of “geo-tagged” photographs
(Section 4).

• A new map-based visualization technique for photo col-
lections that helps indicate both the important regions
on the map and the textual concepts represented in those
regions (Section 6).

• A proposed evaluation for geo-referenced collection sum-
maries; we use this evaluation to compare our algorithm
to several baseline methods (Section 7).

In addition, Section 5 briefly touches on potential applica-
tions. We begin by discussing the related work.

2. RELATED WORK
Since 2003, a number of different research efforts have

considered geographic location information associated with
photographs. In [19], the authors describe WWMX, a map-
based system for browsing a global collection of geo-referenced
photos. Several similar map-based photo browsing systems
appeared on the Web in the last few years2, most of them
using “geo-tagged” images from Flickr [5] for content. All
of those systems face the problem of clutter in the map in-
terface: as the number of photos available in each location
grow, the full set of images cannot possibly be shown on
the map at once. While some systems default to showing
the most recent photos, the WWMX system tries to handle
clutter by consolidating multiple photograph markers into a
single marker according to the zoom level. In our system, we
avoid clutter by utilizing the additional metadata to select
the best set of photographs from a region, providing poten-
tially a better selection than the “most recent” strategy, and
a more meaningful one than the “consolidation” approach.

Several projects [12, 15] use geographic data to organize
photo collections in novel ways, for example, by detecting

2like http://geobloggers.com and http://mappr.com



significant events and locations in a photo collection. Such
structures could indeed be the basis for collection summa-
rization. However, these projects considered personal photo
collections only, and did not consider public shared pools of
photos.

Looking at shared collections, some research [3, 4, 11,
14, 16] tries to use context (mostly location) information
and sometimes visual features to identify landmarks in pho-
tographs. Visual analysis could be integrated in our system—
once our algorithm recognizes significant locations, it can
attempt to select a photo of a prominent landmark there.

Work in both [3, 11] considers, in a similar fashion to this
work, patterns and distributions of textual terms that are
associated with geo-referenced digital photos, and uses them
to generate tag suggestions for new photographs. However,
those projects are not designed to support collection sum-
marization.

In the absence of location metadata, temporal metadata
was also considered in the past for the purpose of photo col-
lection summarization. In [8], Graham et al. describe an
algorithm to heuristically select representative photos for a
given time period in a personal collection, utilizing patterns
in human photo-taking habits (later studied in [6]). Ad-
ditional time-based work aims to detect events in personal
collections (e.g., [2]), which could be the basis for collection
summarization. However, again, all these projects consid-
ered single-photographer collections only. In public collec-
tions of timestamped photos, only when additional meta-
data is available (for example, the fact that all shared pho-
tos were taken in the same event), there exists the potential
for time-based summaries [13].

Another possible approach for summarizing photo collec-
tions is using textual tags that are associated with the im-
age. In Flickr [5], popular tags have pre-computed clus-
ters of related tags. For example, the “San Francisco” tag
on Flickr has several associated tag clusters3: “california,
bridge, goldengate”; “baseball, giants, sbcpark”, “deyoung,
museum”, “sfo, airport” and “halloween, castro”. These
clusters can potentially be used to generate a summary of
San Francisco photos. This approach is not location-based,
and the clusters often do not represent concepts that are dis-
tinct (e.g., one of Boston’s clusters is “massachusetts, city,
cambridge, building, architecture”). The tag clusters could
possibly be used in conjunction with our method. In fact,
we are using some tag-based computation to select summary
photos. More directly related is a tag subsumption model
[17] that can use the tag corpus to derive tags that are sub-
sumed, for example, by the tag “San Francisco”. Again, this
approach can be integrated with our location-based sum-
maries.

These projects, and others, consider various ways to al-
leviate the difficulties of browsing large collections of pho-
tographs, but do not provide effective ways to summarize
multi-user photo collections or visualize them using maps.
We believe that the potential of a geographic-based summa-
rization method is significant, especially in conjunction with
the current state of the art.

3. THE SUMMARIZATION APPROACH
In this section, we define the problem of summarizing a

photo collection, then describe the guidelines and insights

3http://flickr.com/photos/tags/sanfrancisco/clusters/

that have informed the implementation of our summariza-
tion algorithm. In Section 4 we provide the details of the
algorithm.

We formalize the summarization problem as that of pro-
ducing a ranking on the collection in question. In other
words, we summarize a set of photos by ordering the set
and selecting the top ranked photos. More formally, we
are looking at the following problem: Given an album of
n photos, A = {P1, . . . , Pn}, we wish to find an ordering
ω of A such that any k-length prefix of ω(A) is the best
possible k-element summary of A. A summary is loosely
defined as a subset that captures representativeness, rele-
vance, and breadth in the original collection. These notions
are captured through some of the following metadata at-
tributes that are associated with the photos:

• Location. Photo Pi was taken at location (xi, yi).
4

• Time. Photo Pi was taken at time ti.

• Photographer. Photo Pi was taken by user ui.

• Tags. Photo Pi was manually assigned the list of tags
(i.e., textual labels) wi.

• Quality. Photo Pi is associated with an externally de-
rived parameter qi that represents its quality.

• Relevance. Photo Pi is associated with a relevance fac-
tor ri. Relevance can include arbitrary bias based on
parameters such as recency, the time of day, the day of
the week, the social network of the user, user attributes,
and so forth.

Note that The relevance attribute can introduce subjectiv-
ity, allowing us, for example, to tune the results to the user
who is making the query and the context of the query.

While there is no accurate formal model for what con-
stitutes a “good” summary of a collection of geo-referenced
photographs, we follow a few simple heuristics that try to
model and capture human attention, as reflected in the set
of photos taken in a region. Among these heuristics are the
notions that:

• Photographs are taken at locations that provide views of
some important object or landmark.

• A location is more relevant if the photos around it were
taken by a large number of distinct photographers.

• If available, location-based patterns of textual tags can
reflect the presence of an important landmarks in a lo-
cation.

In addition to the heuristics listed above, a desired sum-
mary would also (a) represent a broad range of subjects,
instead of thoroughly displaying a few, and (b) allow per-
sonal or query bias to modify the algorithm’s results.

In the next section we describe the summarization algo-
rithm that we developed based on these guidelines.

4. ALGORITHM FOR SUMMARIZATION
As described in Section 3, our summarization algorithm

produces a ranking of the photos in the collection; each pre-
fix of this ranking can serve as a collection summary of the
corresponding size. Producing this ranking is a two-step
process, a clustering step followed by a ranking step on the
resulting clustering hierarchy. In particular:

4Notice that this ‘photo origin location’ is different than the
‘target location’, the location of the photographed object.



1. We apply a modified version of the Hungarian clus-
tering algorithm [7] to our collection of photographs.
This algorithm receives the photograph locations as an
input, and organizes them into a hierarchical clustered
structure.

2. We compute a score for each cluster in the hierarchy.

3. Finally, we generate a flat ordering of all photos in the
dataset by recursively ranking the sub-clusters at each
level, starting from the leaf clusters, and ending at the
root.

Note that while the clustering is a fixed one-time compu-
tation, the ranking step can be re-evaluated, allowing users
to specify a personal bias or preference towards any of the
metadata features. Alternatively, the ranking can also be
modified to utilize implicit bias in the query context (e.g.,
the identity of the user making the query).

To illustrate the process and the scoring mechanism we
use a hypothetical example, presented in Figure 2. In this
figure, a leaf node represents a single photograph, annotated
with the identity of the photographer and a single textual
tag (in practice, of course, more tags can be associated with
each photo). The tree represents the hierarchy created by
the clustering algorithm.

Next, we describe the algorithm in detail. First, we dis-
cuss the clustering algorithm that produces the clustering
hierarchy. Then, we describe how to produce a ranking of
all photos in a single node of the above mentioned clustering
hierarchy, assuming that all nodes in the hierarchy are as-
sociated with scores. Finally, we show how we can generate
such scores for the nodes in the hierarchy.

4.1 Clustering
Our method requires a hierarchical clustering algorithm;

as noted above, we use the Hungarian clustering algorithm
[7]. This algorithm identifies a hierarchy of clusters within
a given dataset of n points, based only on the distances
between those points.

In our system, the input to the clustering algorithm is a
set of points in the plane, representing the locations of the
photographs,5

A = {(xi, yi) ∈ R2, 1 ≤ i ≤ n} . (1)

The output is a clustering of these photo locations, C(A),
where C(A) is a tree. Each node in the tree represents a
subset of A, the root of the tree represents the entire set,
the children of each node are a partition (or clustering) of
the subset that is associated with that parent node, and the
leaves of the tree are the points in A.

The classical Hungarian method is an efficient algorithm
for solving the problem of minimal-weight cycle cover. In
that problem, one is given a weighted graph and needs to
find a cover of that graph by disjoint cycles with minimal to-
tal weight. This algorithm serves as the basic building block
for a clustering method that is dubbed The Hungarian clus-
tering method. Viewing A as a complete weighted graph,
where the weight of each edge is the Euclidean (geographic,
in this case) distance between the two nodes that it connects,
the Hungarian clustering method subjects that graph to the
classical Hungarian method. The disjoint cycles, produced

5For convenience, we use the same notation, A, to denote
the photo set as well as the set of photo locations.

by the Hungarian method, are viewed as a partition of the
data-set. The clustering algorithm then proceeds by hier-
archical merging of the disjoint cycles, until the produced
clusters are perceived as complete clusters (through some
”completeness” criteria) and then the hierarchical merging
stops. We use the Hungarian Clustering algorithm because
of two features that it boasts: It is an hierarchical clustering
algorithm, and it does not depend on the number of clusters
as an input.

The clustering hierarchy C(A) is used to create a ranking
of all photos. In order to describe the ranking algorithm,
let us first assume that the nodes in the hierarchy have been
assigned a score that embodies the importance of the cluster
of photos that corresponds to that node.

4.2 Ranking Framework
Given a hierarchical clustering C(A) on the locations of

all photographs, and a score for every node (cluster) in that
hierarchy, our goal is then to produce a ranking of all items
in the collection. We describe a recursive interleaving algo-
rithm that uses the clustered structure and the correspond-
ing scores in order to produce a natural flat ordering. In the
next section we outline a way to generate the scores.

Going bottom up, the ranking algorithm considers each
node B in the hierarchy C(A) and outputs an ordering ω(B)
that represents a ranking of photos in B. Finally, when ex-
ecuting on the root node that corresponds to the entire set
A, we get the ordered sequence, S := ω(A), that describes
a ranking of all photos in A. Applying this algorithm to the
example in Figure 2, a possible output could be the ranking
S = (6, 8, 4, 5, 7), where the numbers in the sequence corre-
spond to the numerals of the leaves in the tree in Figure 2.

For simplicity of notations, we describe the action of the
algorithm on the root node, A. Actions on other nodes
are performed in the same manner. We assume that we
identified m sub-clusters in A, A =

Sm
i=1Ai; namely, node

A has m direct descendents. In addition, assume that the
photos in each sub-cluster of A have been ranked recursively
according to this algorithm, and that each of the nodes Ai

is associated with some score s(Ai) such that (without loss
of generality)

s(A1) ≥ s(A2) ≥ · · · ≥ s(Am) . (2)

1

2 3

4 5 6 7 8
(U1,Bridge) (U1,Car) (U2,Bridge)  (U3,Car)(U3,Museum)

Figure 2: A sample hierarchy; the leaves are photos,
each associated with a user and a single tag.

Our goal is to produce a ranking that would balance the
contradicting properties of depth and breadth of coverage.
In the field of Information Retrieval, some measures are used
to balance results in terms of relevance (depth) and broad-
ness (breadth) [1, 10, 20]; for various reasons, these measures
are not applicable here. For our problem, depth requires



that the photos in a cluster are selected from sub-clusters
roughly according to the ratio of their scores. For example,
consider the second level of the hierarchy in Figure 2, which
consists of two clusters, denoted by C2 and C3, and assume
that s(C2) : s(C3) = 5 : 3. We would like to interleave the
photos from these two clusters so that in any section of the
sequence S, the frequencies of photos from the two clusters
relate to each other as closely as possible to their score ratio
in the whole dataset, i.e., 5 : 3. On the other hand, breadth
requires that each sub-cluster should be represented to some
extent early in the ranking of its parent cluster.

In order to attain some amount of depth, breadth, and
consistency, we interleave photos from sub-clusters in the
following manner. The ordered sequence of photos for A
will have two parts: a short header H followed by a trailer
T , where S(A) = H||T .

The header H will include a photo from all prominent
sub-clusters. To that end, we define a threshold 0 < w < 1,
and then a cluster Ai is deemed prominent if

s(Ai)Pm
j=1 s(Aj)

≥ w .

Assume that there are m′ prominent sub-clusters among the
m sub-clusters, with 0 ≤ m′ ≤ m. Then in view of assump-
tion (2), the header is

H = (A1,1,A2,1 · · · ,Am′,1) ,

where Ai,1 is the most relevant photo from cluster Ai. This
header is then followed by a trailer, T . In order to gen-
erate the trailer, we first remove from each sub-cluster the
photo that was selected for the header, recalculate the sub-
cluster scores, and then assign each sub-cluster a probabil-
ity that equals its score divided by the sum of scores of all
sub-clusters. Those probabilities are then used to randomly
select a sub-cluster. If sub-cluster Ai was selected, we re-
move its top-ranked photo, append it to T and repeat, until
all photos have been selected.

By now we have described how to generate the cluster
hierarchy and produce a ranking on the photos in that hi-
erarchy, under the assumption that all nodes are associated
with scores. We therefore proceed to describe a key aspect
of the algorithm: the computation of the scores for a given
cluster (node).

4.3 Scoring Clusters
The score of a cluster Ai depends on several factors, in-

cluding the following:

1. The sum of relevance factors (see Section 3) of all pho-
tos in the cluster,

ρi =
X

Pj∈Ai

rj .

2. The tag-distinguishability of the cluster, τi (explained
below).

3. The photographer-distinguishability of the cluster, φi

(explained below).

4. The density of the cluster. More specifically, let σx,i

and σy,i denote the standard deviation of the x and y
coordinates, respectively, of all points in Ai, and let

σi =
`
(σx,i)

2 + (σy,i)
2´1/2

.

We define the cluster density as

δi = 1/(1 + σi) . (3)

5. The sum of image qualities (see Section 3) of all photos
in the cluster,

κi =
X

Pj∈Ai

qj .

While most of the above factors are derived only from
data that is contained in the photo collection, the relevance
factor can introduce bias by subjective requirements. The
relevance factor ri of a photo Pi can incorporate parameters
such as recency, the time of day, the time of the week, the
identity of the photographer, etc. These parameters can be
specified by a user making the query, or set by the system
according to the application or the query context. Each
photo is assigned a score θ(Pi) in the range [0, 1] for each
such parameter. The final relevance score, ri, may be a
weighted average of all those parameter scores.

The two interesting factors in the score computation are
the tag- and photographer-distinguishability scores of clus-
ters. These values are intended to represent how strongly a
particular cluster is associated with specific tags or photog-
raphers.

4.3.1 Tag-distinguishability of clusters
Tag-distinguishability aims at detecting distinct or unique

concepts that are represented in a given cluster, as those
may indicate the presence of some interesting landmarks
or objects in that cluster. For example, in Figure 2, the
tag “bridge” appears in two photos from Cluster C2, and
does not appear elsewhere. As a consequence, C2’s score im-
proves. On the other hand, the tag “car” appears in photos
from both C2 and C3 and therefore does not help to distin-
guish either of them.

Formally, each photo Pj , 1 ≤ j ≤ n, is tagged with tags
that are drawn from a finite dictionary, T . Hence, tagging
may be viewed as a mapping Pj 7→ T (Pj) ⊂ T . For all t ∈ T
and 1 ≤ i ≤ m, let

tft,i =
|{Pj ∈ Ai : t ∈ T (Pj)}|

|Ai|
(4)

denote the relative frequency of the tag t in Ai, (or term
frequency as it is referred to in Information Retrieval). We
often found that this measure biases towards tags that have
been used frequently by one user in the same cluster. An
alternative frequency calculation can be based on the frac-
tion of photographers in this cluster that have used the tag
t:

tft,i =
|{u ∈ Ui : t ∈ T (Pj), Pj ∈ Ai, Pj ∈ Bu}|

|Ui|
(5)

where Ui is the set of users that have taken photos in cluster
Ai, and Bu is a set of photos taken by user u.

We also use the inverse document frequency, which is a
measure of the overall frequency of the tag t in the entire
photo collection,

idft =
n

|{Pj ∈ A : t ∈ T (Pj)}|
. (6)

There are several ways to combine these two scores to mea-
sure how the term t distinguishes the cluster Ai from other



clusters. Let us denote such measures by τt,i. The usual
measure in Information Retrieval is the tf-idf weight (term
frequency – inverse document frequency). That measure is
defined as

τt,i := tfidft,i = tft,i · idft . (7)

Another alternative to (7) which is used in Information Re-
trieval is

τt,i := tfidft,i = tft,i · log (idft) . (8)

In both cases, large values of τt,i indicate that the number
of occurrences of t in Ai is large with respect to its number
of occurrences elsewhere.

We would like to note that in the usual idf weight, the
inverse document-frequency involves the number of clusters
in which the tag appears, as opposed to the total number
of actual tag occurrences, as given in (6). However, the
usual definition is not suitable for cases where the number
of clusters (documents) is small. In such cases, a single
random occurrence of a tag in a cluster has a significant
effect on the usual measure, while in the alternate approach
we opted for it would be hardly noticeable.

Next, we need to define an overall tag-distinguishability
measure forAi, denoted τi, based on the tag-distinguishability
measures of all tags in the cluster. We compute the overall
score by using the Euclidean measure based on the `2-norm,

τi =

 X
t∈T

τ2
t,i

!1/2

. (9)

We directly evaluate the effectiveness of our approach to
“tag scoring” in Section 7.

4.3.2 Photographer-distinguishability of clusters
The measure of photographer-distinguishability (or user-

distinguishability) is, roughly, inversely correlated to the
number of photographers associated with a given cluster.
The fewer active photographers in a cluster, the lower the
likelihood the cluster will be semantically meaningful. For
example, in Figure 2, all the photos in Cluster C3 were taken
by the same user (U3), while that user did not take any pho-
tos elsewhere. Consequently, the cluster seems to have less
general appeal than C2.

Hence, much like for tags, we consider a tf-idf-like score
for the correlation between a cluster Ai and a photographer
u. Let Bu denote the set of photos that were taken by the
photographer u. Then the score is given by

φu,i := tfu,i · idfu (10)

where

tfu,i =
|Ai ∩ Bu|
|Ai|

(11)

is the relative portion of photographer u in photos from
cluster Ai, and

idfu =
n

|Bu|
(12)

is the inverse of the photographer’s relative portion in photos
from the entire dataset. Note that (10), (11) and (12) are
equivalent to (7), (5) and (6), respectively. As previously,
compare (8) with (7), we may replace (10) with

φu,i := tfu,i · log(idfu) . (13)

Finally, the overall photographer-distinguishability is de-
fined as

φi =

 X
u

φ2
u,i

!1/2

. (14)

According to the guidelines in Section 3, while large tag-
distinguishabilities should contribute towards an increase in
a cluster’s score, the photographer-distinguishability should
have an opposite effect. The more a given cluster is associ-
ated with a single photographer (or few photographers), the
less we are interested in that cluster.

Next, we describe how to merge all these factors into a
single score for each cluster.

4.3.3 Overall Cluster Score
The score s(Ai) of the cluster Ai should depend in a

monotonically increasing manner on the relevance factor,
ρi, and the image quality factor, κi. The score should
also depend in a monotonically increasing manner on the
density measure of the cluster, δi (3), and on τi, the tag-
distinguishability measure of the cluster. Finally, the score
must depend in a monotonically decreasing manner on φi,
the photographer-distinguishability measure of the cluster,
as discussed above. Therefore, the overall score is:

s(Ai) = h(κi, δi, τi, φ
−1
i ) · ρi (15)

where h could be, typically, a geometric mean or a weighted
average of its variables, and the weights may be chosen and
fine-tuned by experimentation.

4.4 Final Considerations
We have described in this section the full framework of

our algorithm: how the clustering is done, how scores are
computed for each node in the cluster hierarchy, and how an
ordering is produced on all photos given the scores and the
cluster hierarchy. In practice, we found that it was necessary
to prevent clusters from subdividing past some minimum
size. Computing a ranking for a small cluster is meaningless.
For example, there is not enough information (photos in
the clusters) to compute a relevant tag- or photographer-
distinguishability score. In order to solve this problem, we
simply enforced a minimum size on all non-leaf clusters, by
merging nodes at the lowest levels of the hierarchy.

The way ranking is performed for these flat “edge” clus-
ters is simple, yet different than the generalized method de-
scribed above. The system computes the top-scoring tags
for each flat cluster using the tag-distinguishability method,
and then picks a photo with tags that best match these
top tags. For example, in Figure 2, photo 6 is likely to
be picked first because of the tag ‘bridge’, which is asso-
ciated with that photo, and also appears often in C2 and
rarely elsewhere. Other approaches for ranking photos for
the flat leaf clusters may be choosing photos that maximize
the visual similarity to other photos in this cluster, or some
combination of such tag- and image-based similarity, as well
as quality and relevance factors associated with the photos.
Joshi et at [9] propose, in a different context, a solution that
can be applied here.

5. SAMPLE APPLICATION
The summarization algorithm has a number of possible

uses. As mentioned above, the summaries could be used to



support “semantic zoom” on large collections of digital pho-
tographs, or help in browsing/searching a large collection by
showing just the summarized results. This latter application
scenario is partially tested in our evaluation, Section 7.

5.1 Map-Based Browsing with Semantic Zoom
When location data is available, a user may wish to view

photographs placed on a map at the locations at which they
were taken. This can be an excellent way to view and under-
stand photos in context. Unfortunately, after the data set
has surpassed a certain size, the space inevitably becomes
cluttered, and the overlap of photos makes comprehending
the full dataset impossible. We believe that by using seman-
tic zoom techniques that are based on our summarization
algorithm, map-based photo browsing can be a practical re-
ality.

Semantic zoom is the concept that zooming through some
space in which digital objects are embedded, such as a map
or a timeline, should be accompanied by a corresponding
shift in the quantity of content presented. In our case, this
means presenting to the user a subset of the photographs,
where the size of the subset is appropriate to the current
zoom level. The images in the subset are chosen according
to the rank given to them by our algorithm. As the user
zooms in, more photographs (that were ranked lower) are
revealed, thus bringing the content into more detail. At any
zoom level, panned to any region, the user should see a small
set of photos that best represents that region. Given an or-
dering on the photos, the implementation of this interaction
becomes trivial. When viewing any region, display the k
best photos that were taken within that region. When the
user zooms in further, our algorithm only needs to go down
the ranked list of photos, and add photos to the map until
the currently viewed map region is populated with the right
amount of photos (as determined by the application).

6. VISUALIZING COLLECTIONS: TAG MAPS
Tag Maps is a visualization we developed to expose tex-

tual topics that are tied to a specific location on a map. The
tags that are deemed relevant can be shown at the location
where they “occur”, and displayed in a size that corresponds
to the tag’s importance, as shown in Figure 3. Tag Maps
have some interesting parallels with tag clouds (that are, es-
sentially, lists of tags with font sizes that are weighted by the
tags’ popularity), which have recently been commonplace in
various social-media websites.

While Tag Maps are a generic form of visualization, our
summarization algorithm can be used to seed a Tag Map vi-
sualization for geo-referenced photo collections. Rather than
display representative photographs at their respective loca-
tions, it is possible to convey the concepts represented in the
dataset through the tags. The visualization is based on the
textual tags that are associated with the photos data, and
mainly uses the tag-distinguishability scores, along with the
clustering. The visualization can also use the other factors
that inform our algorithm’s results.

In our algorithm, we calculate a tag-distinguishability score
τi for every cluster Ai at every level of the hierarchy. In the
process, an individual score τt,i is calculated for each tag t
as described in Section 4. This tag score, as a variant of
tf-idf, can be thought of as a measure for how well and
how uniquely t represents Ai.

Consider the following mapping: for some ‘natural’ level

of the hierarchy, (to be determined by the clustering algo-
rithm), and for each cluster Ai in that level, pick the tag
t ∈ T that maximizes τt,i. We thus have a set of clusters,
and one tag to represent each cluster, with a score associated
with that cluster and tag.

The chosen tags are displayed on the map directly above
the centroid of their respective cluster. The displayed size
of the tag corresponds to its computed score. Notice that
the displayed size can also reflect other factors that go into
the cluster score such as relevance, density, photographer-
distinguishability and so forth. Another dimension of infor-
mation can be easily encoded in the Tag Map; for example,
the gray level of the tag can represent recency – recent tags
are darker, older tags are lighter.

Figure 3 shows the Tag Maps produced by our algorithm
to represent photo collection in San Francisco and London.
In both cases, the photo collections used to generate this
visualization are ‘geo-tagged’ images from Flickr (see Sec-
tion 7). Over 1000 such geo-tagged photos were used for
each city. Indeed, relevant concepts represented in these
cities arise from the visualization: Lombard Street, Golden
Gate Bridge, Golden Gate Park, Twin Peak in the San Fran-
cisco map; Buckingham Palace, Big Ben, Hyde Park, and
more in the London map. Notice that, as discussed in Sec-
tion 3, the tags in our Tag Maps represent “photo spots”
and not necessarily the locations of the objects themselves
(see for example the “Golden Gate Bridge” tags that ap-
pear in two different view points of Golden Gate Bridge).
Also note that our results were not free of problems. For
example, Figure 3(a) shows the appropriate but not repre-
sentative tag “trees” for a location inside one of the parks
(left side of the map). On the other hand, Figure 3(b) shows
a number of clusters tagged “London”, which our algorithm
should have scored lower given that “London” must appear
in most clusters in large numbers.

(a) San Francisco

(b) London

Figure 3: Tag Maps of San Francisco and London



Finally, Tag Maps can be different at various zoom levels,
displaying more tags from more clusters as the map interface
is zoomed in. Moreover, Tag Maps can be used for collec-
tions other than geo-tagged photographs: e.g., visualizing
popular search keywords from different areas on the map.
We evaluate Tag Maps, and through it key aspects of our
algorithm, in the next section.

7. EVALUATION
We implemented a version of our algorithm, and per-

formed a number of user evaluations to compare our sys-
tem with a number of baseline approaches. Our current
summarization implementation utilizes only three features:
location, photographer, and tags. The system clusters the
input photo locations using the Hungarian clustering algo-
rithm, and then computes a score for each cluster Ai at
each level, by taking the product of (a) the number of pho-
tos in Ai, (b) the tag-distinguishability of Ai, and (c) the
photographer-distinguishability of Ai. Given these scores,
we set the header/trailer threshold such that 5% of the pho-
tos are added to the header, and sample the rest randomly
as the trailer, as described in Section 4.2.

For all our tests, we used photos from the same pool of
images, ‘geo-tagged’ photos from the popular photo sharing
website Flickr [5]. Geo-tagged images are photos that are
associated with latitude and longitude tags, often (but not
always) representing the exact location where the photo was
taken. We retrieved all such photos from the San Francisco
area; there were over 2200 such geo-tagged San Francisco
photos on Flickr. We refer below to this dataset as Peval.

7.1 Evaluation Framework
Today, the size and (more so) geographic distribution of

the currently available geo-tagged datasets do not allow for
a task-based evaluation of the system, such as measuring its
usefulness in browsing. Instead, we performed direct eval-
uation of our system, having users judge its output. The
goals of our evaluation were to:

• Verify that our algorithm scores for tag- and photographer-
distinguishability are meaningful and accurate.

• Determine whether the summary algorithm identifies rep-
resentative locations in a given spatial region better than
baseline methods.

• Test whether the photos selected as a summary by our
algorithm form a better summary than photos chosen by
various baseline methods.

These goals are clearly dependent on subjective measures;
we therefore performed our evaluation by user tests. We ex-
ecuted three different experiments to accomplish these goals.
These tests are listed next.

7.2 Tag Maps Test
The goal of the Tag Maps test was to determine if the tag-

distinguishability features of the algorithm are useful and
meaningful, in that (a) important textual concepts that are
related to specific locations are surfaced and (b) unimpor-
tant or highly personal tags are demoted. We used our tag
maps visualization (see Section 6) for this test. The selec-
tion process of the visualization is somewhat different than
that of our algorithm, selecting one prominent tag for each
cluster instead of scoring the cluster according to all tags
in it; however, the selection, location and displayed size of

each tag is directly related to our algorithm‘s cluster-scoring
mechanism.

For the purpose of evaluation, we performed a within-
subject experiment. We showed the subjects tag maps that
were based on our clustering results. For each cluster, the
top-scoring tag was selected and shown according to one
of three tag scoring variations: either (a) the basic tf-idf

score of that tag in the cluster, as described earlier in (4) ,
(b) the same with a threshold in which clusters containing
photographs by only one user are not displayed, and (c) the
alternative tag scoring method determined by the fraction
of users who used the tag in this cluster, described by (5),
with the same threshold as (b). This latter option was used
to generate the tag map shown in Figure 3. In all cases, the
displayed size of the tag was proportional to its score.

We asked each subject to rate the three different tag maps
in terms of (1) whether the tags appear in an appropriate
location, (2) how representative of each location is its dis-
played tag, (3) how well the size of tags represents their im-
portance in the displayed map region and (4) overall, how
well the map represents the region.

Due to lack of space, we do not provide complete results
for this test. To summarize, the results indicated that the
first two methods surfaced many irrelevant tags; the size
of the tags was often not reflective of the importance of
the tag to the region. Omitting tags for clusters with a
single user reduced clutter and removed many inappropri-
ately large tags. Switching our scoring method to (c), that
is based on counting the fraction of photographers using a
given tag, brought significant improvements. Subjects also
rated this scoring scheme higher in terms of the quality of the
overall representation of the map region. This initial find-
ing both determined our implementation technique for the
Tag Map visualization, and suggested that photographer-
distinguishability is an important factor in generating col-
lection summaries.

7.3 Location Importance Test
We executed the Location Importance test in order to

verify that our algorithm selects a good subset of locations
for a summary of a region. In this test, we examine the
location of photos selected, rather than the content of the
photos. For example, Figure 1(b) shows that our algorithm
summarized Peval by selecting photos from a viewpoint of
the Golden Gate Bridge, in Golden Gate Park, at the famous
Lombard Street, and more – arguably a good set of locations
for a summary of San Francisco locations.

For this test (and the next one), we compared four basic
conditions that represent different ways to generate sum-
mary sets from a collection of geo-tagged images. These
conditions include our summarization algorithm, “Interest-
ingness”, “most recent”, and “random”. The conditions,
and a short description of each, are listed in Table 1. As the
last two conditions are least stable, and are likely to change
every time such a selection is made, we have tried two in-
stances of each condition (i.e., most recent photos at two
different points in time, and two different random sets), for
a total of six experimental conditions. Notice that all con-
ditions are naturally biased towards selecting photos from
more popular regions, simply due to photo density: more
photos are taken in popular locations, and therefore the
probability that photos from these locations will be selected
is higher.



Table 1: Basic Experimental Conditions for the Lo-
cation and Summary Tests

Condition Description
Summarization Our Algorithm results on Peval

Interestingness Photos from Peval with the highest
Flickr “interestingness” scorea

Recent The most recent photos from Peval,
with no more than one photo per user.

Random A random selection of photos from Peval

aFlickr interestingness is the website’s measure of the attention
given by other users to a photo.

Figure 4: Location Precision: the number of photos
in each condition’s summary that matched a loca-
tion that appears in ground truth lists.

To find out if the locations of the photos selected in the
different experimental conditions were meaningful, we first
had to compile a “ground truth” list of the interesting lo-
cations in San Francisco. To this end, we asked 25 people
to each write down a list of 5 − 10 top tourist locations in
San Francisco. We compiled their answers and ranked the
locations by the number of times each was mentioned. We
selected the top 15 locations, which were chosen by at least
3 people, for our test. As a second ground truth list, we have
used the top 10 locations from Yahoo! Travel’s “Things to
do in San Francisco”. As expected, both lists included Fish-
erman’s Warf (Pier 39), Golden Gate Bridge and Alcatraz.

We checked how many of the top 10 photos’ locations, as
selected by each experimental condition, matched (in terms
of location) the ground truth lists. A positive match was
awarded when the location matched, even if the photo did
not portray the actual attraction (the test we performed in
order to verify the content of the photos is covered in the
next section). For example, if a photo that was taken in
Alcatraz was selected for the summary, it matched both our
ground truth lists.

Figure 4 shows the percentage of summary photos from
each condition that were taken in a location listed in one
of our ground truth location lists. For example, 60% of
the locations in the summary generated by our algorithm
appeared in our subjects’ top 15; 50% of the locations ap-
peared on Yahoo’s guide top 10 list. Our algorithm clearly
performed better than all other conditions, for both ground
truth lists.

7.4 Summary Relevance Test
The purpose of the Summary Relevance test was to di-

rectly evaluate the set of photographs that were selected by
our algorithm as the summary of dataset Peval, comparing
against the other base methods. In this test, we showed
our subjects summaries consisting of nine photos from the
dataset. Each of these summaries was generated by one of
the experimental conditions listed in Table 1: our summa-
rization algorithm, and the three other base methods. We
performed an within-subject evaluation with a set of 18 sub-
jects. Each subject was shown the nine photos selected by
each summary, and was asked to rate each such summary
on various criteria: relevance to the city, attractiveness of
the photos, usefulness for showing the city to a friend, and
the extent to which the entire city is represented.

Figure 5 shows a summary of the results. We show sub-
jects’ ratings for each condition in response to two selected
questions from the survey (trends were similar for all ques-
tions). The selections made by the two variations of our al-
gorithm, Summary (1) and Summary (2), were better than
the Random and Interestingness selections. The Recent se-
lection used for this test happened to be a good selection
of the city. However, it is hard to imagine that such a se-
lection could be consistently representative across time. In
fact, the previous Location Importance Test featured two
other ‘recent’ selections that performed quite badly.

Useful for touring in city
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(a) “Is this set useful for showing San
Francisco to a friend?”

Represents the city well
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(b) “How well does this set represent
San Francisco?”

Figure 5: Subjects‘ ratings for two questions from
the experiment.

To summarize, the three tests we performed had shown
that the summarization algorithm performs quite well in
identifying important photographic locations, and selecting
the actual photos for the summary. The summary algo-
rithm’s performance exceeded the three baseline methods
that have proven both less effective, and less robust in the
face of changing data.



8. CONCLUSION AND FUTURE WORK
We believe that our approach to selecting representative

photos from geo-referenced collections is useful for many ap-
plications involving large collections of geo-referenced digi-
tal photographs. We have shown a way to generate such
representative summaries, and how to generate Tag Maps
visualization of these datasets. A direct evaluation of our
algorithm resulted in a favorable outcome.

We found that some aspects of the system need to be im-
proved. In particular, while the system often identified the
important locations where representative photos are likely to
be found, extracting visual features from the clusters could
potentially assist in selecting better photos for the final sum-
mary. Using such technology for place and landmark recog-
nition [4, 16], augmented by our tag-based selection, and
given that a location was already identified, may be critical
in ensuring that a “most representative” image is selected.

An interesting question is the information requirements
of our algorithm. How many photos are needed in a given
region, and from how many photographers, before meaning-
ful results are available? For now, we can only attest to the
fact that the algorithm tested well for city-sized regions with
roughly 1000 photos or more.

In addition, at this point our dataset was not large enough
to study the proposed biasing mechanism (for example, bias-
ing for recent photos or photos from a user’s social network).
We would like to explore that further in our future work.
Other possible paths could be trying to correlate gazetteer
data, or textual data from other sources (e.g., subsumed
tags [17]) with tags derived by our algorithm.

The phenomenal growth of personal and shared digital
photo collections presents considerable challenges in build-
ing navigation and summarization applications. By utilizing
our summarization algorithm, which can be parameterized
by user and contextual bias, we enable users to view the
most relevant samples from large-scale geo-referenced photo
collections, with little to no effort.
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