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Abstract— The emphasis of emerging mobile and Web 2.0 
applications on collaboration and communication increases 
threats to user privacy. A serious, yet under-researched privacy 
risk results from social inferences about user identity, location 
and other personal information. In this paper, after analyzing the 
social inference problem theoretically, we assess the extent of the 
risk to users of computer-mediated communication and location 
based applications through 1) a laboratory experimentation, 2) a 
mobile phone field study, and 3) simulation. Our experimentation 
involved the use of 530 user-created profiles and a 292-subject 
laboratory chat-study between strangers. The field study 
explored the patterns of collocation and anonymity of 165 users 
using a location-aware mobile-phone survey tool. The empirical 
data was then utilized to populate large-scale simulations of the 
social inference risk. The work validates the theoretical model, 
highlights the seriousness of the social inference risk, and shows 
how the extent and nature of the risk differs for different classes 
of social computing applications. We conclude with a discussion 
of the system design implications.  
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I.  INTRODUCTION 
Changes in the technological environment are creating 

numerous new and unaddressed risks to user privacy. Today’s 
social computing applications such as Facebook enable users 
to exchange messages, reveal aspects of their profile, and even 
find profile-based matches. Location-based applications such 
as LoveGety leverage location, mobility, or proximity 
information to support navigation, recommendations,  match 
making, etc. The resulting use and sharing of such personal 
information raise many serious privacy concerns. Previous 
efforts to protect users’ privacy have made considerable 
advances in terms of computer and network security [1], user 
control mechanisms [2, 3], ethical considerations, and privacy 
policies [4]. However, the collaborative and pervasive nature 
of new mobile and social computing applications can give 
users the ability to leverage background knowledge about the 
social environment/context to make unwanted inferences. 

The term inference as used in the privacy literature is the 
process of deducing unrevealed information as a consequence 
of being presented with authorized information. A well known 
example of the inference problem relates to an organization’s 
database of employees [5], where the relation <Name, Salary> 
is a secret, but user u requests the following two queries: “List 
the rank and salary of all employees” and “List the name and 
rank of all employees.” None of the queries contain the 

secured < name; salary > pair; however, an individual may 
utilize the known information <Rank, Salary> and <Rank, 
Name> to infer the private <Name, Salary> information 
through deductive reasoning. E.g., the knowledge that Bob is a 
manager and all managers earn $x, can help one deduce that 
Bob earns $x. Inference is mostly known as a security threat to 
databases [5] and sometimes as a privacy risk in data mining 
[6]. Although the inference problem as a threat to database 
confidentiality is discussed in many studies, Ubiquitous Social 
Computing (USC) raises new classes of inferences which we 
call social inferences. Social inferences are unwanted 
inferences that result from the use of social computing 
applications by the inferrer and are about user information 
associated with these applications such as identity, location, 
activities, social relations, and profile information. Threats to 
user privacy in mobile social computing systems have been 
placed into seven categories in [7]. In this paper, we focus on 
the two categories that relate to social inferences:  
1. Instantaneous Social Inferences (e.g. my cell phone shows 

that I have a romantic match, Bob, who is nearby and I can 
only see two people with a similar cell phone around me. 
One of them must be Bob, thus increasing my chance of 
identifying him).  

2. Historical Social Inferences through persistent user 
observation (e.g. two nicknames are repeatedly shown on 
the first floor of the gym where the gym assistant normally 
sits. One of them must be the gym assistant). 

Previous inference prevention methods are inadequate in 
addressing social inference risks for one or more of the 
following reasons:  
• Users typically utilize information outside the application 

(background knowledge) as a premise for inferences;  
• The sensitivity of user information may have a dynamic 

nature based on the context, such as time and location. 
• The user attribute being inferred (e.g. users’ identity at 

physical appearance granularity) may not be stored in the 
application database; and 

• Social inferences do not necessarily result from deductive 
reasoning [8] as shown in the salary example above. 
In this paper, we aim to expand privacy research in the 

domain of mobile and social computing. While numerous 
social computing applications deal with privacy concerns 
through access control [2, 9] (e.g., Facebook enables users to 
set privacy preferences) it is clear on its own such control 
models will be unable to prevent unwanted social inferences. 



 

 

Currently, we do not know how significant the social-
inference risk is and how it differs for users of different 
classes of social computing applications. Gaining such 
knowledge requires advances in theory and systematic 
empirical studies that can then be utilized to extract important 
privacy and design implications. Consequently, we first 
analyze the social inference problem theoretically in the 
context of ubiquitous social computing and propose methods 
to predict the risk of social inference. We then employ 
experiments and large-scale simulations to explore the dangers 
and prevalence of social inferences in two critical applications 
of social and/or mobile computing: Computer-Mediated 
Communication (CMC) and location-aware applications. 
Simulations show how social inference dangers are divergent 
based on the application type. 

II. PRESENT PRIVACY MANAGEMENT SOLUTIONS 
We categorize research into enhancing user privacy into 

four categories: 

1. Ethics, principles, and rules: Privacy concerns can be 
partially addressed through the application of ethical 
principles and rules. Langheinrich [4] defines the principles of 
fair information practices as openness and transparency, 
individual participation, collection limitation, data quality, use 
limitation, reasonable security, accountability and explicit 
consent. He then sets principles for privacy in mobile 
computing, that consist of notice, choice, proximity, 
anonymity, security, and access.  

2. Access control systems:  Access control systems 
provide the user with an interface to set their privacy 
preferences. They directly control people’s access to the user’s 
information based on their privacy settings. Access control 
systems with an interface to protect user privacy started with 
internetworking, and were later extended to context-aware and 
ubiquitous computing systems. The earliest work within this 
area is P3P [10]. P3P enables users to regulate their settings 
based on different factors including consequence, data-type, 
retention, purpose and recipient. Ackerman [11] implemented 
a critic-based agents system called  Privacy Critics, for online 
interactions. These agents watch the user's actions and make 
appropriate privacy suggestions. Access control mechanisms 
for mobile and location-aware computing were introduced 
later [2, 12, 13]. 

3. Security protection: Security protection handles the 
following aspects [1]: 
• Availability (services are available to authorized users). 
• Integrity (free from unauthorized manipulation). 
• Confidentiality (only the intended user receives the 

information). 
• Accountability (actions of an entity must be traced 

uniquely). 
• Assurance (assure that the security measures have been 

properly implemented). 
The inference problem is mostly known as a security 

problem that targets system-based confidentiality. 
Confidentiality protection is the area that includes most of the 

previous research on the inference problem. Therefore, 
suggested inference solutions often deal with secure database 
design.  

4. Inference management: Two different techniques 
have been proposed to identify and remove inference 
channels. One makes use of semantic data modeling methods 
to locate inference channels in the database design, then 
redesign the database to remove these channels. The other 
technique evaluates database queries to understand whether 
they lead to unauthorized inferences. Each of these database 
management techniques has its drawbacks, including 
vulnerability to false positives and negatives, denial of service 
attacks, high computational complexity and overly restrictive 
limits on user access to information. These techniques have 
been studied for statistical databases [14], multilevel secure 
databases [15, 16] and general purpose databases [5, 17]. A 
few researchers have also addressed the inference problem in 
data mining [18, 19]. Denning and Morgenstern employed 
classical information theory to measure the inference chance 
in the realm of multilevel databases [20].  

Although inferences can be made about a wide range of 
attributes, studies and polls suggest that identity is the most 
sensitive piece of users’ information [7] and anonymity 
preservation is a key aspect of application design [21, 22]. 
Anonymity is defined as “not having identifying 
characteristics such as a name or description of physical 
appearance disclosed so that the participants remain 
unidentifiable to anyone outside the permitted people 
promised at the time of informed consent” [23].  

Serjantov and Danezis [24], Diaz et al [25], and Toth et al 
[26] suggested information theoretic measures of degree of 
anonymity of the transmitter node in a network of message 
transmission systems that use mixing and delaying in routing 
the messages.  [24] and [25] try to measure the average 
anonymity of the nodes in the network and [26] measures the 
worst case anonymity in a local network. They make very 
abstract and limited assumptions about the attacker’s 
background knowledge which do not result in a realistic 
estimation of probability distributions for nodes.  

Recently, new measures of privacy called k-anonymity and 
L-diversity have gained popularity [27, 28]. k-anonymity is 
suggested to manage identity inference in data mining, while 
L-diversity is suggested to protect both identity inference and 
attribute inference in databases. In a k-anonymized dataset, 
each record is indistinguishable from at least k−1 other records 
with respect to certain “identifying” attributes. These 
techniques can be broadly classified into generalization 
techniques, generalization with tuple suppression techniques, 
and data swapping and randomization techniques. As noted in 
the introduction, the challenge of social inferences cannot be 
addressed by previous management techniques alone because 
the user attribute being inferred may not be stored in the 
application database, users typically utilize their background 
as a premise for inferences, and  the sensitivity of user 
information may have a dynamic nature. 



 

 

In section III, we will explain, modify, and expand 
Denning and Morgenstem’s formulation to predict the risk of 
social inference in mobile and social applications. 

III. SOCIAL INFERENCE RISK PREDICTION FRAMEWORK 
In this section we frame the social inference problem and 

explain the relation between social inferences and information 
entropy. We will also provide a framework for modeling 
users’ background knowledge so that we can calculate 
information entropy and predict the risk of social inferences.  

The logic is as follows: as we collect more information 
about a user, such as his/her contextual situation, our 
uncertainty about other aspects such as his/her identity may be 
reduced, thus increasing our probability of correctly guessing 
these aspects. This uncertainty is measured by information 
entropy in information theory. Information [29] as used in 
telecommunications is a measure of the decrease of 
uncertainty of a signal at the receiver. Here we use the fact 
that the more uncertain or random an event (outcome) is, the 
higher entropy it will possess. If an event is very likely or very 
unlikely to happen, it will not be highly random and will have 
low entropy. Therefore, entropy is influenced by the 
probability of possible outcomes. It also depends on the 
number of possible events, because more possible outcomes 
make the result more uncertain. In our context, the probability 
of an event is the probability that an attribute (such as a user’s 
name) takes a specific value. As the inferrer collects more 
information, the number of entities that match her/his 
collected information decreases, resulting in fewer possible 
values for the attribute and lower information entropy.  

To explain this in more detail, we bring an example from 
the user experiment described in [30] and built upon in this 
paper; Bob engages in an online communication with Alice. At 
the start of communication Bob does not know anything about 
his experimental chat partner, so the information entropy is 
maximum. After Alice starts chatting, her language and chat 
style help Bob determine (guess correctly) her gender and 
home country [30]. At this point, users of the same gender and 
region are most likely to be his chat partner. Thus, the 
probability of events is no longer uniformly distributed and 
entropy decreases. After a while Alice reveals that she is 
Hispanic and she plays for women’s soccer team. Bob who has 
seen the soccer team playing before, knows that there is only 
one Hispanic female member and infers Alice’s identity at 
physical appearance granularity. At this point, while Alice 
thinks she kept her identity a secret [30], Bob knows who she 
is because there is only one possible value for her identity. 
Therefore, social inferences happen when collected 
information reduces the inferrer’s uncertainty about an attribute 
to a level that she/he could deduce that attribute’s value. 
Collected information includes not only the information 
provided to users by the system, but also the information 
available outside of database or background knowledge.  

Classical information theory was first employed by 
Denning and Morgenstern to measure the inference chance in 
the realm of multilevel databases [20]. Given two data items x 
and y, let H(y) denote the entropy of y and Hx(y) denote the 

conditional entropy of y given x. They defined the reduction in 
uncertainty of y given x is defined as follows: 

 

The value of Infer (x y) is between 0 and 1, representing 
how likely it is to derive y given x. If the value is 1, then y can 
be definitely inferred given x. Denning and Morgenstern did 
not suggest using this formulation in real situations because 
they did not know how to calculate conditional entropies. 

  Cuppons and Trouessin [31] formulate inference control 
as follows; If A is permitted to know information Q and A can 
derive information Φ from information Q (Q=>Φ), then A 
should be permitted to know Φ. Consequently, if we want to 
be forbidden for A and can be inferred from Q, Q should be 
forbidden for A as well. 

None of the above formulations in their current state can 
address the social inference risk; Denning and Morgenstern’s 
formulation has the problem of highly associating the 
inference risk with the maximum entropy, which undermines 
the importance of conditional entropies. Furthermore, it 
doesn’t show how to calculate the conditional entropy. 
Cuppon’s definition is formulated for logical deductions. We 
must remember that considering partial inferences in a social 
computing system, may not be logically deduced from Q as 
indicated by Q => Φ. Morgenstern and Cuppon don’t consider 
users’ privacy preferences as a factor, because their focus is on 
database confidentiality protection. 

 We frame the social inference problem and define Q and 
Φ as follows: Information Φ is defined to be inferable from 
information Q if knowing Q could reduce the uncertainty 
about Φ and bring the entropy of Φ down to a risky threshold. 
Q is safe to be completely known by user A if he is permitted 
to know everything that can be inferred from Q: 

where H(Φ|Q) 
is the conditional entropy of  Φ given Q.  

We denote significant information available to the inferrer, 
including the background knowledge by Q; Q includes the 
inferrer’s background knowledge as well as answers to their 
queries. In the case of historical inferences, Q includes the 
answers to previous queries starting at the current time and 
going back a given amount of time equal to T.  Before the 
inferrer knows Q, Φ maintains its maximum entropy. The 
maximum entropy of Φ, Hmax, is calculated as follows: 

 ,                              (1) 

where P=1/X and X is the maximum number of entities (users) 
related to the application. 

After estimating all the information available to the 
inferrer, Q, we can calculate the conditional information 
entropy of attribute Φ as defined in information theory: 

,                (2) 

where V is the number of possible values for  attribute Φ. 
P1(i) is the probability that the ith possible value is thought to 



 

 

be the correct one by the inferrer. P1(i) is the posterior 
probability of each value given Q.   

We illustrate this model through the study example 
mentioned above; Alice is engaged in an on-line chat with 
Bob. After a while her chat style may enable Bob to guess her 
gender and home country. Then she reveals she is a Hispanic 
female and a member of the soccer team. In this case, Φ is 
Alice’s identity at name or face granularity. At first, Q 
comprises a guess on gender and home country, which 
changes the probability distribution of values as below; 

where V is the number of possible users of the applications, ζ 
is the probability of correctly guessing Alice’s gender, σ is the 
probability of correctly guessing her home country[30], X1 is 
the number of users of the same gender, and X2 is the number 
of users of the same country.  

After Alice reveals her gender and team membership, Q 
comprises the revealed information (gender=female, 
ethnicity=Hispanic, and group membership=soccer team) and 
background knowledge. Since personal profiles were found to 
be part of her partner’s background knowledge, background 
knowledge includes users that are Hispanic female soccer 
players. V is the number of users that satisfy Q, which is the 
number of Hispanic female soccer players. At this point, V=1, 
P1(i)=1, and entropy is at its minimum level. 

If we assume that unlike the above example all the 
information available to users is deterministic (which means 
they are either able to know the answer or not), assume that all 
information available outside the database is included in Q, 
and focus on anonymity protection, then P1(i) in equation (2) 
equals 1/V. Consequently,  

Hc = -Σ(1/V).log2(1/V)=log2(V).                      (3) 

In this simplistic case, entropy is only a function of V. 
Since A is indistinguishable from (V-1) other users, V is A’s 
degree of anonymity. In this simplistic case, the problem 
simplifies into a dynamic k-anonymity problem [28].  

Focusing on anonymity protection again, we call U a user’s 
desired degree of anonymity if he/she wishes to be 
indistinguishable from (U-1) other users. A user is at the risk 
of identity inference if her/his identity entropy is less than a 
certain threshold. This entropy threshold can be obtained 
using the desired degree of anonymity and replacing V by U in 
equation (2). Assuming a uniform distribution results in:  

 Entropy Threshold=log2(U) .                              (4)  
To correctly calculate the conditional information entropy 

in a social application, we need to model the significant 
information available to the inferrer, including the background 
knowledge. The need to model background knowledge has 
been recognized as an issue in database confidentiality and 

integrity for a number of years [32]. However, as Jajodia and 
Midows [15] say, “we have no way of controlling what data is 
learned outside of the database, and our abilities to predict it 
will be limited”. Thus, even the best model can give us only 
an approximate idea of how safe a database is from illegal 
inferences”. The purpose of modeling background knowledge 
in this context is to identify 1) what attribute can be inferred 
(Φ) even if it is outside the database; 2) what attributes, if 
revealed, can help the inferrer reduce the number of possible 
values of Φ. Background knowledge can be estimated with 
different levels of accuracy: 1) The simplest method is to 
assume that the inferrer knows what we have in the existing 
application database, then estimate the number of possible 
values of Φ and their probabilities. The weakness of this 
method is that some of the attributes in the database are not 
usually known by the inferrer and some parts of the inferrer’s 
background knowledge may not exist in the database; 2) The 
second method is to extend method 1 through hypothesizing 
about the inferrer’s likely background knowledge; 3) The third 
method, is to utilize the results of user studies of background 
knowledge; 4) finally we could extend methods 2 or 3 with 
application usage data that allows for continuous monitoring 
of inferrer’s background knowledge. An analysis of the 
relative utility of these approaches is beyond the scope of this 
paper.  

IV. RESEARCH QUESTIONS 
In section III, we described how to predict the social 

inference risk using information entropy. We saw low entropy 
that is less than a certain threshold indicates a high inference 
risk and the need to take an appropriate action. In sections V 
and VI, we try to answer the following questions in terms of 
system design and the appropriate action. 
1. How serious is the social inference risk in USC 

applications and can we ignore it? 
2. How does the risk change based on the application type? 

V. METHOD 
We investigated the danger of the social inference 

problem, the extent of the risk and the appropriate system 
design in two steps; user experiments and simulations. As a 
first step, we conducted two user experiments in two critical 
domains of mobile and social computing; Computer-Mediated 
Communication (CMC) and location-awareness. In the second 
step, we used the data obtained from the studies to simulate 
the risk on a larger scale and for various situations. A detailed 
presentation of Study 1 can be found in [30] where we explore 
the relation between information entropy and social inference 
in CMC. In this paper, we present a brief overview of the 
method and results of Study 1 as they are utilized to enable 
our simulations and to extract important design implications 
for CMC and location based social computing applications.  

A. Study 1: on-line communication between unknown chat 
partners 
This experiment was originally designed to: 



 

 

1. Investigate users’ background knowledge in CMC in order 
to be able to calculate the information entropy. 

2. Test the ability of information entropy, calculated as 
explained in section III, to predict the inference risk. 

3. Explore the risk of social inferences in CMC. 
4. Provide real world data for large-scale simulations of 

online chats. 

Our subjects participated in a study consisting of three 
phases: 1) online personal profile entry; 2) an experiment 
involving subjects chatting with an unknown online partner; 
followed by 3) a post chat survey about the subject’s ability to 
guess their chat partner’s identity. Five hundred and thirty 
students entered a personal profile, 304 participated in the chat 
session of which 292 subjects completed all three study 
components.  

B. Study 2: The inference problem in proximity-based 
applications 
This study, first presented in this paper, was conducted as 

part of a larger study focused on location-aware cell phone 
gaming. The field study aimed to:  
1. Investigate users’ background knowledge in proximity-

based and location aware applications. 
2. Verify that our calculation of information entropy predicts 

the inference risk. 
3. Explore the risk and frequency of social inferences in the 

domain of location-awareness. 
4. Provide population distribution and co-location data for 

large-scale simulations of a proximity-based application. 

1) Subjects 
All subjects were students of a medium sized urban 

university who were offered raffle tickets for answering a pre-
study survey, carrying our Window Mobile phones for three 
weeks, and answering questionnaires on the phone. One 
hundred seventy five students participated in the study of 
which 165 completed the questionnaire at least once. Subjects 
were exclusively university students representative of the 
various majors offered on campus and ranging from 18 to 44 
years old. Twenty percent of the subjects were female, and 
65% of the subjects were commuters (living off campus).  

2)  Procedure 
Phase I: Online Pre-study Survey – Subjects entered their 

contact information, demographic information such as age and 
gender, and questions related to their physical appearance, 
such as height and body type. 

Phase II: Installation of a location estimation system that 
tracks users’ locations on campus. The algorithm used to 
locate devices on campus is the Bayesian inference algorithm 
explained in [33]. Prior to implementation of the algorithm, a 
few students were employed to divide all publicly accessible 
rooms and paths on the campus into smaller cells. Cells 
subdivide rooms into smaller polygons to provide better 
location estimation accuracy. Students also visited all cells to 
collect sample signals that were used in building signal 
strength probability distributions for each cell. 

Phase III: Installation of the ‘Nearby’ application on each 
phone which shows the nicknames of the users in the vicinity 
of the phone user on campus. Two users were considered to be 
nearby if they were in the same room or adjacent cells. 

Phase IV: Pop-up Questionnaires Using Context-Aware 
Experience Sampling Method (CA-ESM) [34]. The 
questionnaire popped up every time subjects changed their 
location and stayed in a new location for 5 minutes or when 
they had not answered a questionnaire for at least 2 hours. The 
questionnaire started by asking the subjects about the accuracy 
of their location as captured by the location estimation system. 
If the location was captured correctly, the study continued to 
ask how often the subjects visited the location, how many 
people they saw in their physical vicinity, and how many of 
them were friends or acquaintances. In the subsequent 
questions, subjects were asked questions about the nicknames 
they saw on their nearby application, what they could guess 
about the identity of the nickname owner, and how they could 
map them to people in their vicinity. They elaborated on their 
guess by mentioning names or physical characteristics of the 
nickname owner.  

C. Large Scale Simulations of the Risk 
As a final step we used simulations to investigate the 

problem and appropriate actions on a larger scale for various 
situations. The simulation models were populated with 
parameters derived from our user study providing a good 
approximation to real world deployments.  

VI. RESULTS 

A. Results of Study 1: on-line communication between 
unknown chat partners 
The key findings of the on-line communication study show 

how social inferences happen and how they pose a serious 
threat in CMC. In particular: 
• The only measure found to strongly predict the identity 

inference was information entropy.  
• Identity inferences are frequently made in CMC.  
• Different users desire different levels of anonymity. 
• Even when users are in complete control of the information 

they reveal, they are not able to maintain their desired level 
of anonymity, because they do not know what can be 
inferred from the information they reveal. 

The detailed result of this study can be found in [30].  

B. Results of Study 2: Proximity-based applications 
 A total of 1841 ESM questions were answered, with the 

questionnaire completion rate ranging from zero to twenty. 
Some users filled out up to 20 questionnaires, and some 
answered one. The location was captured correctly 86% of the 
time, which means 1583 valid questions were obtained. 

Subjects’ answers and their elaborations on what they 
guessed were compared to the demographic and physical 
information that we collected in the pre-study survey.  In 46% 
of the cases, subjects were able to either exactly identify a 
nickname on their nearby application or bring her/him down to 



 

 

two people in their vicinity. The survey ended by asking the 
subjects how they could identify the owner of the nickname. 
Forty percent of correct guesses were followed by choosing “I 
know this person and I know this is the nickname s/he picks” 
as the answer to this question. Those nicknames belonged to a 
friend (or an acquaintance) whose nickname and real name 
were the same. Thus, the nearby user was not anonymous and 
no identity inferences happened. Twenty nine percent of 
correct guesses said they could guess because they saw only a 
few people or a few cell phone users around and 28% of them 
said because they repeatedly saw the nickname and the person 
among their nearby users. The remaining 2.8% had other 
reasons, out of which one subject did not know how he 
guessed, one subject said the nickname made him think that it 
belonged to an Asian girl and he could only see two Asian 
females, and one subject said that the nickname looked like a 
girl’s nickname and that he found one girl around. This means 
in 28% percents of all cases, subjects were able to bring an 
anonymous nearby user down to one or two people in their 
vicinity. Thus, assuming a desired degree of anonymity of 3 
for everyone, instantaneous and historical social inferences 
happened in 15% and 13% of all cases respectively. While the 
risk was lower than the risk in CMC, it was still a serious risk. 

C. Simulation of the Risk of Identity Inferences in CMC  
Experimental results show that social inferences are not rare 
and are more common in CMC. We used the experimental 
data from study 1 to investigate the risk of identity inference 
in computer-mediated communication on a larger-scale. We 
first simulated personal profiles for a campus similar to our 
downtown campus environment. Profiles consisted of 20 
individual profile items, including personal information, on 
campus activities, education information, and contact 
information. Parameters, such as the diversity of profile items, 
their statistical distribution, etc. were derived from the 532 
user profiles obtained from study 1. Additional information 
such as the number of courses, statistical distribution of the 
number of students in a class, and enrollment statistics were 
obtained from university admission statistics. We then 
simulated online interactions of the users. The probability of 
revealing profile items and users’ desired degree of anonymity 
were derived from the user experiment. Information entropy 
was calculated for each simulated chat based on their revealed 
profile information.  

Fig. 1 shows the probability that a user’s identity entropy is 
lower than its threshold. The y-axis shows the percentage of 
users for whom entropy was less than the threshold. The x-
axis was chosen to represent the population because the size of 
the community highly affects the inference probability. The 
depicted curves show this probability for desired degrees of 
anonymity of 2, 3, and 5 (Entropy thresholds were calculated 
based on U=2, U=3, and U=5). In user study 1, 80.8% of the 
users who wanted to stay anonymous desired a degree of 
anonymity of two: U=2; and 5.1% of them desired a degree of 
anonymity of three: U=3. As expected, increasing the 
population decreases this probability. As the figure shows, 

Figure 1. Risk of Identity Inference for Computer-Mediated Communication 

while in a small school the risk can be very high, in a campus 
of 10,000 students, it is still about 50% in online chats 
between students. This means even in a rather big school, 
users reveal information that 50% of the time could lead to the 
invasion of their desired degree of anonymity. Therefore, 
identity inferences can be quite prevalent in CMC. This was 
also shown in our user study 1. 

D. Simulation of the Risk of Identity Inferences  in Proximity-
Based Applications 
We simulated a proximity-based application that shows 

nearby users by their nickname or real name based on nearby 
users’ privacy preferences. Anonymity invasions (identity 
inferences) happen when a user’s real name or nickname is 
mapped to the person or a few individuals using their nearby 
presence. Population density and distribution of nearby people 
has an important impact on the inference risk. In order to 
derive the related parameters needed for the simulations, we 
first analyzed our experimental data, which we explain below. 

Based on the results, the mean of the number of people that 
subjects saw in their vicinity was 9.1 and its distribution is 
shown in Fig. 2. Among Poisson, Gaussian, exponential, 
Gamma, Lognormal, and Negative Binomial distributions, this 
distribution best fit the Negative Binomial distribution. We 
also measured the number of application users collected by the 
nearby application in the vicinity of each subject at each 
situation. The average number of nearby application users was 
3.9 and probability distribution is shown in Fig. 2. These two 
measures are highly correlated (N=167, correlation 
coefficient, ρ=0.92; statistical significance, p<0.001) and the 
number of nearby people can be estimated as a linear function 
of the number of nearby application users with rmserr=1.6. 
Subjects’ answers show that their background knowledge 
mostly consists of their visual information about their vicinity 
and presence of nearby users. Therefore, significant 
information available to the inferrer includes the names shown 
by the application and physical appearance of current and past 
nearby users.  

Simulations were first carried out for the nearby population 
distribution obtained from the user study 2, assuming mass 
usage of the application among the population. Equation (2) 
was used to estimate each nearby user’s information entropy. 
When the number of possible values for a user’s identity (V in 



 

 

 
Figure 2. Probability distribution of nearby population 

equation (2)) is set to the number of current nearby users, our 
measure of entropy only relates to instantaneous inferences. To 
measure the historical entropy for a nearby user A, we should 
count the users whose co-presence history with the inferrer is 
the same as A’s co-presence history. This measure depends on 
the history time, T. Optimization of history time and 
calculating the risk of historical inferences are beyond the 
scope of this paper.  

Fig. 3 shows the probability that a user is at the risk of 
instantaneous identity inference in a proximity-based 
application. The y-axis shows the percentage of users whose 
identity entropy was lower than its threshold. Entropy 
threshold was calculated based on their desired degree of 
anonymity, U using equation (4). The x-axis represents the 
desired degree of anonymity. Each curve depicts the risk for a 
different mean of nearby population density. The average 
density in the middle curve is equal to the average density of 
our experimental data. We see that assuming mass usage, the 
risk of identity inference is about 7% for a desired degree of 3, 
and 20% for a desired degree of anonymity of 5. As expected 
more crowded environments have a lower chance of being at 
the identity inference risk. 

Fig. 4 shows the same risk for two more general nearby 
distributions; Gaussian distribution and a completely random 
spatial distribution of people (Poisson distribution). Again we 
see that the risk is less than 30% in the worst case, which is for 
a desired degree of anonymity of 5 and an environment that is 
30% less populated than our campus. These results are also 
confirmed by the results that we obtained from the user 
experiment. Simulation of the risk of historical inferences and 
experimental results show that for a given population density, 

Figure 3: Risk of Identity Inference for the experimental distribution 

Figure 4. Risk of Identity Inference for Poisson and Gaussian distributions 

historical inferences happen less frequently than instantaneous 
inferences.  

VII. DISCUSSION AND DESIGN IMPLICATIONS 
The theoretical framework, user studies and simulations 
presented in this paper show that social inferences are not rare 
and pose a serious threat to user privacy. User experiments 
also showed that even when users are in complete control of 
the information they reveal, they are not able to maintain their 
desired degree of anonymity [30]. This is because individuals 
are unable to correctly judge inference risks. As a result, in 
order to protect individuals from unwanted social inferences, 
systems will need to be deployed that systematically reduce 
this risk. Fortunately, we can derive from our results 
(particularly from the simulations) a number of design 
implications that can aid in the development of such systems. 

First, we need to provide users with the means to set their 
desired level of anonymity since we observed that users of 
USC applications can have a wide range of anonymity 
preferences.  

Second, the calculation of information entropy, which was 
shown to be the best predictor of the risk, should be automated 
based on our framework. If entropy is less than its threshold, 
an appropriate action needs to be taken. The appropriate action 
can be rejecting the query, blurring the answer, sending a 
warning to the owner of the information, etc.  

Third, for CMC systems user interfaces should be built to 
improve user inference-risk judgments through techniques 
such as risk visualizations or warning messages (perhaps 
applied to customized introduction tools). This implication is 
derived from the results that indicate that identity inference 
risks are quite common in CMC, which means that automatic 
control of information exchange in such applications can 
degrade system usability or be frustrating for the user. 
Furthermore, such applications are designed for users to 
consciously exchange information and users may be willing to 
compromise their anonymity settings to have more meaningful 
and productive communication. The systems can show users 
how uniquely they have specified themselves so far, or send a 
warning message when revealing a piece of information would 
enable their partner to invade their desired degree of 
anonymity. User studies will be needed to optimize such 
visualization so that they do not overly interrupt users.  



 

 

The final design implication is derived from the finding 
that the prevalence of situations with identity inference risks in 
location-based services is lower than in CMC. In location-
aware mobile applications, inference protection systems 
should modify information exchange, for example, by 
lowering the granularity of revealed information, rejecting a 
query, or blocking information exchange. In most cases 
lowering the information granularity, such as revealing the 
location at floor precision instead of room precision, or 
showing an anonymous name instead of a nickname can 
address the inference risk. This technique should not overly 
interfere with information exchange, or overly burden the user 
with privacy management actions. 
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